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Preface

Why write a new textbook on Category Theory, when we already have Mac
Lane’s Categories for the Working Mathematician? Simply put: because
Mac Lane’s book is for the working (and aspiring) mathematician. What
is needed now, after 30 years of spreading into various other disciplines and
places in the curriculum, is a book for everyone else.

This book has grown from my courses on Category Theory at Carnegie
Mellon University over the last ten years. In that time, I have given numer-
ous lecture courses and advanced seminars to undergraduate and graduate
students in Computer Science, Mathematics, and Logic. The lecture course
based on the material in this book consists of two, 90-minute lectures a week
for 15 weeks. The germ of these lectures was my own graduate student notes
from a course on Category Theory given by Mac Lane at the University of
Chicago. In teaching my own course, I soon discovered that the mixed group
of students at Carnegie Mellon had very different needs than the Mathemat-
ics graduate students at Chicago, and my search for a suitable textbook to
meet these needs revealed a serious gap in the literature. My lecture notes
evolved over time to fill this gap, supplementing and eventually replacing the
various texts I tried using.

The students in my courses often have little background in Mathematics
beyond a course in Discrete Math and some Calculus or Linear Algebra or a
course or two in Logic. Nonetheless, eventually, as researchers in Computer
Science or Logic, many will need to be familiar with the basic notions of
Category Theory, without the benefit of much further mathematical train-
ing. The Mathematics undergraduates are in a similar boat: mathematically
talented, motivated to learn the subject by its evident relevance to their
further studies, yet unable to follow Mac Lane because they still lack the
mathematical prerequisites. Most of my students do not know what a free
group is (yet), and so they are not illuminated to learn that it is an example
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of an adjoint.
This, then, is intended as a text and reference book on Category The-

ory, not only for undergraduates in Mathematics, but also for researchers
and graduate students in Computer Science, Logic, Linguistics, Cognitive
Science, Philosophy, and any of the other fields that now make use of it.
The challenge for me was to make the basic definitions, theorems, and proof
techniques understandable to this readership, and thus without presuming
familiarity with the main (or at least original) applications in algebra and
topology. It won’t do, however, to develop the subject in a vacuum, simply
skipping the examples and applications. Material at this level of abstrac-
tion is simply incomprehensible without the applications and examples which
bring it to life.

Faced with this dilemma, I have adopted the strategy of developing a few
basic examples from scratch and in detail — namely posets and monoids —
and then carrying them along and using them throughout the book. This has
several didactic advantages worth mentioning: both posets and monoids are
themselves special kinds of categories, which in a certain sense represent the
two “dimensions” (objects and arrows) that a general category has. Many
phenomena occurring in categories can best be understood as generalizations
from posets or monoids. On the other hand, the categories of posets (and
monotone maps) and monoids (and homomorphisms) provide two further,
quite different examples of categories, in which to consider various concepts.
The notion of a limit, for instance, can be considered both in a given poset
and in the category of posets.

Of course, many other examples besides posets and monoids are treated
as well. For example, the chapter on groups and categories develops the first
steps of Group Theory up to kernels, quotient groups, and the homomorphism
theorem, as an example of equalizers and coequalizers. Here, and occasionally
elsewhere (e.g. in connection with Stone duality), I have included a bit more
Mathematics than is strictly necessary to illustrate the concepts at hand.
My thinking is that this may be the closest some students will ever get to a
higher Mathematics course, so they should benefit from the labor of learning
Category Theory by reaping some of the nearby fruits.

Although the mathematical prerequisites are substantially lighter than
for Mac Lane, the standard of rigor has (I hope) not been compromised.
Full proofs of all important propositions and theorems are given, and only
occasional routine lemmas are left as exercises (and these are then usually
listed as such at the end of the chapter). The selection of material was
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easy. There is a standard core that must be included: categories; functors;
natural transformations; equivalence; limits and colimits; functor categories;
representables; Yoneda’s lemma; adjoints; monads. That nearly fills a course.
The only “optional” topic included here is cartesian closed categories and
the lambda-calculus, which is a must for computer scientists, logicians, and
linguists. Several other obvious further topics were purposely not included:
2-categories, toposes (in any depth), monoidal categories. These topics are
treated in Mac Lane, which the student should be able to read after having
completed the course.

Finally, I take this opportunity to thank Wilfried Sieg for his exceptional
support of this project; Peter Johnstone and Dana Scott for helpful sugges-
tions and support; André Carus for advice and encouragement; Bill Lawvere
for many very useful comments on the text; and the many students in my
courses who have suggested improvements to the text, clarified the content
with their questions, tested all of the exercises, and caught countless errors
and typos. For the latter, I also thank the many readers who took the trou-
ble to collect and send helpful corrections, particularly Brighten Godfrey,
Peter Gumm and Bob Lubarsky. Andrej Bauer and Kohei Kishida are to
be thanked for providing figures 9.1 and 8.1, respectively. Of course, Paul
Taylor’s macros for commutative diagrams must also be acknowledged. And
my dear Karin deserves thanks for too many things to mention. Finally, I
wish to record here my debt of gratitude to my mentor Saunders Mac Lane,
not only for teaching me category theory, and trying to teach me how to
write, but also for helping me to find my place in Mathematics. I dedicate
this book to his memory.

Steve Awodey
Pittsburgh

September 2005
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Chapter 1

Categories

1.1 Introduction

What is category theory? As a first approximation, one could say that cat-
egory theory is the mathematical study of (abstract) algebras of functions.
Just as group theory is the abstraction of the idea of a system of permuta-
tions of a set or symmetries of a geometric object, so category theory arises
from the idea of a system of functions among some objects.

A
f

> B

@
@

@
@

@
g ◦ f

R

C

g

∨

We think of the composition g ◦ f as a sort of “product” of the functions
f and g, and consider abstract “algebras” of the sort arising from collec-
tions of functions. A category is just such an “algebra,” consisting of objects
A,B,C, . . . and arrows f : A → B, g : B → C, . . ., that are closed un-
der composition and satisfy certain conditions typical of the composition of
functions. A precise definition is given later in this chapter.

A branch of abstract algebra, category theory was invented in the tradi-
tion of Felix Klein’s Erlanger Programm, as a way of studying and character-
izing different kinds of mathematical structures in terms of their “admissible
transformations”. The general notion of a category provides a characteriza-
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2 CHAPTER 1. CATEGORIES

tion of the notion of a “structure-preserving transformation,” and thereby of
a species of structures admitting such transformations.

The historical development of the subject has been very roughly as fol-
lows:

1945 Eilenberg and Mac Lane’s “General theory of natural equivalences”
was the original paper, in which the theory was first formulated.

late ‘40’s The main applications were originally in the fields of algebraic
topology, particularly homology theory, and abstract algebra.

1950’s A. Grothendieck et al. were using category theory with great success
in algebraic geometry.

1960’s F.W. Lawvere and others began applying categories to logic, reveal-
ing some deep and surprising connections.

1970’s Applications were already appearing in computer science, linguistics,
cognitive science, philosophy, and many other areas.

One very striking thing about the field is that it has such wide-ranging
applications. In fact, it turns out to be a kind of universal mathematical
language, like set theory. As a result of these various applications, category
theory also tends to reveal certain connections between different fields – like
between logic and geometry. For example, the important notion of an adjoint
functor occurs in logic as the existential quantifier and in topology as the
image operation along a continuous function. From a categorical point of
view, these turn out to be essentially the same operation.

The concept of adjoint functor is in fact one of the main things that the
reader should take away from the study of this book. It’s a strictly category-
theoretical notion that has turned out to be a conceptual tool of the first
magnitude – on a par with the idea of a continuous function.

In fact, just as the idea of a topological space arose in connection with
continuous functions, so also the notion of a category arose in order to define
that of a functor, at least according to one of the inventors. The notion of
a functor arose – so the story goes on – in order to define natural transfor-
mations. One might as well continue that natural transformations serve to
define adjoints:
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Category

Functor

Natural Transformation

Adjunction

Indeed, that gives a pretty good outline of this book.
Before getting down to business, let us ask why it should be that category

theory has such far-reaching applications. Well, we said that it’s the abstract
theory of functions; so the answer is simply this:

Functions are everywhere!

And everywhere that functions are, there are categories. Indeed, the sub-
ject might better have been called abstract function theory, or perhaps even
better: archery.

1.2 Functions of sets

We begin by considering functions between sets. I’m not going to say here
what a function is, anymore than what a set is. Instead, we’ll assume a
working knowledge of these terms. They can in fact be defined using category
theory, but that is not our purpose here.

Let f be a function from a set A to another set B, we write:

f : A→ B

To be explicit, this means that f is defined on all of A and all the values of
f are in B. In set theoretic terms,

range(f) ⊆ B .

Now suppose we also have a function g : B → C,

A
f

> B
..............
g ◦ f

R

C

g

∨
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then there is a composite function g ◦ f : A→ C, given by

(g ◦ f)(a) = g(f(a)) a ∈ A (1.1)

Now this operation “◦” of composition of functions is associative, as follows.
If we have a further function h : C → D

A
f

> B

@
@

@
@

@
g ◦ f

R

@
@

@
@

@

h ◦ g

R

C

g

∨

h
> D

and form h ◦ g and g ◦ f then we can compare (h ◦ g) ◦ f and h ◦ (g ◦ f)
as indicated in the above diagram. It turns out that these two functions are
always identical:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

since for any a ∈ A, we have:

((h ◦ g) ◦ f)(a) = h(g(f(a))) = (h ◦ (g ◦ f))(a)

using (1.1).
By the way, this is of course what it means for two functions to be equal:

for every argument, they have the same value.
Finally, note that every set A has an identity function

1A : A→ A,

given by
1A(a) = a.

These identity functions act as “units” for the operation ◦ of composition,
in the sense of abstract algebra. That is to say,

f ◦ 1A = f = 1B ◦ f

for any f : A→ B.
These are all the properties of set functions that we want to consider

for the abstract notion of function — composition and identities. Thus we
now want to “abstract away” everything else, so to speak. That’s what is
accomplished by the following definition.
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1.3 Definition of a category

Definition 1.1. A category consists of the following data:

• Objects : A,B,C, . . .

• Arrows: f, g, h, . . .

• For each arrow f there are given objects:

dom(f), cod(f)

called the domain and codomain of f . We write:

f : A→ B

to indicate that A = dom(f) and B = cod(f).

• Given arrows f : A→ B and g : B → C, i.e. with:

cod(f) = dom(g)

there is given an arrow:
g ◦ f : A→ C

called the composite of f and g.

• For each object A there is given an arrow:

1A : A→ A

called the identity arrow of A.

These data are required to satisfy the following laws:

• Associativity:
h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A→ B, g : B → C, h : C → D.

• Unit:
f ◦ 1A = f = 1B ◦ f

for all f : A→ B.
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A category is anything that satisfies this definition — and we’ll have plenty
of examples very soon. For now I want to emphasize that, unlike in the
previous section, the objects don’t have to be sets and the arrows need not
be functions. In this sense, a category is an abstract algebra of functions, or
“arrows” (sometimes also called “morphisms”), with the composition oper-
ation “◦” as primitive. If you’re familiar with groups, you may think of a
category as a sort of generalized group.

1.4 Examples of categories

1. We have already encountered the category Sets of sets and functions.
There is also the category

Setsfin

of all finite sets and functions between them.

Indeed, there are many categories like this, given by restricting the
sets that are to be the objects and the functions that are to be the
arrows. For example, take finite sets as objects and injective (that is,
1-1) functions as arrows. Since injective functions compose to give an
injective function, and since the identity function is injective, this also
gives a category.

What if we take sets as objects and as arrows, those f : A → B such
that for all b ∈ B, the subset

f−1(b) ⊆ A

has at most two elements (rather than one)? Is this still a category?
What if we take the functions such that f−1(b) is finite? infinite? There
are lots of such restricted categories of sets and functions.

2. Another kind of example one often sees in mathematics are categories
of structured sets, i.e. sets with some further “structure” and functions
which “preserve it”, where these notions are determined in some inde-
pendent way. Examples of this kind you may be familiar with are:

• groups and group homomorphisms,

• vector spaces and linear mappings,
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• graphs and graph homomorphisms,

• the real numbers R and continuous functions R→ R,

• open subsets U ⊆ R and continuous functions f : U → V ⊆ R
defined on them,

• topological spaces and continuous mappings,

• differentiable manifolds and smooth mappings,

• the natural numbers N and all recursive functions N→ N, or as in
the example of continuous functions, one can take partial recursive
functions defined on subsets U ⊆ N.

• posets and monotone functions.

Don’t worry if some of these examples are unfamiliar to you. Later on,
we will take a closer look at some of them. For now, let’s just consider
the last of the above examples in more detail.

3. A poset is a set A equipped with a binary relation a ≤A b such that
the following conditions hold for all a, b, c ∈ A:

reflexivity: a ≤A a,

transitivity: if a ≤A b and b ≤A c, then a ≤A c,

antisymmetry: if a ≤A b and b ≤A a, then a = b.

For example, the real numbers R with their usual ordering x ≤ y form
a partially ordered set that is also linearly ordered: either x ≤ y or
y ≤ x for any x, y.

An arrow from a poset A to a poset B is a function

m : A→ B

that is monotone, in the sense that, for all a, a′ ∈ A,

a ≤A a
′ implies m(a) ≤B m(a′) .

What does it take for this to be a category? We need to know that
1A : A→ A is monotone, but that is clear since a ≤A a

′ implies a ≤A a
′.

We also need to know that if f : A→ B and g : B → C are monotone,
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then g ◦ f : A→ C is monotone. This also holds, since a ≤ a′ implies
f(a) ≤ f(a′) implies g(f(a)) ≤ g(f(a′)) implies (g ◦ f)(a) ≤ (g ◦ f)(a′).

So we have the category Pos of posets and monotone functions.

4. The categories that we have been considering so far are examples of
what are sometimes called concrete categories. Informally, these are
categories in which the objects are sets, possibly equipped with some
structure, and the arrows are certain, possibly structure-preserving,
functions (we shall see later on that this notion is not entirely coherent,
see remark 1.7 below). Let’s now take a look at a few examples that
are not of this sort.

Let Rel be the following category: take sets as objects and take binary
relations as arrows. That is, an arrow f : A→ B is a subset f ⊆ A×B.
The identity arrow on a set A is the identity relation

1A = {(a, a) ∈ A× A | a ∈ A} ⊆ A× A .

Given R ⊆ A× B and S ⊆ B × C, define composition S ◦R by

(a, c) ∈ S ◦R iff ∃b. (a, b) ∈ R & (b, c) ∈ S,

i.e. the “relative product” of S and R. We leave it as an exercise to
show that Rel is in fact a category. (What needs to be done?)

For another example of a category in which the arrows are not “func-
tions”, let the objects be finite sets A,B,C and an arrow F : A → B
is a rectangular matrix F = (nij)i,j∈N of natural numbers with i = |A|
and j = |B|, where |C| is the number of elements in a set C. The
composition of arrows is by the usual matrix multiplication, and the
identity arrows are the usual unit matrices.

5. Finite categories

Of course, the objects of a category don’t have to be sets, either. Here
are some very simple examples:

• The category 1 looks like this:

∗

It has one object and its identity arrow, which we do not draw.
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• The category 2 looks like this:

∗ > ⋆

It has two objects, their required identity arrows, and exactly one
arrow between the objects.

• The category 3 looks like this:

∗ > ⋆

@
@

@
@

@R

•
∨

It has three objects, their required identity arrows, exactly one
arrow from the first to the second object, exactly one arrow from
the second to the third object, and exactly one arrow from the
first to the third object (which is therefore the composite of the
other two).

• The category 0 looks like this:

It has no objects or arrows.

As above, we’ll omit the identity arrows in drawing categories from now
on.

It’s fairly easy to specify finite categories — just take some objects
and start putting arrows between them, but make sure to put in the
necessary identities and composites, as required by the axioms for a
category. Also, if there are any loops, then they need to be cut off
by equations to keep the category finite. For example, consider the
following specification:

A
f

>
<

g
B
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Unless we stipulate an equation like gf = 1A, we’ll end up with the
infinitely many arrows gf, gfgf, gfgfgf, . . .. This is still a category,
of course, but it is not a finite category. We’ll come back to this
situation when we discuss free categories later in this chapter.

6. One important slogan of category theory is:

It’s the arrows that really matter!

So, we should also look at the arrows or “mappings” between categories.
A “homomorphism of categories” is called a functor.

Definition 1.2. A functor

F : C→ D

between categories C and D is a mapping of objects to objects and
arrows to arrows, in such a way that:

(a) F (f : A→ B) = F (f) : F (A)→ F (B),

(b) F (g ◦ f) = F (g) ◦ F (f),

(c) F (1A) = 1F (A).

Now, one can check that functors compose in the expected way, and
that every category C has an identity functor 1C : C → C. So we
have another example of a category, namely Cat, the category of all
categories and functors.

7. A preorder is a set P equipped with a binary relation p ≤ q that is both
reflexive and transitive: a ≤ a, and if a ≤ b and b ≤ c, then a ≤ c).
Any preorder P can be regarded as a category by taking the objects to
be the elements of P and taking a unique arrow,

a→ b if and only if a ≤ b . (1.2)

The reflexive and transitive conditions on ≤ ensure that this is a cate-
gory.

Going in the other direction, any category with at most one arrow
between any two objects determines a preorder, simply by defining a
binary relation ≤ on the objects by (1.2).
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8. A poset is evidently a preorder satisfying the additional condition of
antisymmetry: if a ≤ b and b ≤ a, then a = b. So, in particular, a
poset is also a category. Such poset categories are very common; e.g.
for any set X, the power set P (X) is a poset under the usual inclusion
relation U ⊆ V between the subsets U, V of X.

What is a functor F : P → Q between poset categories P and Q? It
must satisfy the identity and composition laws ... Clearly, these are
just the monotone functions already considered above.

It’s often useful to think of a category as a kind of generalized poset,
one with with “more structure” than just p ≤ q. One can thus also
think of a functor as a generalized monotone map.

9. An example from logic: Given a deductive system of logic, there’s an
associated category, where the objects are formulas

ϕ, ψ, . . .

An arrow from ϕ to ψ is a deduction of ψ from the assumption ϕ.
Composition of arrows is given by putting together deductions in the
obvious way, which is clearly associative. (What are the identity arrows
1ϕ?) Observe that there can be many different arrows

p : ϕ→ ψ ,

since there may be many different proofs. This category turns out to
have a very rich structure, which we will consider below in connection
with the lambda-calculus.

10. An example from computer science: Given a functional programming
language L, there’s an associated category, where the objects are the
data types of L, and the arrows are the computable functions of L
(“processes”, “procedures”, “programs”). The composition of two such

programs X
f
→ Y

g
→ Z is given by applying g to the output of f ,

sometimes also written
g ◦ f = f ; g .

The identity is the “do nothing” program.

Categories such as this are basic to the idea of denotational semantics
of programming languages. For example, if C(L) is the category just
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defined, then the denotational semantics of the language L in a category
D of, say, Scott domains is simply a functor

S : C(L)→ D ,

since S assigns domains to the types of L and continuous functions
to the programs. Both this example and the previous one are closely
related to the notion of “cartesian closed category” to be considered
later.

11. Let X be a set. We can regard X as a category Dis(X) by taking the
objects to be the elements of X and taking the arrows to be just the
identity arrows, one for each x ∈ X. Such categories are called discrete.
Note that discrete categories are just very special posets.

12. A monoid (sometimes called a semi-group with unit) is a setM equipped
with a binary operation · : M ×M → M and a distinguished “unit”
element u ∈M such that for all x, y, z ∈M ,

x · (y · z) = (x · y) · z

and
u · x = x = x · u .

Equivalently, a monoid is a category with just one object. The arrows
of the category are the elements of the monoid. In particular, the
identity arrow is the unit element u. Composition of arrows is the
binary operation m · n of the monoid.

Monoids are very common: there are the monoids of numbers like N,
Q or R with addition and 0, or multiplication and 1. But also for any
set X, the set of functions from X to X, written

HomSets(X,X)

is a monoid under the operation of composition. More generally, for
any object C in any category C, the set of arrows from C to C, written
as HomC(C,C), is a monoid under the composition operation of C.

Since monoids are structured sets, there is a category Mon whose ob-
jects are monoids and whose arrows are functions that preserve the



1.5. ISOMORPHISMS 13

monoid structure. In detail, a homomorphism from a monoid M to a
monoid N is a function h : M → N such that for all m,n ∈M :

h(m ·M n) = h(m) ·N h(n),

and
h(uM) = uN

The reader should check that a monoid homomorphism from M to N
is the same thing as a functor from M regarded as a category to N
regarded as a category. In this sense, categories are also generalized
monoids, and functors are generalized homomorphisms.

1.5 Isomorphisms

Definition 1.3. In any category C, an arrow f : A → B is called an iso-
morphism if there is an arrow g : B → A in C such that

g ◦ f = 1A and f ◦ g = 1B.

Since inverses are unique (proof!), we write g = f−1. We say that A is
isomorphic to B, written A ∼= B, if there exists an isomorphism between
them.

The definition of isomorphism is our first example of an abstract, cate-
gory theoretic definition of an important notion. It is abstract in the sense
that it makes use only of the category theoretic notions, rather than some
additional information about the objects and arrows. It has the advantage
over other possible definitions that it applies in any category. For example,
one sometimes defines an isomorphism of sets (groups, etc.) as a bijective
function (resp. homomorphism), i.e. one that is “1-1 and onto”. This is equiv-
alent to our definition in some cases. But note that, for example in Pos, the
category theoretic definition gives the right notion, while there are “bijective
homomorphisms” between non-isomorphic posets. Moreover, in many cases
only the abstract definition makes sense, e.g. in the case of a monoid.

Definition 1.4. A group G is a monoid with an inverse g−1 for every ele-
ment g. Thus G is a category with one object, in which every arrow is an
isomorphism.
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The natural numbers N do not form a group under either addition or
multiplication, but the integers Z and the non-zero rationals Q, respectively,
do. For any set X, we have the group Aut(X) of automorphisms (or “per-
mutations”) of X, i.e. isomorphisms f : X → X. (Question: why is this
closed under “◦”?) A group of permutations is a subgroup G ⊆ Aut(X) for
some set X, i.e. a group of automorphisms of X. Thus G must satisfy

1. 1X ∈ G

2. If g, g′ ∈ G, then g ◦ g′ ∈ G

3. If g ∈ G, then g−1 ∈ G

A homomorphism of groups h : G → H is just a homomorphism of
monoids, which then necessarily also preserves the inverses (proof!).

Theorem (Cayley). Every group G is isomorphic to a group of permutations.

Proof. (sketch)

1. First, define the Cayley representation Ḡ of G to be the following group
of permutations: the underlying set of Ḡ is just G, and for each g ∈ G,
we have the permutation ḡ, defined for all h ∈ G by:

ḡ(h) = g · h

Now check that ḡ = h̄ implies g = h.

2. Next define homomorphisms i : G→ Ḡ by i(g) = ḡ, and j : Ḡ→ G by
j(ḡ) = g.

3. Finally show that i ◦ j = 1Ḡ and j ◦ i = 1G.

Warning 1.5. Note the two different levels of isomorphisms that occur in the
proof of Cayley’s theorem. There are permutations of the set of elements ofG,
which are isomorphisms in Sets, and there is the isomorphism between G and
Ḡ, which is in the category Groups of groups and group homomorphisms.
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Cayley’s theorem says that any abstract group can be represented as a
“concrete” one, i.e. a group of permutations of a set. The theorem can in
fact be generalized to show that any category that is not “too big” can be
represented as one that is “concrete”, i.e. a category of sets and functions.
(There is a technical sense of not being “too big” that will be introduced in
section 1.8 below.)

Theorem 1.6. Every category C with a set of arrows is isomorphic to one
in which the objects are sets and the arrows are functions.

Proof. (sketch) Define the Cayley representation C̄ of C to be the following
concrete category:

• objects are sets of the form:

C̄ = {f ∈ C| cod(f) = C}

for all C ∈ C,

• arrows are functions
ḡ : C̄ → D̄ ,

for g : C → D in C, defined by ḡ(f) = g ◦ f .

Remark 1.7. This shows us what is wrong with the naive notion of a “con-
crete” category of sets and functions: while not every category has special
sets and functions as its objects and arrows, every category is isomorphic to
such a one. Thus the only special properties such categories can possess are
ones that are categorically irrelevant, such as features of the objects that do
not affect the arrows in any way (like the difference between the real numbers
constructed as Dedekind cuts or as Cauchy sequences). A better attempt to
capture what is intended by the rather vague idea of a “concrete” category
is that arbitrary arrows f : C → D are completely determined by their com-
posites with arrows x : T → C from some “test object” T , in the sense that
fx = gx for all such x implies f = g. This amounts to considering a particu-
lar representation of the category, determined by T . A category is then said
to be “concrete” when this condition holds for T a ”terminal object”, in the
sense of section 2.2 below; but there are also good reasons for considering
other objects T , as we shall see in the next chapter.
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Note that the condition that C have a set of arrows is needed to ensure
that the collections {f ∈ C| cod(f) = C} really are sets — we return to this
point in section 1.8.

1.6 Constructions on categories

Now that we have a stock of categories to work with, we consider some
constructions that produce new categories from old.

1. The product of two categories C and D, written

C×D

has objects of the form (C,D), for C ∈ C and D ∈ D, and arrows of
the form

(f, g) : (C,D)→ (C ′, D′)

for f : C → C ′ ∈ C and g : D → D′ ∈ D. Composition and units are
defined componentwise; that is,

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g)

1(C,D) = (1C , 1D)

There are two obvious projection functors:

C <
π1

C×D
π2

> D

defined by π1(C,D) = C and π1(f, g) = f , and similarly for π2.

The reader familiar with groups will recognize that for groups G and
H , the product category G×H is the usual (direct) product of groups.

2. The opposite (or “dual”) category Cop of a category C has the same
objects as C, and an arrow f : C → D in Cop is an arrow f : D → C in
C. That is Cop is just C with all of the arrows formally turned around.

It is convenient to have a notation to distinguish an object (resp. arrow)
in C from the same one in Cop. Thus we may write

f̄ : D̄ → C̄
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in Cop for f :→ D in C. With this notation we can define composition
and units in Cop in terms of the corresponding operations in C, namely:

1C̄ = 1̄C

f̄ ◦ ḡ = ¯g ◦ f .

Thus a diagram in C:

A
f

> B

@
@

@
@

@
g ◦ f

R

C

g

∨

looks like this in Cop:

Ā <
f̄

B̄

I@
@

@
@

@
f̄ ◦ ḡ

C̄

ḡ

∧

Many “duality” theorems of mathematics express the fact that one
category is (a subcategory of) the opposite of another. An example of
this sort which we’ll prove later is that Sets is dual to the category of
complete, atomic Boolean algebras.

3. The arrow category C→ of a category C has the arrows of C as ob-
jects, and an arrow g from f : A → B to f ′ : A′ → B′ in C→ is a
“commutative square”:

A
g1

> A′

B

f

∨

g2

> B′

f ′

∨
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where g1 and g2 are arrows in C. That is, such an arrow is a pair of
arrows g = (g1, g2) in C such that

g2 ◦ f = f ′ ◦ g1 .

The identity arrow 1f on an object f : A → B is the pair (1A, 1B).
Composition of arrows is done componentwise:

(h1, h2) ◦ (g1, g2) = (h1 ◦ g1, h2 ◦ g2).

The reader should verify that this works out by drawing the appropriate
commutative diagram.

Observe that there are two functors:

C <
dom

C→ cod
> D

4. The slice category C/C of a category C over an object C ∈ C has:

• objects: all arrows f ∈ C such that cod(f) = C,

• arrows: g from f : X → C to f ′ : X ′ → C is an arrow g : X → X ′

in C such that f ′ ◦ g = f , as indicated in:

X
g

>X ′

@
@

@
@

@
f

R 	�
�

�
�

�

f ′

C

We leave it to the reader to work out the identity arrows and compos-
ites.

If C = P is a poset category and p ∈ P, then

P/p ∼= ↓(p) ,

the slice category P/p is just the “principal ideal” ↓ (p) of elements
q ∈ P with q ≤ p. We’ll have more examples of slice categories soon.



1.7. FREE CATEGORIES 19

There’s an obvious functor U : C/C → C that “forgets about the
base object C”. Can you find a functor F : C/C → C→ such that
dom ◦ F = U?

The co-slice category C/C of a category C under an object C of C has
as objects all arrows f of C such that dom(f) = C, and an arrow from
f : C → X to f ′ : C → X ′ is an arrow h : X → X ′ such that h◦f = f ′.
The reader should now carry out the rest of the definition of the co-slice
category by analogy with the definition of the slice category.

How can the coslice category be defined in terms of the slice category
and the opposite construction?

Example 1.8. The category Sets∗ of pointed sets consists of sets A with a
distinguished element a ∈ A, and arrows f : (A, a) → (B, b) are functions
f : A → B that preserves the “points”, f(a) = b. This is isomorphic to the
coslice category,

Sets∗ ∼= 1\Sets

of Sets “under” any singleton 1 = {∗}. Indeed, functions a : 1 → A corre-
spond uniquely to elements, a(∗) = a ∈ A, and arrows f : (A, a) → (B, b)
correspond exactly to commutative triangles:

1
a

> A

@
@

@
@

@
b

R

B

f

∨

1.7 Free categories

Free monoid. Start with an “alphabet” A of “letters” (a set)

A = {a, b, c, . . .}.

A word over A is a finite sequence of letters:

thisword, categoriesarefun, asddjbnzzfj, . . .
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We write “-” for the empty word. The “Kleene closure” of A is defined to be
the set

A∗ = {words over A}.

Define a binary operation “∗” on A∗ defined for w,w′ ∈ A∗ by w ∗w′ = ww′.
Thus, “∗” is just concatenation. The operation “∗” is associative, and the
empty word “-” is a unit. Thus, A∗ is a monoid – called the free monoid on
the set A. The elements a ∈ A can be regarded as words of length one, so
we have a function

i : A→ A∗

defined by i(a) = a, and called the “insertion of generators”. The elements of
A “generate” the free monoid, in the sense that every w ∈ A∗ is a ∗-product
of a’s, i.e. w = a1 ∗ a2 ∗ ... ∗ an for some a1, a2, ..., an in A.

Now what does “free” mean here? Any guesses?
One sometimes sees definitions in “baby algebra” books along the follow-

ing lines:

A monoid M is freely generated by a subset A of M if the following
conditions hold.

1. Every element e ∈M can be written as a product of elements of A:

e = a1 ·M . . . ·M an , ai ∈ A .

2. No “non-trivial” relations hold in M , that is, if a1 . . . aj = a′1 . . . a
′
k,

then this is required by the axioms for monoids.

The first condition is sometimes called “no junk”, while the second condi-
tion is sometimes called “no noise”. Thus, the free monoid on A is a monoid
containing A and having no junk and no noise. What do you think of this
definition of a free monoid?

I would object to the reference in the second condition to “provability”, or
something. This must be made more precise for this to succeed as a definition.
In category theory, we give a precise definition of “free” —capturing what is
meant in the above — which avoids such vagueness.

First, every monoid N has an underlying set |N |, and every monoid ho-
momorphism f : N → M has an underlying function |f | : |N | → |M |. It
is easy to see that this is a functor, called the “forgetful functor”. The free
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monoid M(A) on a set A is by definition “the” monoid with the following so
called universal mapping property, or UMP!

Universal Mapping Property of M(A)

There’s a function i : A→ |M(A)|, and given any monoidN and any function
f : A → |N |, there’s a unique monoid homomorphism f̄ : M(A) → N such
that |f̄ | ◦ i = f , all as indicated in the following diagram:

in Mon:

M(A) .................
f̄

> N

in Sets:

|M(A)|
|f̄ |

> |N |

�
�

�
�

�

f

�

A

i

∧

Proposition 1.9. (A∗, ∗) has the UMP of the free monoid on A.

Proof. Given f : A→ |N |, define f̄ : M(A)→ N by

f̄(−) = uN , the unit of N

f̄(a1 . . . ai) = f(a1) ·N . . . ·N f(ai).

Then f̄ is clearly a homomorphism with

f̄(a) = f(a) for all a ∈ A.

If g : M(A) → N also satisfies g(a) = f(a) for all a ∈ A, then for all
a1 . . . ai ∈ A

∗:

g(a1 . . . ai) = g(a1) ·N . . . ·N g(ai)

= f(a1) ·N . . . ·N f(ai)

= f̄(a1) . . . f̄(ai)

= f̄(a1 . . . ai)

So, g = f̄ , as required.
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Think about why the above UMP captures precisely what is meant by “no
junk” and “no noise”. Specifically, the existence part of the UMP captures
the vague notion of “no noise”, while the uniqueness part makes precise the
“no junk” idea.

Using the UMP, it is easy to show that the free monoid M(A) is deter-
mined uniquely up to isomorphism, in the following sense.

Proposition 1.10. Given monoids M and N with functions i : A → |M |
and j : A→ |N |, each with the universal mapping property of the free monoid
on A, there is a (unique) monoid isomorphism h : M ∼= N such that |h|i = j
and |h−1|j = i.

Proof. From j and the UMP of M , we have j̄ : M → N with |j̄|i = j and
from i and the UMP ofN , we have ī : N →M with |̄i|j = i. Composing gives
a homomorphism ī ◦ j̄ : M → M such that |̄i ◦ j̄|i = i. Since 1M : M → M
also has this property, by the uniqueness part of the UMP of M , we have
ī ◦ j̄ = 1M . Exchanging the roles of M and N shows j̄ ◦ ī = 1N .

in Mon:

M .....................
j̄

> N .....................
ī

>M

in Sets:

|M |
|j̄|

> |N |
|̄i|

> |M |

I@
@

@
@

@
i

�
�

�
�

�

i

�

A

j

∧

For example, the free monoid on a set with a single element is isomorphic
to the monoid of natural numbers N under addition (the “generator” is 1).
Thus, as a monoid, N is uniquely determined up to isomorphism by the UMP
of free monoids.
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Free category. Now, we want to do the same thing for categories in general
(not just monoids). Instead of underlying sets, categories have underlying
graphs, so let’s review these first.

A directed graph consists of vertices and edges, each of which is directed,
i.e. each edge has a “source” and a “target” vertex.

A
z

> B

@
@

@
@

@
u

R

C

x

∧

D

y

∧

We draw graphs just like categories, but there is no composition of edges,
and there are no identities.

A graph thus consists of two sets, E (edges) and V (vertices), and two
functions, s : E → V (source) and t : E → V (target).

Now, every graph G “generates” a category C(G), the free category on
G. It is defined by taking the vertices of G as objects, and the paths in
G as arrows, where a path is a finite sequence of edges e1, . . . , en such that
t(ei) = s(ei+1), for all i = 1 . . . n. We’ll write the arrows of C(G) in the form
enen−1 . . . e1.

Put
dom(en . . . e1) = s(e1),

cod(en . . . e1) = t(en),

and define composition by concatenation:

en . . . e1 ◦ e
′
m . . . e

′
1 = en . . . e1e

′
m . . . e

′
1.

For each vertex v, we have an “empty path” denoted 1v, which is to be the
identity arrow at v.

Note that if G has only one vertex, then C(G) is just the free monoid on
the set of edges of G. Also note that if G has only vertices (no edges), then
C(G) is the discrete category on the set of vertices of G.

Later on, we’ll have a general definition of “free”. For now, let us see that
C(G) also has a universal mapping property.

First, define a “forgetful functor”

U : Cat→ Graphs
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in the obvious way: the underlying graph of a category C as has edges the
objects of C, and as vertices the arrows, with s = dom and t = cod. The
action of U on functors is equally clear, or at least it will be, once we have
defined the arrows in Graphs.

A homomorphism of graphs is of course a “functor without the conditions
on identities and composition”, i.e. a mapping of edges to edges and vertices
to vertices that preserves sources and targets. We’ll describe this from a
slightly different point of view, that will be useful later on. First, observe
that we can describe a category C with a diagram like this:

C2

◦
> C1

cod
>

< i

dom
>
C0

where C0 is the collection of objects of C, C1 the arrows, and C2 is the
collection {(f, g) ∈ C1 × C1 : cod(f) = dom(g)}.

Then a functor F : C → D from C to another category D is a pair of
functions

F0 : C0 → D0

F1 : C1 → D1

such that each similarly labeled square in the following diagram commutes:

C2

◦
> C1

cod
>

< i

dom
>
C0

D2

F2

∨

◦
>D1

F1

∨
cod

>

< i

dom
>
D0

F0

∨

where F2(f, g) = (F1(f), F1(g)).

Now let us describe a homomorphism of graphs,

h : G→ H .
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We need a pair of functions h0 : G0 → H0, h1 : G1 → H1 making the two
squares (once with t’s, once with s’s) in the following diagram commute:

G1

t
>

s
> G0

H1

h1

∨ t
>

s
>H0

h0

∨

In these terms, we can easily describe the forgetful functor,

U : Cat→ Graphs

as sending the category:

C2

◦
> C1

cod
>

< i

dom
>
C0

to the underlying graph:

C1

cod
>

dom
> C0

And similarly for functors, the effect of U is described by erasing some parts
of the diagrams (which is easier to demonstrate with chalk!).

The free category on a graph has the following UMP:

Universal Mapping Property of C(G)

There is a graph homomorphism i : G → |C(G)|, and given any category
D and any graph homomorphism h : G → |D|, there is a unique functor
h̄ : C(G)→ D with |h̄| ◦ i = h.

in Cat:

C(G)) .................
h̄

D
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in Graph:

|C(G)|
|h̄|

> |D|

�
�

�
�

�

h

�

G

i

∧

The free category on a graph with just one vertex is just a free monoid
on the set of edges. The free category on a graph with two vertices and one
edge between them is the finite category 2. The free category on a graph of
the form:

A
e

>
<

f
B

has (in addition to the identity arrows) the infinitely many arrows:

e, f, ef, fe, efe, fef, efef, ...

1.8 Foundations: large, small, and locally small

Let us begin by distinguishing between the following things:

categorical foundations for mathematics,

mathematical foundations for category theory.

As for the first: one sometimes hears it said that category theory can
be used to provide “foundations for mathematics”, as an alternative to set
theory. That is in fact the case, but it is not what we are doing here. In
set theory, one often begins with existential axioms such as “every set has a
powerset” and derives further sets, building up a universe of mathematical
objects (namely sets), which in principle suffice for “all of mathematics”. Our
axiom that every arrow has a domain and a codomain is not to be understood
in the same way as set theory’s axiom that every set has a power set! The
difference is that in set theory—at least as usually conceived—the axioms
are to be regarded as referring to (or determining) a single universe of sets.
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In category theory, by contrast, the axioms are a definition of something,
namely of categories. This is just like in group theory or topology, where
the axioms serve to define the objects under investigation. These, in turn,
are assumed to exist in some “background” or “foundational” system, like
set theory. That theory of sets could itself, in turn, be determined using
category theory, or in some other way.

This brings us to the second point: we assume that our categories are
comprised of sets and functions, in one way or another, like most mathe-
matical objects, and taking into account the remarks just made about the
possibility of categorical foundations. But in category theory, we sometimes
run into difficulties with set theory as usually practiced. Mostly these are
questions of size; some categories are “too big” to be handled comfortably in
conventional set theory. We already encountered this issue when we consid-
ered the Cayley representation in 1.5 above. There we had to require that
the category under consideration have (no more than) a set of arrows. We
would certainly not want to impose this restriction in general, however (as
one usually does for, say, groups); for then even the “category” Sets would
fail to be a proper category, as would many other categories that we definitely
want to study.

There are various formal devices for addressing these issues, and they are
discussed in Mac Lane. For our immediate purposes, the following distinction
will be useful:

Definition 1.11. A category C is called small if both the collection C0 of
objects of C and the collection C1 of arrows of C are sets. Otherwise, C is
called large.

For example, all finite categories are clearly small, as is the category
Setsfin of finite sets and functions. On the other hand, the category Pos of
posets, the category Groups of groups, and the category Sets of sets are all
large. We let Cat be the category of all small categories, which itself is a
large category. In particular, then, Cat is not an object of itself, which may
come as a relief to some readers.

This doesn’t really solve all of our difficulties. Even for large categories
like Groups and Sets we will want to also consider constructions like the
category of all functors from one to the other (we’ll define this “functor
category” later). But if these are not small, conventional set theory does
not provide the means to do this directly (these categories would be “too
large”). So one needs a more elaborate theory of “classes” to handle such
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constructions. We won’t worry about this when it is just a matter of technical
foundations (Mac Lane I.6 addresses this issue). However, one very useful
notion in this connection is the following:

Definition 1.12. A category C is called locally small if for any objects X,
Y in C, the collection HomC(X, Y ) = {f ∈ C1| f : X → Y } is a set (called
a hom-set).

Many of the large categories we want to consider are in fact locally small.
Sets is locally small since HomSets(X, Y ) = Y X , the set of all functions
from X to Y . Similarly, Pos, Top, and Group are all locally small, and, of
course, any small category is locally small.
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1.9 Exercises

1. The objects of Rel are sets, and an arrow f : A→ B is a relation from
A to B, i.e. f ⊆ A×B. The identity relation {〈a, a〉 ∈ A×A| a ∈ A}
is the identity arrow on a set A. Composition in Rel is to be given by:

g ◦ f = {〈a, c〉 ∈ A× C | ∃b (〈a, b〉 ∈ f & 〈b, c〉 ∈ g)}

for f ⊆ A× B and g ⊆ B × C.
Show that Rel is a category.

2. Consider the following isomorphisms of categories and determine which
hold.

(a) Rel ∼= Relop

(b) Sets ∼= Setsop

(c) For a fixed set X with powerset P (X), as poset categories P (X) ∼=
P (X)op (the arrows in P (X) are subset inclusions A ⊆ B for
A,B ⊆ X).

3. (a) Show that in Sets, the isomorphisms are exactly the bijections.

(b) Show that in Monoids, the isomorphisms are exactly the bijective
homomorphisms.

(c) Show that in Posets, the isomorphisms are not the same as the
bijective homomorphisms.

4. Construct the “coslice category” C/C of a category C under an object
C from the slice category C/C and the “dual category” operation −op.

5. How many free categories on graphs are there which have exactly six
arrows? Draw the graphs that generate these categories.

6. Prove the UMP for free categories on graphs:

Let C(G) be the free category on the graph G, and i : G → U(C(G))
the graph homomorphism taking vertices and edges to themselves, re-
garded as objects and arrows in C(G). For any category D and graph
homomorphism f : G→ U(D), there is a unique functor:

h̄ : C(G)→ D
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with:
U(h̄) ◦ i = h,

where U : Cat→ Graph is the underlying graph functor.



Chapter 2

Abstract structures

Let me begin with some remarks about category-theoretical definitions. By
this I mean characterizations of properties of objects and arrows in a category
in terms of other objects and arrows only, i.e. in the language of category
theory. Such definitions may be said to be abstract, structural, operational,
relational, or external (as opposed to internal). The idea is that objects
and arrows are determined by the role they play in the category, by their
relations to other objects and arrows, thus by their position in a structure,
and not by what they “are” or “are made of” in some absolute sense. We’ll
see many more examples of this kind of thing later; for now we start with
some very simple ones. Let me call them abstract characterizations. We’ll
see that one of the basic ways of giving such an abstract characterization is
via a Universal Mapping Property or UMP.

2.1 Epis and monos

Recall that in Sets, a function f : A→ B is called:

injective if f(a) = f(a′) implies a = a′ for all a, a′ ∈ A,

surjective if for all b ∈ B there is some a ∈ A with f(a) = b.

We have the following abstract characterization of these properties:

Definition 2.1. In any category C, an arrow

f : A→ B

is called a:

31
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monomorphism if given any g, h : C → A, fg = fh implies g = h,

C
g

>

h
> A

f
> B

epimorphism if given any i, j : B → D, if = jf implies i = j,

A
f

> B
i

>

j
>D

We often write f : A ֌ B if f is a monomorphism, and f : A ։ B if f is
an epimorphism.

Proposition 2.2. A function f : A→ B is monic just in case it is injective.

Proof. Suppose f : A ֌ B. Let a, a′ ∈ A such that a 6= a′, and let {x} be
any given one-element set. Consider the functions

ā, ā′ : {x} → A ,

where
ā(x) = a, ā′(x) = a′ .

Since ā 6= ā′, it follows, since f is a monomorphism, that fā 6= fā′. Thus,
f(a) = (fā)(x) 6= (fā′)(x) = f(a′). Whence f is injective.

Conversely, if f is injective and g, h : C → A are functions such that
g 6= h, then for some c ∈ C, g(c) 6= h(c). Since f is injective, it follows that
f(g(c)) 6= f(h(c)), whence fg 6= fh.

Example 2.3. In many categories of “structured sets” like monoids, the monos
are exactly the “injective homomorphisms”. More precisely, a homomor-
phism h : M → N of monoids is monic just if the underlying function
|h| : |M | → |N | is monic, i.e. injective by the foregoing. To prove this, sup-
pose h is monic and take two different “elements” m,m′ : 1 → |M |, where
1 = {∗} is any one-element set. By the UMP of the free monoid M(∗) there
are distinct corresponding homomorphisms m̄, m̄′ : M(∗)→M , with distinct
composites h ◦ m̄, h ◦ m̄′ : M(∗)→ M → N , since h is monic. Thus the cor-
responding “elements” hm, hm′ : 1→ N of N are also distinct, again by the
UMP of M(∗). Conversely, if |h| : |M | → |N | is monic and f, g : X →M are
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any distinct homomorphisms, then |f |, |g| : |X| → |M | are distinct functions,
and so |h| ◦ |f |, |h| ◦ |g| : |X| → |M | → |N | are distinct, since |h| is monic.
Since therefore |h ◦ f | = |h| ◦ |f | 6= |h| ◦ |g| = |h ◦ g|, we also must have
h ◦ f 6= h ◦ g.

A completely analogous situation holds e.g. for groups, rings, vector
spaces, and posets. We shall see that this fact follows from the presence,
in each of these categories, of certain objects like the free monoid M(∗).

Example 2.4. In a fixed poset P, every arrow p ≤ q is both monic and epic.
Why?

While the epis in Sets are exactly the surjective functions (exercise!),
epis in other categories are not always surjective homomorphisms, as the
following example shows.

Example 2.5. In the category Mon of monoids and monoid homomorphisms,
there is a monic homomorphism

N ֌ Z

where N is the additive monoid (N,+, 0) of natural numbers, and Z is the
additive monoid (Z,+, 0) of integers. We’ll show that this map, given by the
inclusion N ⊂ Z of sets, is also epi in Mon by showing that the following
holds:

Given any monoid homomorphisms f, g : (Z,+, 0) → (M, ∗, u), if the
restrictions to N are equal, f |N= g |N , then f = g.

Note first that:

f(−n) = f((−1)1 + (−1)2 + . . .+ (−1)n)

= f(−1)1 ∗ f(−1)2 ∗ . . . ∗ f(−1)n
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and similarly for g. It therefore suffices to show that f(−1) = g(−1). But

f(−1) = f(−1) ∗ u

= f(−1) ∗ g(0)

= f(−1) ∗ g(1− 1)

= f(−1) ∗ g(1) ∗ g(−1)

= f(−1) ∗ f(1) ∗ g(−1)

= f(−1 + 1) ∗ g(−1)

= f(0) ∗ g(−1)

= u ∗ g(−1)

= g(−1).

Note that a morphism e is epi if and only if e cancels on the right: xe = ye
implies x = y. Dually, m is mono if and only if m cancels on the left:
mx = my implies x = y.

Proposition 2.6. Every iso is mono and epi.

Proof. Consider the following diagram:

A
x

>

y
> B

m
> C

@
@

@
@

@
1

R

B

e

∨
>
> E

If m is an isomorphism with inverse e, then mx = my implies x = emx =
emy = y. Thus, m is monic. Similarly, e cancels on the right, and thus e is
epic.

In Sets the converse of the foregoing also holds: every mono-epi is iso.
But this is not in general true, as shown by the example in monoids above.
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2.2 Initial and terminal objects

We now consider abstract characterizations of the empty set and the one-
element sets in the the category Sets, and structurally similar objects in
more general categories.

Definition 2.7. In any category C, an object

0 is initial if for any object C there is a unique morphism

0→ C ,

1 is terminal if for any object C there is a unique morphism

C → 1 .

As in the case of monos and epis, note that there is a kind of “duality”
in these definitions. Precisely, a terminal object in C is exactly an initial
object in Cop. We’ll consider this duality systematically later.

Since the notions of initial and terminal object are simple UMPs, such
objects are uniquely determined up to isomorphism, just like the free monoids
were:

Proposition 2.8. Initial (terminal) objects are unique up to isomorphism.

Proof. In fact, if C and C ′ are both initial (terminal), then there is a unique
isomorphism C → C ′.

Suppose that 0 and 0′ are both initial objects, the following diagram
makes it clear that 0 and 0′ are uniquely isomorphic.

0
u

> 0′

@
@

@
@

@
10

R

@
@

@
@

@

10′

R

0

v

∨

u
> 0′

For terminal objects, apply the foregoing to Cop.
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Example 2.9. 1. In Sets the empty set is initial, and any singleton set is
terminal. Observe that Sets has just one initial object, but many ter-
minal objects (cf. the homework question of whether Sets ∼= Setsop).

2. In Cat the category 0 (no objects and no arrows) is initial, and the
category 1 (one object and its identity arrow) is terminal.

3. In Groups, the one element group is both initial and terminal (sim-
ilarly for the category of vector spaces and linear transformations, as
well as the category of monoids and monoid homomorphisms). But in
Rings (commutative with unit), the ring Z of integers is initial (the
one element ring with 0 = 1 is still terminal).

4. A Boolean algebra is a poset B equipped with distinguished elements
0, 1, binary operations a∨ b of “join” and a∧ b of “meet”, and a unary
operation ¬b of “complementation”. These are required to satisfy the
conditions:

0 ≤ a

a ≤ 1

a ≤ c and b ≤ c iff a ∨ b ≤ c

c ≤ a and c ≤ b iff c ≤ a ∧ b

a ≤ ¬b iff a ∧ b = 0

¬¬a = a

There is also an equivalent, fully equational characterization not in-
volving the ordering, which we will consider later. A typical example
of a Boolean algebra is the powerset P (X) of all subsets A ⊆ X of a
set X, ordered by inclusion A ⊆ B, and with the Boolean operations
being the empty set 0 = ∅, the whole set 1 = X, union and intersec-
tion of subsets as join and meet, and the relative complement X − A
as ¬A. A familiar special case is the two-element Boolean algebra
2 = {0, 1}, sometimes also regarded as “truth values” with the logi-
cal operations of disjunction, conjunction, and negation as the Boolean
operations. It is an initial object in the category of Boolean algebras,
which has as arrows the boolean homomorphisms. These are functors
h : B → B′ that preserve the additional structure, in the sense that
h(0) = 0, h(a∨ b) = h(a)∨h(b), etc. The one element Boolean algebra
is terminal.
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5. In a poset, an object is plainly initial iff it is the least element, and
terminal iff it is the greatest element. Clearly, a category need not
have either an initial object or a terminal object, e.g. the poset (Z,≤)
has neither an initial object nor a terminal object.

6. For any category C and any object X ∈ C, the identity arrow 1X :
X → X is a terminal object in C/X and an initial object in X/C.

2.3 Generalized elements

Let’s consider arrows into and out of initial and terminal objects. Clearly only
certain of these will be of interest, but those are often especially significant.

A set A has an arrow into the initial object A→ 0 just if it is itself empty,
and the same is true for posets. In monoids and groups, by contrast, every
object has a unique arrow to the initial monoid, since it is also terminal.

In the category Bool of Boolean algebras, however, the situation is quite
different. The maps p : B → 2 into the initial Boolean algebra 2 correspond
uniquely to the so-called “ultrafilters” U in B. A filter in a Boolean algebra
B is a non-empty subset F ⊆ B that is closed upwards and under meets:

a ∈ F and a ≤ b implies b ∈ F

a ∈ F and b ∈ F implies a ∧ b ∈ F

A filter F is maximal if the only strictly larger filter F ⊂ F ′ is all of B.
An ultrafilter is a maximal filter. It is not hard to see that a filter F is an
ultrafilter just if for every element b ∈ B, either b ∈ F or ¬b ∈ F , and not
both (exercise!). Now if p : B → 2, let Up = p−1(1) to get an ultrafilter
Up ⊂ B. And given an ultrafilter U ⊂ B, define pU(b) = 1 iff b ∈ U to get
a boolean homomorphism pU : B → 2. This is easy to check, as is the fact
that these operations are mutually inverse. Boolean homomorphisms B → 2

are also used in forming the “truth tables” one meets in logic. Indeed, a row
of a truth table corresponds to such a homomorphism on a Boolean algebra
of formulas, as we shall consider later.

Ring homomorphisms A → Z into the initial ring Z play an equally
important role in algebraic geometry.

Now let us consider arrows from terminal objects. For any set X, for
instance, we have an isomorphism

X ∼= HomSets(1, X)
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between elements x ∈ X and arrows x̄ : 1 → X, determined by x̄(∗) = x,
from a terminal object 1 = {∗}. We have already used this correspondence
several times . A similar situation holds in posets (and in topological spaces),
where the arrows 1 → P correspond to elements of the underlying set of a
poset (or space) P . In any category with a terminal object 1, such arrows
1→ A are called global elements, or points, or constants of A. In sets, posets,
and spaces, the general arrows A → B are determined by what they do to
the points of A, in the sense that two arrows f, g : A → B are equal if for
every point a : 1→ A, the composites are equal, fa = ga.

But be careful; this is not always the case! How many points are there of
an object M in the category of monoids? That is, how many arrows of the
form 1 → M for a given monoid M? Just one! And how many points does
a Boolean algebra have?

Because, in general, an object is not determined by its points, it is con-
venient to introduce the device of generalized elements. These are arbitrary
arrows,

x : X → A

(any domain X), which can be regarded as generalized or variable elements
of A. Computer scientists and logicians sometimes think of arrows 1→ A as
constants or closed terms, and general arrows X → A as (arbitrary) terms.

Example 2.10. 1. Consider arrows f, g : X → Y in Pos. Then f = g iff
for all x : 1→ X, we have fx = gx. In this sense, posets “have enough
points” to separate the arrows.

2. By contrast, in Mon, for homomorphisms h, j : M → N we always
have hx = jx, for all x : 1 → M , since there’s just one such point x.
Thus monoids don’t “have enough points”.

3. But in any category C, and for any arrows f, g : C → C ′, we always
have f = g iff for all x : D → C, it holds that fx = gx (why?). Thus
every object has enough generalized elements.

4. In fact, it often happens that it is enough to consider generalized ele-
ments of just a certain form T → A, i.e. for certain “test” objects T .
We shall consider this below.

Generalized elements are also good for “testing” for various conditions.
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Consider, for instance, the diagram:

X
x

>

x′
> A

f
> B

The arrow f is monic iff x 6= x′ implies fx 6= fx′, i.e. just if f is “injective
on generalized elements”.

Similarly, in any category C, to test whether a square commutes:

A
f

> B

D

g

∨

β
> C

α

∨

we shall have αf = βg just if αfx = βgx for all generalized elements x :
X → A (just take x = 1A : A→ A !).

Example 2.11. Generalized elements can be used to “reveal more structure”
than do the constant elements. For example, consider the following posets
X and A:

A = {a ≤ b ≤ c}

X = {x ≤ y, x ≤ z},

There is an order-preserving bijection f : X → A defined by:

f(x) = a, f(y) = b, f(z) = c .

It’s easy to see that f is both monic and epic in the category Pos, however
it’s clearly not an iso. One would like to say that X and A are “different
structures”, and indeed, their being non-isomorphic says just this. But now,
how to prove that they are not isomorphic (say, via some other X → A)? In
general, this can be quite difficult.

One way to prove that two objects are not isomorphic is to use “invari-
ants”: attributes that are preserved by isomorphisms. If two objects differ
by an invariant, they cannot be isomorphic. Generalized elements provide an
easy way to define invariants. For instance, the number of global elements
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of X and A is the same, namely the three elements of the sets. But consider
instead the 2-elements 2 → X. Then X has 5 such, and A has 6. Since
these numbers are isomorphism invariants, the posets cannot be isomorphic.
In more detail, we can define for any poset P the numerical invariant

|Hom(2, P )| = number of elements of Hom(2, P )

Then if P ∼= Q, it’s easy to see that |Hom(2, P )| = |Hom(2, Q)|, since any
isomorphism:

P
f

>
<

g
Q

also gives an iso:

Hom(2, P )
f∗

>
<

g∗
Hom(2, Q)

by composition:

f∗(h) = fh,

g∗(k) = gk,

for all h : 2→ P and k : 2→ Q.

Example 2.12. As in the foregoing example, it is often the case that gener-
alized elements t : T → A “based at” certain objects T are especially “re-
vealing”. We can think of such elements geometrically as “figures of shape
T in A”, just as an arrow 2 → P in posets is a figure of shape p ≤ p′ in P .
For instance, as we have already seen, in the category of monoids, the arrows
from the terminal monoid 1 are entirely uninformative, but those from the
free monoid M(∗) on one generator suffice to distinguish homomorphisms,
in the sense that two homomorphisms f, g : M → N are equal if their com-
posites with all such arrows are equal. In fact, for monoids the underlying
set |M | is plainly (isomorphic to) HomMon(M(∗),M).

2.4 Sections and retractions

We already noted that any iso is both monic and epic. More generally, if an
arrow

f : A→ B
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has a left inverse
g : B → A, gf = 1A

then f must be monic and g epic, by an easy exercise.

Definition 2.13. A split mono (epi) is an arrow with a left (right) inverse.
Terminology : Given arrows e : X → A and s : A → X such that es = 1A,
then s is called a section or splitting of e, and e is called a retraction of s.
The object A is called a retract of X.

Remark 2.14. Since functors preserve identities, they also preserve split epis
and split monos. Compare the example above in Mon where the forgetful
functor

Mon→ Set

did not preserve the epi N→ Z.

Example 2.15. In Sets, every mono splits except those of the form

∅֌ A.

The condition that every epi splits is the categorical version of the axiom of
choice. Indeed, consider an epi:

e : E ։ X

We have the family of non-empty sets

Ex = e−1{x}, x ∈ X.

A splitting of e is exactly a choice function for this family (Ex)x∈X , i.e. a
function s : X → E such that es = 1X , since this means that s(x) ∈ Ex for
all x ∈ X.

Conversely, given a family of non-empty sets,

(Ex)x∈X

take E = {(x, y) | x ∈ X, y ∈ Ex} and define the epi e : E ։ X by
(x, y) 7→ x. A a splitting s of e then determines a choice function for the
family.

The idea that a “family of objects” (Ex)x∈X can be represented by a single
arrow e : E → X by using the “fibers” e−1(x) has much wider application
than this, and will be considered further in section 7.9 below.
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A notion related to the existence of “choice functions” is that of being
“projective”: an object P is said to be projective if for any epi e : E ։ X and
arrow f : P → X there is some (not necessarily unique) arrow f̄ : P → E
such that e ◦ f̄ = f , as indicated in the diagram:

E

..
..
..
..
..
..
..

f̄

P
f

> X

e

∨
∨

One says that f lifts across e. Projective objects may be thought of as having
“less structure”, thus permitting “more arrows”.

The axiom of choice implies that all sets are projective, and it follows
that free objects in many (but not all!) categories of algebras are then also
projective. The reader should show that, in any category, any retract of a
projective object is also projective.

2.5 Products

Next we’re going to see the categorical definition of a product of two objects
in a category. This was first given by Mac Lane in 1950, and it’s probably
the earliest example of category theory being used to define a fundamental
mathematical notion.

By “define” here I mean an abstract characterization, in the sense already
used, in terms of objects and arrows in a category. And as before, we do
this by giving a universal mapping property (UMP), which determines the
structure at issue up to isomorphism, as usual in category theory. Later in
this chapter, we’ll have several other examples of such characterizations.

Let’s begin by considering products of sets. Given sets A and B the
cartesian product of A and B is the set of ordered pairs:

A× B = {(a, b) | a ∈ A, b ∈ B}

Observe that there are two “coordinate projections”:

A <
π1

A×B
π2

> B
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with
π1(a, b) = a, π2(a, b) = b.

And indeed, given any element c ∈ A× B we have:

c = (π1c, π2c).

The situation is captured concisely in the following diagram:

1

	�
�

�
�

�
a

@
@

@
@

@

b

R

A <

π1

A×B

(a,b)

∨

.................

π2

> B

Replacing elements by generalized elements, we get the following definition.

Definition 2.16. In any category C, a product diagram for the objects A
and B consists of an object P and arrows

A <
p1

P
p2

> B

satisfying the following UMP:

Given any diagram of the form:

A <
x1

X
x2

> B

there exists a unique u : X → P , making the diagram:

X

	�
�

�
�

�
x1

@
@

@
@

@

x2

R

A <

p1

P

u

∨

.................

p2

> B

commute, i.e. such that x1 = p1u and x2 = p2u.
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Remark 2.17. As in other UMPs, there are two parts:

Existence: There is some u : X → U such that x1 = p1u and x2 = p2u.

Uniqueness: Given any v : X → U , if p1v = x1 and p2v = x2, then
v = u.

Proposition 2.18. Products are unique up to isomorphism.

Proof. Suppose

A <
p1

P
p2

> B

and

A <
q1

Q
q2

> B

are products of A and B. Then there is a unique i : P → Q such that
q1 ◦ i = p1 and q2 ◦ i = p2. Similarly, there is a unique j : Q→ P such that
p1 ◦ j = q1 and p2 ◦ j = q2. Thus, p1 ◦ j ◦ i = p1 and p2 ◦ j ◦ i = p2. Since
p1 ◦ 1P = p1 and p2 ◦ 1P = p2, it follows from the uniqueness condition that
j ◦ i = 1P . Similarly, i ◦ j = 1Q. Thus, i : P → Q is an isomorphism.

If A and B have a product, we write

A <
p1

A×B
p2

> B

for one such product. Then given X, x1, x2 as in the definition, we write

〈x1, x2〉 for u : X → A× B.

Note, however, that a pair of objects may have many different products
in a category. For example, given a product A × B, p1, p2, and any iso h :
A× B → Q, the diagram Q, p1 ◦ h, p2 ◦ h is also a product of A and B.

Now an arrow into a product,

f : X → A× B

is “the same thing” as a pair of arrows

f1 : X → A, f2 : X → B.
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So we can essentially forget about such arrows, in that they are uniquely
determined by pairs of arrows. But something useful is gained if a category
has products; namely, consider arrows out of the product,

g : A× B → Y.

Such a g is a “function in two variables”: given any two generalized elements
f1 : X → A and f2 : X → B, we have an element g〈f1, f2〉 : X → B. Such
arrows g : A× B → Y are not “reducible” to anything more basic, the way
arrows into products were (to be sure, they are related to the notion of an
“exponential” Y B, via “currying” λf : A→ Y B; we shall discuss this further
in chapter 6 below).

2.6 Examples of products

1. We have already seen cartesian products of sets. Note that if we choose
a different definition of ordered pairs we get different sets

A× B and A×′ B

each of which is (part of) a product, and so are isomorphic. For in-
stance, we could set

〈a, b〉 = {{a}, {a, b}}

〈a, b〉′ = 〈a, 〈a, b〉〉

2. Products of “structured sets” like monoids or groups can often be con-
structed as products of the underlying sets with component-wise opera-
tions: If G and H are groups, for instance, G×H can be constructed by
taking the underlying set of G×H to be the set {〈g, h〉 | g ∈ G, h ∈ H}
and defining the binary operation by

〈g, h〉 · 〈g′, h′〉 = 〈g · g′, h · h′〉

the unit by
u = 〈uG, uH〉

and inverses by
〈a, b〉−1 = 〈a−1, b−1〉.

The projection homomorphisms G × H → G (or H) are the evident
ones 〈g, h〉 7→ g (or h).
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3. Similarly, for categories C and D, we already defined the category of
pairs of objects and arrows,

C×D.

Together with the evident projection functors, this is indeed a product
in Cat (when C and D are small).

As a special case, we also get products of posets and of monoids as
products of categories.

4. Let P be a poset and consider a product of elements p, q ∈ P . We must
have projections,

p× q ≤ p

p× q ≤ q

and if for any element x,

x ≤ p, and x ≤ q

then we need:

x ≤ p× q .

Do you recognize this operation p× q ? It is just what is usually called
the greatest lower bound : p × q = p ∧ q. Many other order-theoretic
notions are also special cases of categorical ones, as we shall see later.

5. (For those who know something about Topology.) Let’s show that the
product of two topological spaces X, Y , as usually defined, really is a
product in Top, the category of spaces and continuous functions. Thus
suppose we have spaces X and Y and the product spaces X × Y with
its projections:

X
p1
←− X × Y

p2
−→ Y

Recall that O(X×Y ) is generated by basic open sets of the form U×V
where U ∈ O(X), andV ∈ O(Y ): so every W ∈ O(X × Y ) is a union
of such basic opens.

• Clearly p1 is continuous, since p−1
1 U = U × 1Y .
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• Given any continuous f1 : Z → X, f2 : Z → Y, let f : Z →
X × Y be the function f = 〈f1, f2〉. We just need to see that f is
continuous.

• Given any W =
⋃
i(Ui × Vi) ∈ O(X × Y ), f−1(W ) =

⋃
i f

−1(Ui ×
Vi), so it suffices to show f−1(U × V ) is open. But

f−1(U × V ) = f−1((U × 1Y ) ∩ (1X × V ))

= f−1(U × 1Y ) ∩ f−1(1X × V )

= f−1 ◦ p−1
1 (U) ∩ f−1 ◦ p−1

2 (V )

= (f1)
−1(U) ∩ (f2)

−1(V )

where (f1)
−1(U) and (f2)

−1(V ) are open, since f1 and f2 are con-
tinuous.

The following diagram concisely captures the situation at hand:

O(Z)

�
�

�
�

�
f−1

1

� I@
@

@
@

@

f−1
2

O(X)
p−1

1

> O(X × Y )

f−1

∧................
<

p−1
2

O(Y )

6. (For those familiar with type theory.) Let us consider the category of
types of the (simply-typed) λ-calculus. The λ–calculus is a formalism
for the specification and manipulation of functions, based on the no-
tions of “binding of variables” and functional evaluation. For example,
given the real polynomial function x2 +2y, in the λ-calculus one writes
λy.x2 + 2y for the function y 7→ x2 + 2y (for each fixed value x), and
λxλy.x2 + 2y for the function-valued function x 7→ (y 7→ x2 + 2y.

Formally, the λ-calculus consists of:

• Types: A×B, A→ B, . . . (generated from some basic types)

• Terms:

x, y, z, . . . : A (variables for each type A)

a : A, b : B, . . . (possibly some typed constants)
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〈a, b〉 : A×B (a : A, b : B)

fst(c) : A (c : A× B)

snd(c) : B (c : A× B)

ca : B (c : A→ B, a : A)

λx.b : A→ B (x : A, b : B)

• Equations:

fst(〈a, b〉) = a

snd(〈a, b〉) = b

〈fst(c), snd(c)〉) = c

(λx.b)a = b[a/x]

λx.cx = c (no x in c)

The relation a ∼ b (usually called βη-equivalence) on terms is defined to
be the equivalence relation generated by the equations, and renaming
of bound variables:

λx.b = λy.b[y/x] (no y in b)

The category of types C(λ) is now defined as follows:

• objects: the types,

• arrows A→ B: closed terms c : A→ B, identified if c ∼ c′,

• identities: 1A = λx.x (where x : A),

• composition: c ◦ b = λx.c(bx).

Let’s check that this is a well-defined category:

Unit laws:

c ◦ 1B = λx(c((λy.y)x)) = λx(cx) = c

1C ◦ c = λx((λy.y)(cx)) = λx(cx) = c
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Associativity:

c ◦ (b ◦ a) = λx(c((b ◦ a)x))

= λx(c((λy(b(ay))x))

= λx(c(b(ax)))

= λx(λy(c(by))(ax))

= λx((c ◦ b)(ax))

= (c ◦ b) ◦ a

This category has binary products. Indeed, given types A and B, let:

p1 = λz.fst(z), p2 = λz.snd(z) (z : A×B)

And given a and b as in:

X

	�
�

�
�

�
a

@
@

@
@

@

b

R

A <

p1

A×B

(a, b)

∨

.................

p2

> B

let:

(a, b) = λx.〈ax, bx〉

Then:

p1 ◦ (a, b) = λx(p1((λy.〈ay, by〉)x))

= λx(p1〈ax, bx〉)

= λx(ax)

= a

Similarly, p2 ◦ (a, b) = b.

Finally, if c : X → A× B also has:

p1 ◦ c = a, p2 ◦ c = b ,
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then:

(a, b) = λx.〈ax, bx〉

= λx.〈(p1 ◦ c)x, (p2 ◦ c)x〉

= λx.〈(λy(p1(cy)))x, (λy(p2(cy)))x〉

= λx.〈(λy((λz.fst(z))(cy)))x, (λy((λz.snd(z))(cy)))x〉

= λx.〈λy(fst(cy))x, λy(snd(cy))x〉

= λx.〈fst(cx), snd(cx)〉

= λx.(cx)

= c .

2.7 Categories with products

Let C be a category that has a product diagram for every pair of objects.
Suppose we have objects and arrows

A <
p1

A× A′ p2
> A′

B

f

∨

<

q1
B × B′

q2
> B′

f ′

∨

with indicated products. Then we write

f × f ′ : A× A′ → B ×B′

for f × f ′ = 〈f ◦ p1, f
′ ◦ p2〉. Thus, both squares in the following diagram

commute.

A <
p1

A× A′ p2
> A′

B

f

∨

<

q1
B × B′

f × f ′

∨

................

q2
> B′

f ′

∨
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In this way, if we choose a product for each pair of objects, we get a functor

× : C×C→ C

as the reader can easily check, using the UMP of the product. A category
which has a product for every pair of objects is said to have binary products.

We can also define ternary products,

A1 ×A2 × A3

with an analogous UMP (there are three projections pi : A1×A2×A3 → Ai,
and for any object X and three arrows xi : X → Ai, there is a unique arrow
u : X → A1 × A2 × A3 such that piu = xi for each of the three i’s.) Plainly,
such a condition can be formulated for any number of factors.

It’s clear, however, that if a category has binary products, then it has all
finite products with two or more factors; for instance, one could set:

A×B × C = (A× B)× C

to satisfy the UMP for ternary products. On the other hand, one could
instead have taken A × (B × C) just as well. This shows that the binary
product operation A×B is associative up to isomorphism, for we must have:

(A×B)× C ∼= A× (B × C)

by the universal mapping property of ternary products.
Observe also that a terminal object is a “null-ary” product, i.e. a product

of no objects:

Given no objects, there’s an object 1 with no maps, and given
any other object X and no maps, there is a unique arrow

! : X → 1

making nothing further commute.

Similarly, any object A is the unary product of A with itself one time.
Finally, one can also define the product of a family of objects (Ci)i∈I

indexed by any set I, by giving a UMP for “I-ary products” analogous to
those for nullary, unary, binary, and n-ary products. We leave the precise
formulation of this UMP as an exercise.
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Definition 2.19. A category C is said to have all finite products if it has a
terminal object and all binary products (and therewith products of any finite
cardinality). The category C has all (small) products if every set of objects
in C has a product.

2.8 Hom-sets

In this section, we assume that all categories are locally small.
Recall that in any category C, given any objects A and B, we write:

Hom(A,B) = {f ∈ C | f : A→ B}.

and call such a set of arrows a Hom-set. Note that any arrow g : B → B′ in
C induces a function

Hom(A, g) : Hom(A,B)→ Hom(A,B′)

(f : A→ B) 7→ (g ◦ f : A→ B → B′)

Thus Hom(A, g) = g ◦ f ; one sometimes writes g∗ instead of Hom(A, g), so:

g∗(f) = g ◦ f

Let us show that this determines a functor,

Hom(A,−) : C→ Sets

called the (covariant) representable functor of A.
We need to show that:

Hom(A, 1X) = 1Hom(A,X)

and that:
Hom(A, g ◦ f) = Hom(A, g) ◦ Hom(A, f) .

Taking an argument x : A→ X, we clearly have:

Hom(A, 1X)(x) = 1X ◦ x

= x

= 1Hom(A,X)(x)
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and:

Hom(A, g ◦ f)(x) = (g ◦ f) ◦ x

= g ◦ (f ◦ x)

= Hom(A, g)(Hom(A, f)(x)).

We’ll study such representable functors much more carefully later. For
now we just want to see how one can use Hom-sets to give another definition
of products.

An object P with arrows p1 : P → A and p2 : P → B is an element
(p1, p2) of the set

Hom(P,A)× Hom(P,B).

And similarly for any set X in place of P . Now, given any arrow

x : X → P,

composing with p1 and p2 gives a pair of arrows x1 = p1 ◦ x : X → A and
x2 = p2 ◦ x : X → B, as indicated in the following diagram.

X

	�
�

�
�

�
x1

@
@

@
@

@

x2

R

A <

p1

P

x

∨

p2

> B

In this way, we have a function

ϑX = (Hom(X, p),Hom(X, q)) : Hom(X,P )→ Hom(X,A)×Hom(X,B)

defined by:
ϑX(x) = (x1, x2) (2.1)

This function ϑX can be used to express concisely the condition of being a
product as follows.

Proposition 2.20. A diagram of the form:

A <

p1

P
p2

> B
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is a product for A and B iff for every object X, the canonical function θX
given in (2.1) is an isomorphism,

ϑX : Hom(X,P ) ∼= Hom(X,A)× Hom(X,B)

Proof. Examine the universal mapping property of the product: it says ex-
actly that for every element (x1, x2) ∈ Hom(X,A) × Hom(X,B), there is a
unique x ∈ Hom(X,P ) such that ϑX(x) = (x1, x2), i.e. ϑX is bijective.

Definition 2.21. Let C, D be categories with binary products. A functor
F : C → D is said to preserve binary products if it take every product
diagram:

A <

p1

A× B
p2

> B in C

to a product diagram:

FA <

Fp1

F (A×B)
Fp2

> FB in D

It follows that F preserves products just if:

F (A×B) ∼= FA× FB (canonically),

that is, iff the canonical “comparison arrow”

〈Fp1, Fp2〉 : F (A×B)→ FA× FB

is an iso.

For example, the forgetful functor U : Mon → Sets preserves binary
products.

Corollary 2.22. For any object X in a category C with products, the (co-
variant) representable functor

HomC(X,−) : C→ Sets

preserves products.

Proof. For any A,B ∈ C, the foregoing proposition says that there is a
canonical isomorphism:

HomC(X,A× B) ∼= HomC(X,A)×HomC(X,B)
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2.9 Exercises

1. Show that a function between sets is surjective if it is an epimorphism
in Sets.

2. With regard to a commutative triangle,

A
f

> B

@
@

@
@

@
h

R

C

g

∨

in any category C, show:

(a) if f and g are isos (resp. monos, resp. epis), so is h;

(b) if h is monic, so is f ;

(c) if h is epic, so is g;

(d) (by example) if h is monic, g need not be.

3. Show that all sets are projective (use the axiom of choice). Show that
the epis among posets are the surjections (on objects), and that the
one element poset 1 is projective. Finally, show that in any category,
any retract of a projective object is also projective.

4. Let A be a set. Define an A-monoid to be a monoid M equipped with
a function m : A→ U(M) (to the underlying set of M). A morphism
h : (M,m) → (N, n) of A-monoids is to be a monoid homomorphism
h : M → N such that U(h)◦m = n (a commutative triangle). Together
with the evident identities and composites, this defines a category A−
Mon of A-monoids.

Show that an initial object in A −Mon is the same thing as a free
monoid M(A) on A. (Hint: compare their respective UMPs.)

5. Show that for any boolean algebra B, boolean homomorphisms h :
B → 2 correspond exactly to ultrafilters in B.
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6. In any category with binary products,

A× (B × C) ∼= (A× B)× C.

7. (a) For any index set I, define the product
∏

i∈I Xi of an I-indexed
family of objects (Xi)i∈I in a category, by giving a universal map-
ping property generalizing that for binary products (the case I =
2).

(b) Show that in Sets, for any set X the set XI of all functions
f : I → X has this UMP, with respect to the “constant family”
where Xi = X for all i ∈ I, and thus:

XI ∼=
∏

i∈I

X



Chapter 3

Duality

We have seen a few examples of definitions and statements which exhibit
a kind of “duality”, like initial and terminal object and epimorphisms and
monomorphisms. We now want to consider this duality more systematically.
Despite its rather trivial first impression, it is indeed a deep and powerful
aspect of the categorical approach.

3.1 The duality principle

First, let’s look again at the formal definition of a category: There are two
kinds things, objects A,B,C, . . ., arrows f, g, h, . . .; four operations dom(f),
cod(f), 1A, g ◦ f ; and these satisfy the following seven axioms:

dom(1A) = A, cod(1A) = A

f ◦ 1dom(f) = f, 1cod(f) ◦ f = f

dom(g ◦ f) = dom(f), cod(g ◦ f) = cod(g)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

The operation “g ◦ f” is only defined where

dom(g) = cod(f),

so a suitable form of this should occur as a condition on each equation con-
taining ◦, as in dom(g) = cod(f)⇒ dom(g ◦ f) = dom(f).

57
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Now, given any sentence Σ in the elementary language of category theory,
we can form the “dual statement” Σ∗ by making the following replacements:

g ◦ f for f ◦ g

cod for dom

dom for cod.

It is easy to see that then Σ∗ will also be a well-formed sentence. Nest,
suppose we have shown a statement Σ to entail one ∆, without using any of
the category axioms; then clearly also Σ∗ ⊢ ∆∗, since the substituted terms
are treated as mere undefined constants. But now observe that the axioms
for category theory CT are themselves “self-dual”, in the sense that we have:

CT∗ = CT

We therefore have the following duality principle:

Proposition 3.1 (Formal duality). For any statement Σ in the language of
category theory, if Σ follows from the axioms for categories, then so does Σ∗:

if C ⊢ Σ, then C ⊢ Σ∗.

Taking a more conceptual point of view, note that if Σ involves some
diagram of objects and arrows,

A
f

> B

@
@

@
@

@
g ◦ f

R

C

g

∨

then Σ∗ involves the diagram obtained from it by reversing direction and the
order of compositions of arrows.

A <
f

B

I@
@

@
@

@
f ◦ g

C

g

∧
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Recalling the opposite category Cop of a category C, we see that an inter-
pretation of a statement Σ in C automatically gives an interpretation of Σ∗

in Cop.

Now, since for every category C,

(Cop)op = C (3.1)

the conceptual form of the duality principle then results similarly:

Proposition 3.2 (Conceptual duality). For any statement Σ about cate-
gories, if Σ holds for all categories, then so does the dual statement Σ∗:

Σ implies Σ∗.

Proof. If Σ holds for all categories C, then it also holds in all categories Cop,
but then Σ∗ holds in all categories Cop)op, thus in all categories C.

It may seem that only very simple or trivial properties such as “having
a terminal object” are going to be subject to this sort of duality, but in
fact this is far from so. Categorical duality turns out to be a very powerful
and far-reaching phenomenon, as we shall see later. One way this occurs is
that, rather than considering statements about all categories, we can also
consider the dual of an abstract definition or property of objects and arrows,
like “being a product diagram”. The dual property is arrived at by reversing
the order of composition and the words “dom” and “cod”. Equivalently, it
results from interpreting the original property in the opposite category. The
next section provides an example of this procedure.

3.2 Coproducts

Let’s consider the example of products and see what the dual notion must
be. First, recall the definition of a product:

Definition 3.3. A diagram A
p1
← P

p2
→ B is a product of A and B if for any

Z and A
z1← Z

z2→ B there is a unique u : Z → P with pi ◦ u = zi, all as
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indicated in

Z

	�
�

�
�

�
z1

@
@

@
@

@

z2

R

A <

p1

P

u

∨

.................

p2

> B

Now what is the dual statement?

A diagram A
q1
→ Q

q2
← B is a “dual-product” of A and B if for any Z and

A
z1→ Z

z2← B there is a unique u : Q→ Z with u ◦ qi = zi, all as indicated in:

Z

�
�

�
�

�
z1

� I@
@

@
@

@

z2

A
q1

> Q

u

∧.................
<

q2
B

Actually, these are called coproducts; the convention is to use the prefix “co-

” to indicate the dual notion. We usually write A
i1→ A + B

i2← B for the
coproduct, and [f, g] for the uniquely determined arrow u : A + B → Z.
The “coprojections” i1 : A→ A + B and i2 : B → A + B are usually called
injections, even thought they need not be “injective” in any sense.

A coproduct of two objects is therefore exactly their product in the oppo-
site category. Of course, this immediately gives lots of examples of coprod-
ucts. But what about some more familiar ones?

Example 3.4. In Sets, the coproduct A+B of two sets in their disjoint union,

A+B = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}

with evident coproduct injections:

i1(a) = (a, 1), i2(b) = (b, 2).
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Given any functions f and g as in:

Z

�
�

�
�

�
f

� I@
@

@
@

@

g

A
i1

> A +B

[f, g]

∧.................
<

i2
B

we define:

[f, g](x, δ) =

{
f(x) δ = 1

g(x) δ = 2

If also h ◦ i1 = f and h ◦ i2 = g, then for any (x, δ) ∈ A+B, we must have:

h(x, δ) = [f, g](x, δ).

as can be easily calculated.

Note that in Sets, every finite set A is a coproduct:

A ∼= 1 + 1 + . . .+ 1 (n-times)

for n = card(A). This is because a function f : A→ Z is uniquely determined
by its values f(a) for all a ∈ A, so we have:

A ∼= {a1}+ {an}+ ...+ {an}
∼= 1 + 1 + ... + 1 (n-times)

In this spirit, we often write simply 2 = 1 + 1, 3 = 1 + 1 + 1, etc.

Example 3.5. If M(A) and M(B) are free monoids on sets A and B, then in
Mon we can construct their coproduct as:

M(A) +M(B) ∼= M(A +B).

One can see this directly by considering words over A+B, but it also follows
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abstractly by using the diagram:

N

�
�

�
�

�� I@
@

@
@

@

M(A) >M(A +B)

∧.................
< M(B)

A

ηA

∧

> A +B

ηA+B

∧

< B

ηB

∧

in which the η’s are the respective insertions of generators. The UMPs of
M(A), M(B), A + B, and M(A + B) then imply that the last of these has
the required UMP of M(A) +M(B).

It follows that the free monoid functor M : Sets → Mon preserves
coproducts. This is an instance of a much more general phenomenon, which
we will consider later, related to the fact we’ve already seen that the forgetful
functor U : Mon→ Sets is representable, and so preserves products.

Example 3.6. In Top the coproduct of two spaces

X + Y

is their disjoint union with the topology: O(X + Y ) ∼= O(X)× O(Y ). Note
that this follows the pattern of discrete spaces, for which O(X) = P (X) ∼=
2X . Thus, for discrete spaces we indeed have:

O(X + Y ) ∼= 2X+Y ∼= 2X × 2Y ∼= O(X)× O(Y )

Coproducts of posets are similarly constructed from the coproducts of
the underlying sets, by “putting them side by side”. What about “rooted”
posets, i.e. posets with a distinguished initial element 0? In the category
Pos0 of such posets and monotone maps that preserve 0, one constructs the
coproduct of two such posets A and B from the coproduct A + B in the
category Pos of posets, by identifying the two different 0s,

A +Pos0 B = (A+Pos B)/(0A = 0B)
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Example 3.7. In a fixed poset P , what is a coproduct of two elements p, q ∈
P ? We have

p ≤ p+ q and q ≤ p+ q

and if
p ≤ z and q ≤ z

then
p+ q ≤ z.

So p+ q = p ∨ q is the join, or “least upper bound”, of p and q.

Example 3.8. Sum types in the λ-calculus as usually formulated using case

terms are coproducts in the category of types defined in subsection 2.6 above.

Example 3.9. Coproduct of monoids

Two monoids A,B have a coproduct of the form:

A+B = M(|A|+ |B|)/ ∼

where as before, the free monoid M(|A| + |B|) is strings (words) over the
disjoint union |A| + |B| of the underlying sets – the elements of A and B –
and the equivalence relation v ∼ w is the least one containing the following
equations:

uA = (−) = uB

(. . . aa′ . . .) = (. . . a · a′ . . .)

(. . . bb′ . . .) = (. . . b · b′ . . .)

(If you need a refresher on quotienting a set by an equivalence relation, skip
ahead and read the beginning of section 3.4 now.) The unit is of course the
equivalence class [−] of the empty word. Multiplication of equivalence classes
is also as expected, namely:

[x . . . y] · [x′ . . . y′] = [x . . . yx′ . . . y′]

The coproduct injections iA : A→ A+B and iB : B → A+B are simply:

iA(a) = [a], iB(b) = [b]

Given any homomorphisms f : A → M and g : B → M into a monoid M ,
the unique homomorphism,

[f, g] : A+B −→M
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is defined by first lifting the function [|f |, |g|] : |A| + |B| → |M | to the free
monoid M(|A| + |B|), and then observing that if v ∼ w in M(|A| + |B|),
then [|f |, |g|](v) = [|f |, |g|](w). Why is this homomorphism the unique one

h : M(|A|+ |B|)/∼ −→M

with hiA = f and hiB = g ?
This construction also works to give coproducts in Groups, where it is

usually called the free product of A and B and written A⊕ B.

Example 3.10. For abelian groups A,B, the free product A⊕B need not be
abelian. One could, of course, take a quotient of A ⊕ B to get a coproduct
in the category Ab of abelian groups, but there is a more convenient (and
important) presentation, which we now consider.

Since the words in the free product A⊕ B must be forced to satisfy the
further commutativity conditions:

(a1b1b2a2 . . .) ∼ (a1a2 . . . b1b2 . . .)

we can shuffle all the a’s to the front, and the b’s to the back, of the words.
But since furthermore we already have

(a1a2 . . . b1b2 . . .) ∼ (a1 + a2 + . . . b1 + b2 + . . .)

Thus we in effect have pairs of elements (a, b). So we take the product set as
the underlying set of the coproduct:

|A+B| = |A× B|

As inclusions, we use the homomorphisms:

iA(a) = (a, 0B)

iB(b) = (0A, b).

Then given any homomorphisms A
f
→ X

g
← B, we let [f, g] : A+B → X be

defined by:

[f, g](a, b) = f(a) +X g(b)

which can easily be seen to do the trick (exercise!).
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Proposition 3.11. In the category Ab of abelian groups, there is a canonical
isomorphism between the binary coproduct and product,

A+B ∼= A×B .

Proof. To define an arrow ϑ : A + B → A × B we need one A → A × B
(and one B → A× B), so we need arrows A→ A and A→ B (and B → A
and B → B). For these we take 1A : A → A and the zero homomorphism
0B : A→ B (and 0A : B → A and 1B : B → B). Thus all together we let:

ϑ = [〈1A, 0B〉, 〈0A, 1B〉] : A+B → A× B

Then given any (a, b) ∈ A +B, we have:

ϑ(a, b) = [〈1A, 0B〉, 〈0A, 1B〉](a, b)

= 〈1A, 0B〉(a) + 〈0A, 1B〉(b)

= (1A(a), 0B(a)) + (0A(b), 1B(b))

= (a, 0B) + (0A, b)

= (a+ 0A, 0B + b)

= (a, b)

This fact was first observed by Mac Lane in 1950, and it was shown
to lead to a binary operation of addition on parallel arrows f, g : A →
B between abelian groups (and related structures like modules and vector
spaces). In fact, the group structure of a particular abelian group A can
be recovered from this operation on arrows into A. More generally, the
existence of such an addition operation on arrows can be used as the basis
of an abstract description of categories like Ab, called “abelian categories”,
which are suitable for axiomatic homology theory.

Just as with products, one can consider the empty coproduct, which is an
initial object 0, as well as coproducts of several factors, and the coproduct
of two arrows,

f + f ′ : A + A′ → B +B′.

which leads to a coproduct functor + : C × C → C on categories C with
binary coproducts. All of these facts follows simply by duality, that is, by
considering the dual notions in the opposite category. Similarly, we have the
following proposition.
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Proposition 3.12. Coproducts are unique up to isomorphism.

Proof. Use duality, and the fact that the dual of “isomorphism” is “isomor-
phism”.

In just the same way, one shows that binary coproducts are associative
up to isomorphism, (A+B) + C ∼= A+ (B + C).

In this way, in the future it will thus suffice to introduce new notions,
and then simply observe that the dual notions have analogous (but dual)
properties. The next two sections gives another example of this sort.

3.3 Equalizers

In this section, we consider another abstract characterization, this time a
generalization of the idea of the kernel of a homomorphism, or an equationally
defined “variety”, like the set of zeros of a real valued function.

Definition 3.13. In any category C, given parallel arrows

A
f

>

g
> B

an equalizer of f and g consists of E and e : E → A, universal such that:

f ◦ e = g ◦ e .

That is, given z : Z → A with f ◦ z = g ◦ z there is a unique u : Z → E with
e ◦ u = z all as in the diagram:

E
e

> A
f

>

g
> B

�
�

�
�

�

z

�

Z

u

∧.................

Let’s consider some simple examples.
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Example 3.14. In Sets, given functions f, g : A ⇉ B, their equalizer is the
inclusion into A of the equationally defined subset:

i : {x ∈ A|f(x) = g(x)} →֒ A

Since if fh(z) = gh(z) for some h : Z → A, then h(z) ∈ {x ∈ A|f(x) = g(x)}
for all z ∈ Z, whence h “factors through” the inclusion function i, in the sense
that there is a function h̄ : Z → {x ∈ A|f(x) = g(x)} such that i ◦ h̄ = h.
Observe that h̄ is necessarily unique with this property, since i is monic.

Let us pause here to note that in fact, every subset U ⊆ A is of this
“equational” form, i.e. is an equalizer for some pair of functions. Indeed, one
can do this in a very canonical way; first let’s put

2 = {⊤,⊥}

Then consider the characteristic function

χU : A→ 2

defined for x ∈ A by:

χU(x) =

{
⊤ x ∈ U

⊥ x /∈ U

Thus we have:
U = {x ∈ A | χU(x) = ⊤}

So the following is an equalizer:

U > A
⊤!

>

χU
> 2

where ⊤! = ⊤◦! : U
!
→ 1

⊤
→ 2.

Moreover, for every function,

ϕ : A→ 2

we can form the “variety” (i.e. equational subset):

Vϕ = {x ∈ A | ϕ(x) = ⊤}.

as an equalizer, in the same way.



68 CHAPTER 3. DUALITY

Now, it is easy to see that these operations χU and Vϕ are mutually
inverse:

VχU
= {x ∈ A|χU(x) = ⊤}

= {x ∈ A|x ∈ U}

= U,

and given ϕ : A→ 2,

χVϕ(x) =

{
⊤ x ∈ Vϕ

⊥ x /∈ Vϕ

=

{
⊤ ϕ(x) = ⊤

⊥ ϕ(x) = ⊥

= ϕ(x)

Therefore, we have an isomorphism:

Hom(A, 2) ∼= P (A)

via the maps V and χ.

The fact that equalizers of functions can be taken as subsets is a special
case of a more general phenomenon:

Proposition 3.15. In any category, if e : E → A is an equalizer of some
pair of arrows, then e is monic.

Proof. Consider the diagram:

E
e

> A
f

>

g
> B

�
�

�
�

�

z

�

Z

x

∧

y

∧

in which we assume e is the equalizer of f and g. Supposing ex = ey, we
want to show x = y. Put z = ex = ey. Then fz = fex = gex = gz, so
there’s a unique u : Z → E such that eu = z. But from ex = z and ey = z,
it follows that x = u = y.
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Example 3.16. In many other categories, such as posets and monoids, the
equalizer of a parallel pair of arrows f, g : A ⇉ B can be constructed by
taking the equalizer of the underlying functions as above, i.e. the subset
A(f = g) ⊆ A of elements x ∈ A where f and g agree, f(x) = g(x), and then
restricting the structure of A to A(f = g). For instance, in posets one takes
the ordering from A restricted to this subset A(f = g), and in topological
spaces one takes the subspace topology.

In monoids, the subset A(f = g) is then also a monoid with the operations
from A, and the inclusion is therefore a homomorphism, because f(uA) =
uB = g(uA), and if f(a) = g(a) and f(a′) = g(a′), then f(a · a′) = f(a) ·
f(a′) = g(a) · g(a′) = g(a · a′).

In abelian groups, one has an alternate description of the equalizer, using
the fact that,

f(x) = g(x) iff (f − g)(x) = 0

Thus the equalizer of f and g is the same as that of the homomorphism
(f − g) and the zero homomorphism 0 : A → B, so it suffices to consider
equalizers of the special form A(h, 0) ֌ A for arbitrary homomorphisms
h : A → B. This subgroup of A is called the kernel of h, written ker(h).
Thus we have the equalizer:

ker(f − g) ⊂ > A
f

>

g
> B

The kernel of a homomorphism is of fundamental importance in the study of
groups.

3.4 Coequalizers

A coequalizer is a generalization of a quotient by an equivalence relation, so
let us begin by reviewing that notion. Recall first that an equivalence relation
on a set X is a binary relation x ∼ y which is:

reflexive: x ∼ x

symmetric: x ∼ y implies y ∼ x

transitive: x ∼ y and y ∼ z implies x ∼ z
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Given such a relation, define the equivalence class [x] of an element x ∈ X
by:

[x] = {y ∈ X| x ∼ y}

The various different equivalence classes [x] then form a partition of X, in
the sense that every element y is in exactly one of them, namely [y] (prove
this!).

One sometimes thinks of an equivalence relation as arising from the equiv-
alent elements having some property in common (like being the same color).
One can then regard the equivalence classes [x] as the properties, and in
that sense as “abstract objects” (the colors red, blue, etc., themselves). This
is sometimes known as “definition by abstraction”, and it describes the way
that the real numbers can be constructed from Cauchy sequences of rationals,
or the finite cardinal numbers from finite sets.

The set of all equivalence classes,

X/∼ = {[x] | x ∈ X}

may be called the quotient of X by ∼. It is used in place of X when one
wants to “abstract away” the difference between equivalent elements x ∼ y,
in the sense that in X/∼ such elements (and only such) are identified, since:

[x] = [y] iff x ∼ y

Now let us consider the notion dual to that of equalizer, namely that of
a coequalizer:

Definition 3.17. For any parallel arrows f, g : A → B in a category C,
a coequalizer consists of Q and q : B → Q, universal with the property
qf = qg, as in

A
f

>

g
> B

q
> Q

@
@

@
@

@
z

R

Z

u

∨

................

That is, given any Z and z : B → Z, if zf = zg, then there exists a unique
u : Q→ Z such that uq = z.
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First observe that by duality, we know that such a coequalizer q in a
category C is an equalizer in Cop, hence monic by the last proposition, and
so q is epic in C:

Proposition 3.18. If q : B → Q is a coequalizer of some pair of arrows,
then q is epic.

Example 3.19. Let R ⊆ X × X be an equivalence relation on a set X, and
consider the diagram

R
r1

>

r2
>X

where the r’s are the two projections of the inclusion i : R ⊆ X × X, as
indicated in the diagram:

R ⊂
i

> X ×X

@
@

@
@

@
rk

R

X

pk

∨

The canonical projection

π : X −→ X/R

defined by x 7→ [x] is then a coequalizer of r1 and r2. For given an f : X → Y
as in:

R
r1

>

r2
>X

π
> X/R

@
@

@
@

@
f

R

Y

f̄

∨

................

there exists a function f̄ such that

f̄π(x) = f(x)
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just if f “respects R” in the sense that

(x, x′) ∈ R implies f(x) = f(x′).

But this condition just says that fr1 = fr2, since fr1(x, x
′) = f(x) and

fr2(x, x
′) = f(x′) for all (x, x′) ∈ R. Moreover, such a function f̄ , if it exists,

is then necessarily unique, since π is an epimorphism.

The coequalizer in Sets of an arbitrary parallel pair of functions f, g :
A ⇉ B can be constructed by quotienting B by the equivalence relation
generated by the equations f(x) = g(x) for all x ∈ A. We leave the details
as an exercise.

Example 3.20. Presentations of Algebras
Consider a category of “algebras” — say, monoids or groups — that has

free algebras for all sets and coequalizers for all parallel pairs of arrows (see
the exercises for a proof that monoids have coequalizers). We can use these
to determine the notion of a presentation of an algebra by generators and
relations.

For example, suppose we are given:

Generators: x, y, z

Relations: xy = z, y2 = 1

To build an algebra on these generators and satisfying these relations,
start with

F (3) = F (x, y, z)

and then “force” the relation xy = z by taking a coequalizer of the maps:

F (1)
xy

>

z
> F (3)

q
> Q

We use the fact that maps F (1) → A correspond to elements a ∈ A by
v 7→ a, where v is the single generator of F (1). Now similarly, for the
equation y2 = 1, take the coequalizer:

F (1)
q(y2)

>

q(1)
> Q > Q′
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These two steps can actually be done simultaneously; let:

F (2) = F1 + F1

F (2)
f

>

g
> F (3)

where f = [xy, y2] and g = [z, 1]. The coequalizer q : F (3) → Q of f and g
then “forces” both equations to hold, in the sense that in Q we have:

q(x)q(y) = q(z), q(y)2 = 1 .

Moreover, no other relations among the generators hold in Q except those
required to hold by the stipulated equations. For given any algebra A and
any three elements a, b, c ∈ A such that ab = c and b2 = 1, by the UMP of
Q there is a unique homomorphism u : Q→ A such that:

u(x) = a, u(y) = b, u(z) = c .

Thus any other equation that holds among the generators will also hold in
any other algebra in which the stipulated equations hold, since the homomor-
phism u also preserves equations. In this sense, Q is the “universal” algebra
with three generators satisfying the stipulated equations; as may be written
suggestively in the form:

Q ∼= F (x, y, z)/(xy = z, y2 = 1)

Generally, given a finite presentation:

Generators: g1, . . . , gn

Relations: l1 = r1, . . . , lm = rm

the algebra with that presentation is the coequalizer:

F (m)
l

>

r
> F (n) > Q = F (n)/(l = r)

where l = [l1, . . . , lm] and r = [r1, . . . , rm]. Such algebras are called finitely
presented.
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Warning 3.21. Presentations are not unique. One may well have two different
presentations F (n)/(l = r) and F (n′)/(l′ = r′) by generators and relations
of the same algebra,

F (n)/(l = r) ∼= F (n′)/(l′ = r′)

for instance, given F (n)/(l = r) add a new generator gn+1 and the new
relation gn = gn+1. In general, there are many different ways of presenting a
given algebra, just like there are many ways of axiomatizing a logical theory.

We didn’t really make use of the finiteness condition in the foregoing.
Indeed, any sets of generators G and relations R give rise to an algebra in
the same way, by taking the coequalizer:

F (R)
r1

>

r2
> F (G) > F (G)/(r1 = r2)

In fact, every “algebra” can be “presented” by generators and relations in
this way, given a suitable notion of an “algebra”. More precisely, we have the
following proposition for monoids, an analogous version of which also holds
for groups, and many related structures.

Proposition 3.22. For every monoid M there are sets G and R and a coequal-
izer diagram,

F (R)
r1

>

r2
> F (G) >M

with F (G) and F (R) free, thus M ∼= F (G)/(r1 = r2).

Proof. For any monoid N , let us write TN = M(|N |) for the free monoid on
the set of elements of N (and note that T is therefore a functor). There is a
homomorphism,

π : TN → N

π(x1, . . . , xn) = x1 · . . . · xn

induced by the identity 1|N | : |N | → |N | on the generators. (Here we are
writing the elements of TN as tuples (x1, . . . , xn) rather than strings x1 . . . xn
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for clarity.) Applying this construction twice to a monoid M results in the
arrows π and ε in the following diagram,

T 2M
ε

>

µ
> TM

π
>M (3.2)

where T 2M = TTM and µ = Tπ. Explicitly, the elements of T 2M are
tuples of tuples of elements of M , say ((x1, . . . , xn), . . . , (z1, . . . , zm)), and
the homomorphisms ε and µ have the effect:

ε((x1, . . . , xn), . . . , (z1, . . . , zm)) = (x1, . . . , xn, . . . , z1, . . . , zm)

µ((x1, . . . , xn), . . . , (z1, . . . , zm)) = (x1 · . . . · xn, . . . , z1 · . . . · zm)

Briefly, ε uses the multiplication in TM and µ uses that in M .
We claim that (3.2) is a coequalizer of monoids. To that end, suppose we

have a monoid N and a homomorphism h : TM → N with hε = hµ. Then
for any tuple (x, . . . , z) we have:

h(x, . . . , z) = hε((x, . . . , z))

= hµ((x, . . . , z))

= h(x · . . . · z)

(3.3)

Now define h̄ = h ◦ i, where i : |M | → |TM | is the insertion of generators,
as indicated in the following:

T 2
ε

>

µ
> TM

π
>

<.........
i
......... M

@
@

@
@

@
h

R

N

h ◦ i

∨

We then have:

h̄π(x, . . . , z) = hiπ(x, . . . , z))

= h(x · · · . . . · z)

= h(x · . . . · z)

= h(x, . . . , z) by (3.3)

We leave it as an easy exercise for the reader to show that h̄ is a homomor-
phism.
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3.5 Exercises

1. (a) In any category C, show that

A
c1

> C <

c2
B

is a coproduct diagram just if for every object Z, the map

Hom(C,Z) −→ Hom(A,Z)× Hom(B,Z)

f 7−→ 〈f ◦ c1, f ◦ c2〉

is an isomorphism. If you do this by using duality, you may take
the corresponding fact about products as given.

(b) If you proved the first part directly, prove the corresponding fact
about products by using duality.

2. Show that the category Ab of abelian groups (xy = yx) has all equal-
izers.

3. In the proof of proposition 3.22 in the text it is shown that any monoid
M has a specific presentation T 2M ⇉ TM → M as a coequalizer
of free monoids. Show that coequalizers of this particular form are
preserved by the forgetful functor Mon→ Sets.

4. Prove that Sets has all coequalizers by constructing the coequalizer of
a parallel pair of functions,

A
f

>

g
> B > Q = B/(f = g)

by quotienting B by a suitable equivalence relation R on B, generated
by the pairs (f(x), g(x)) for all x ∈ A. (Define R to be the intersection
of all equivalence relations on B containing all such pairs.)

5. * Show that the category of posets has all coequalizers.

6. Consider the category of sets.

(a) Given a function f : A → B, describe the equalizer of the func-
tions f ◦ p1, f ◦ p2 : A × A → B as a (binary) relation on A, and
show that it is an equivalence relation (called the kernel of f).
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(b) Show that the kernel of the quotient A→ A/R by an equivalence
relation R is R itself.

(c) Given any binary relation R ⊆ A×A, let 〈R〉 be the equivalence
relation on A generated by R (the least equivalence relation on
A containing R). Show that the quotient A → A/〈R〉 is the
coequalizer of the two projections R ⇉ A.

(d) Using the foregoing, show that for any binary relation R on a set
A, one can characterize the equivalence relation 〈R〉 generated by
R as the kernel of the coequalizer of the two projections of R.
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Chapter 4

Groups and categories

This chapter is devoted to some of the various connections between groups
and categories. If you already know the basic group theory covered here,
then this will give you some insight into the categorical constructions we’ve
learned so far; and if you don’t know it yet, then you’ll learn it now as an
application of category theory. We’ll focus on three different aspects of the
relationship between categories and groups:

1. groups in a category

2. the category of groups

3. groups as categories

4.1 Groups in a category

As we’ve already seen, the notion of a group arises as an abstraction of the
automorphisms of an object. In a specific, concrete case, a group G may thus
consist of certain arrows g : X → X for some object X in a category C,

G ⊆ HomC(X,X)

But the abstract group concept can also described directly as an object in
a category, equipped with a certain structure. This more subtle notion of a
“group in a category” also proves to be quite useful.

Let C be a category with finite products. The notion of a group in C

essentially generalizes the usual notion of a group in Sets.

79
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Definition 4.1. A group in C consists of objects and arrows as so:

G×G
m

> G <
i

G

1

u

∧

satisfying the following conditions:

1. m is associative, i.e. the following commutes:

(G×G)×G
∼=

> G× (G×G)

G×G

m× 1

∨

G×G

1×m

∨

@
@

@
@

@
m

R 	�
�

�
�

�

m

G

where ∼= is the canonical associativity iso for products.

2. u is a unit for m, i.e. both triangles in the following commute:

G
〈u, 1G〉

> G×G

@
@

@
@

@
1G

R

G×G

〈1G, u〉

∨

m
> G

m

∨

where we write u for the “constant arrow” u! : G
!
→ 1

u
→ G.
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3. i is an inverse with respect to m, i.e. both sides of this commute:

G×G <
∆

G
∆

> G×G

G×G

1G × i

∨

m
> G

u

∨

<

m
G×G

i× 1G

∨

where ∆ = 〈1G, 1G〉.

Note that the requirement that these diagrams commute is equivalent to
the more familiar condition that, for all (generalized) elements,

x, y, z : Z → G,

the following equations hold:

m(m(x, y), z) = m(x,m(y, z))

m(x, u) = x = m(u, x)

m(x, ix) = u = m(ix, x)

Definition 4.2. A homomorphism h : G→ H of groups in C consists of an
arrow in C,

h : G→ H

such that:

1. h preserves m:

G×G
h× h

> H ×H

G

m

∨

h
>H

m

∨
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2. h preserves u:

G
h

>H

�
�

�
�

�

u

�

1

u

∧

3. h preserves i:

G
h

>H

G

i

∨

h
>H

i

∨

With the evident identities and composites, we thus have a category of groups
in C, denoted:

Group(C)

Example 4.3. The idea of a group in a category captures the familiar notion
of a group with additional structure:

• A group in the usual sense is a group in the category Sets.

• A topological group is a group in Top, the category of topological
spaces.

• A (partially) ordered group is a group in the category Pos of posets (in
this case the inverse operation is usually required to be order-reversing,
i.e. of the form i : Gop → G).

For example, the real numbers R under addition are a topological and an
ordered group, since the operations of addition x+y and additive inverse −x
are continuous and order-preserving (resp. reversing). They are a topological
“semi-group” under multiplication x ·y as well, but the multiplicative inverse
operation 1/x is not continuous (or even defined!) at 0.
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In logical terms, according to this point of view one can “model the
theory of groups” in any category with finite products, not just Sets. Of
course the same is true for other theories – like monoids and rings – given by
operations and equations. Thus for instance one can also define the notion
of a group in the lambda-calculus, since the category of types of the lambda-
calculus also has finite products. Theories involving other logical operations
like quantifiers can be modeled in categories having more structure than just
finite products. Here we have a glimpse of so called categorical semantics.
Such semantics can be useful for theories that are not complete with respect
to models in Sets, such as certain theories in intuitionistic logic.

4.2 The category of groups

Let G and H be groups (in Sets), and let

h : G→ H

be a group homomorphism. The kernel of h is defined by:

ker(h) = {g ∈ G | h(g) = u} > G
h

>

u
>H

where, again, we write u : G→ H for the constant homomorphism

u! = G
!
→ 1

u
→ H

We have already seen that this specification makes the above an equalizer
diagram.

Observe that ker(h) is a subgroup. Indeed, it is a normal subgroup, in the
sense that for any k ∈ ker(h), we have (using multiplicative notation):

g · k · g−1 ∈ ker(h) for all g ∈ G.

Now if N
i

֌ G is any normal subgroup, we can construct the coequalizer

N
i

>

u
> G

π
> G/N
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sending g ∈ G to u iff g ∈ N (“killing off N”), as follows: the elements of
G/N are the “cosets of N ,” i.e. equivalence classes of the form [g] for all
g ∈ G, where we define:

g ∼ h iff g · h−1 ∈ N .

(Prove that this is an equivalence relation!) The multiplication on the factor
group G/N is then given by:

[g] · [g′] = [g · g′],

which is well defined since N is normal (proof!).
Let’s show that the diagram above really is a coequalizer. First, it’s clear

that
π ◦ i = π ◦ u!,

since n · u = n implies [n] = [u]. Suppose we have f : G→ H killing N , i.e.
f(n) = u for all n ∈ N . We then propose a “factorization” f̄ , as indicated
in:

G
f

>H

..
..
..
..
..
..
..

f̄

�

G/N

π

∨

to be defined by:
f̄ [g] = f(g).

This will be well defined if x ∼ y implies f(x) = f(y). But since x ∼ y
implies f(x · y−1) = u, we have:

f(x) = f(x · y−1 · y) = f(x · y−1) · f(y) = u · f(y) = f(y).

Moreover, f̄ is unique with πf̄ = f , since π is epic. Thus we’ve shown most
of the following classical Homomorphism Theorem for Groups:

Theorem 4.4. Every group homomorphism h : G→ H has a kernel ker(h) =
h−1(u), which is a normal subgroup of G with the property that, for any nor-
mal subgroup N ⊆ G:

N ⊆ ker(h)
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iff there is a (necessarily unique) homomorphism h̄ : G/N → H with h̄ ◦π =
h, as indicated in:

G
h

> H

..
..
..
..
..
..
..

h̄

�

G/N

π

∨

Proof. It only remains to show that if such a factorization h̄ exists, then
N ⊆ ker(h). But this is clear, since π(N) = {[uG]}. So h(n) = h̄π(n) =
h̄([n]) = uH .

Finally, putting N = ker(h) in the theorem and taking any [x], [y] ∈
G/ker(h), we have

h̄[x] = h̄[y] ⇒ h(x) = h(y)

⇒ h(xy−1) = u

⇒ xy−1 ∈ ker(h)

⇒ x ∼ y

⇒ [x] = [y].

Thus h̄ is injective, and we have:

Corollary 4.5. Every group homomorphism h : G→ H factors as a quotient
followed by an injective homomorphism,

G
h

> H

�
�

�
�

�

h̄

�

G/ ker h

π

∨

Thus h̄ : G/ker(h)
∼
→ im(h) ⊆ H is an isomorphism onto the subgroup im(h)

that is the image of h.
In particular, therefore, a homomorphism h is injective if and only if its

kernel is “trivial”, in the sense that ker(h) = {u}.
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4.3 Groups as categories

First, let us recall that a group is a category. In particular, a group is a
category with one object, in which every arrow is an iso.

If G and H are groups, regarded as categories, then we can consider
arbitrary functors between them

f : G→ H.

It is easy to see that a functor between groups is exactly the same thing as
a group homomorphism.

What is a functor R : G→ C from a group G to another category C that
is not necessarily a group? If C is the category of vector spaces and linear
transformations, then such a functor is just what the group theorist calls a
“linear representation” of G. In general, such a functor R : G → C may be
regarded as a representation of G in C.

We will now generalize the notions of kernel of a homomorphism, and
quotient or factor group by a normal subgroup, from groups to arbitrary cat-
egories, and then give the analogous homomorphism theorem for categories.

Definition 4.6. A congruence on a category C is an equivalence relation
f ∼ g on arrows such that:

1. f ∼ g implies dom(f) = dom(g) and cod(f) = cod(g),

•
f

>

g
> •

2. f ∼ g implies bfa ∼ bga for all arrows a : A → X and b : Y → B,
where dom(f) = X = dom(g) and cod(f) = Y = cod(g),

•
a

> •
f

>

g
> •

b
> •

Let ∼ be a congruence on the category C, and define the congruence
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category C∼ by:

(C∼)0 = C0

(C∼)1 = {〈f, g〉|f ∼ g}
∼

1C = 〈1C , 1C〉

〈f ′, g′〉 ◦ 〈f, g〉 = 〈f ′f, g′g〉

One easily checks that this composition is well-defined, using the congruence
conditions.

There are two evident projection functors,

C∼
p1

>

p2

> C

We build the quotient category C/∼ as follows:

(C/∼)0 = C0

(C/∼)1 = (C1)/∼

The arrows have the form [f ] where f ∈ C1, and we can put 1[C] = [1C ], and
[g] ◦ [f ] = [g ◦ f ], as is easily checked, again using the congruence conditions.

There is an evident quotient functor π : C → C/∼. It then makes the
following a coequalizer of categories:

C∼
p1

>

p2

> C
π

> C/∼

This is proved much as for groups.
A homework problem shows how to use this construction to make coequal-

izers for certain functors. Let us show how to use it to prove an analogous
“homomorphism theorem for categories”. Suppose we have categories C and
D and a functor,

F : C→ D.

Then F determines a congruence ∼F on C by setting:

f ∼F g iff dom(f) = dom(g), cod(f) = cod(g), F (f) = F (g).

That this is a congruence is easily checked.
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Let is write:

ker(F ) = C∼F >
> C

for the congruence category, and call this the kernel category of F .
The quotient category,

C/∼F ,

then has the following UMP:

Theorem 4.7. Every functor F : C → D has a kernel category ker(F );
determined by a congruence ∼F on C, such that given any congruence ∼ on
C one has:

f ∼ g ⇒ f ∼F g

if and only if there is a factorization F̃ : C/∼ −→ D, as indicated in:

C
F

> D

..
..
..
..
..
..
..

F̃

�

C/ ∼

π

∨

Just as in the case of groups, applying the theorem to the case C∼ =
ker(F ) gives a factorization theorem:

Corollary 4.8. Every functor F : C→ D factors as F = F̃ ◦ π,

C
F

> D

�
�

�
�

�

F̃

�

C/ ker(F )

π

∨

whereπ is bijective on objects and surjective on Hom-sets, and F̃ is injective
on Hom-sets (i.e. “ faithful”):

F̃A,B : Hom(A,B) ֌ Hom(FA, FB) for all A,B ∈ C/ ker(F )
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4.4 Finitely presented categories

Finally, let us consider categories presented by generators and relations.
We begin with the free category C(G) on some finite graph G, and then

consider a finite set Σ of relations of the form:

(g1 ◦ . . . ◦ gn) = (g′1 ◦ . . . ◦ g
′
m)

with all gi ∈ G, and dom(gn) = dom(g′m) and cod(g1) = cod(g′1). Such
a relation identifies two “paths” in C(G) with the same “endpoints” and
“direction”. Next, let ∼Σ be the smallest congruence ∼ on C such that
f ∼ f ′ for each equation g = g′ in Σ. Such a congruence exists simply because
the intersection of a family of congruences is again a congruence. Taking the
quotient by this congruence, we have a notion of a finitely presented category,

C(G,Σ) = C(G)/∼Σ ,

This is completely analogous to the notion of a finite presentation for groups,
and indeed specializes to that notion in the case of a graph with only one
vertex. The UMP of C(G,Σ) is then an obvious variant of that already given
for groups.

Specifically, in C(G,Σ) there is a “diagram of type G,” i.e. a graph ho-
momorphism i : G → |C(G,Σ)|, satisfying all the conditions i(g) = i(g′),
for all g = g′ ∈ Σ. Moreover, given any category D with a diagram of type
G, say h : G → |D|, that satisfies all the conditions h(g) = h(g′), for all
g = g′ ∈ Σ, there is a unique functor h̄ : C(G,Σ)→ D with |h̄| ◦ i = h. The
reader should draw the associated diagram of graphs and categories.

Just as in the case of presentations of groups, one can describe the con-
struction of C(G,Σ) as a coequalizer for two functors.

Indeed, suppose we have arrows f, f ′ ∈ C. Take the least congruence ∼
on C with f ∼ f ′. Consider the diagram:

C(2)
f

>

f ′
> C

q
> C/∼

where 2 is the graph with two vertices and an edge between them, f and f ′

are the unique functors taking the generating edge to the arrows by the same
names, and q is the canonical functor to the quotient category. Then q is a
coequalizer of f and f ′. To show this, take any d : C→ D with

df = df ′.
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Since C(2) is free on ·
x
→ ·, and f(x) = f and f ′(x) = f ′, we have:

d(f) = d(f(x)) = d(f ′(x)) = d(f ′).

Thus 〈f, f ′〉 ∈ ker(d), so ∼⊆ ker(d), (since ∼ is minimal with f ∼ f ′). So
there is a functor d̄ : C/∼→ D such that d = d̄ ◦ q, by the homomorphism
theorem.

Example 4.9. The category with two uniquely isomorphic objects is not free
on any graph, since it’s finite, but has “loops” (cycles). But it is finitely
presented with graph

A
f

>
<

g
B

and relations
gf = 1A, fg = 1B.

Similarly, there are finitely presented categories with just one non-identity
arrow f : · → · and either

f ◦ f = 1, or f ◦ f = f

In the first case we have the group Z/2Z. In the second case an “idempotent”
(but not a group).

Indeed, any of the cyclic groups

Zn ∼= Z/Zn

occur in this way, with the graph:

⋆
f

> ⋆

and the relation
fn = 1.
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4.5 Exercises

1. Regarding a group G as a category with one object and every arrow an
isomorphism, show that a categorical congruence ∼ on G is the same
thing as (the equivalence relation on G determined by) a normal sub-
group N ⊆ G, i.e. show that the two kinds of things are in isomorphic
correspondence.

Show further that the quotient category G/ ∼ and the factor group
G/N coincide. Conclude that the homomorphism theorem for groups
is a special case of the one for categories.

2. Consider the definition of a group in a category as applied to the cat-
egory Sets/I of sets sliced over a set I. Show that such a group G
determines an I-indexed family of (ordinary) groups Gi by setting
Gi = G−1(i) for each i ∈ I. Show that this determines a functor
Groups(Sets/I) → GroupsI into the category of I-indexed families
of groups and I-indexed families of homomorphisms.

3. Give four different presentations by generators and relations of the
category 3, pictured:

1 > 2

@
@

@
@

@R

3
∨

Is 3 free?

4. Given a congruence ∼ on a category C and arrows in C as pictured
below,

A
f

>

f ′
> B

g
>

g′
> C

show that f ∼ f ′ and g ∼ g′ implies g ◦ f ∼ g′ ◦ f ′.
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5. * Given functors F,G : C → D such that for all C ∈ C, FC = GC,
define a congruence on D by the condition:

f ∼ g iff dom(f) = dom(g)

& cod(f) = cod(g)

& ∀E, H : D→ E. HF = HG⇒ H(f) = H(g)

Prove that this is a congruence.

Prove that C/ ∼ is the coequalizer of F and G.



Chapter 5

Limits and colimits

In this chapter we briefly discuss some topics relating to the definitions that
we already have, rather than pushing on to new ones. This is partly in order
to see how these are used, but also because we’ll need this material soon
enough. After that, and after a brief look at one more elementary notion, we
shall go on to what may be called “higher category theory”.

5.1 Subobjects

We’ve seen that every subset U ⊆ X of a set X occurs as an equalizer, and
that equalizers are always monomorphisms. So it’s natural to regard monos
as generalized subsets. That is, a mono in Groups can be regarded as a
subgroup, a mono in Top as a subspace, and so on.

The rough idea is this: given a monomorphism,

m : M ֌ X

in a category G of structured sets of some sort — call them “gadgets” — the
image subset

{m(y) | y ∈M} ⊆ X

which may be written m(M), is often a sub-gadget of X to which M is
isomorphic via m,

m : M
∼
→ m(M) ⊆ X .

More generally, we can think of the mono m : M ֌ X itself as determining
a “part” of X even in categories that don’t have underlying functions.

93
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Definition 5.1. A subobject of an object X in a category C is a mono

m : M ֌ X.

Given subobjects m,m′ of X, a morphism f : m→ m′ is an arrow in C/X,
as in:

M
f

>M ′

@
@

@
@

@
m

R

X

m′

∨

Thus we have a category,
SubC(X)

of subobjects of X in C.
In this definition, since m′ is monic, there is at most one f as in the dia-

gram above, so that SubC(X) is a preorder category. We define the relation
of inclusion of subobjects by:

m ⊆ m′ iff there exists some f : m→ m′

Finally, we say that m and m′ are equivalent, written m ≡ m′, if and only
if they are isomorphic as subobjects, i.e. m ⊆ m′ and m′ ⊆ m. This holds
just if there are f and f ′ making both triangles below commute

M <
f ′

f
>M

′

@
@

@
@

@
m

R

X

m′

∨

Observe that, in the above diagram, m = m′f = mf ′f , and since m is
monic, f ′f = 1M and similarly ff ′ = 1M ′. So M ∼= M ′ via f . Thus we see
that equivalent subobjects have isomorphic domains.

Remark 5.2. We sometimes abuse notation and language by calling M the
subobject when the mono m : M ֌ X is clear.
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Note that if M ⊆M ′ then the arrow f which makes this so in,

M
f

>M ′

@
@

@
@

@R

X
∨

is also monic, so also M is a subobject of M ′. In fact, we have a functor

i∗ : Sub(M ′)→ Sub(X)

defined by composition (since the composite of monos is monic).
In terms of generalized elements of an object X,

z : Z → X

one can define a local membership relation,

z ∈X M

between these and subobjects m : M ֌ X by:

z ∈X M iff there exists f : Z → M such that z = mf

Since m is monic, if z factors through it then it does so uniquely. So this is
naturally a relation.

Example 5.3. An equalizer

E > A
f

>

g
> B

is a subobject of A with the property

z ∈A E iff f(z) = g(z)

Thus, we can regard E as the subobject of generalized elements z : Z → A
such that f(z) = g(z):

E = {z ∈ Z | f(z) = g(z)} ⊆ A

just as was the case for global elements in Sets. In categorical logic, one
develops a way of making this intuition even more precise by giving a calculus
of such subobjects.
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Remark 5.4. It is often convenient to pass from the preorder

SubC(X)

to the poset given by factoring out the equivalence relation “≡”. Then a
subobject is an equivalence class of monos under mutual inclusion.

In Sets, under this notion of subobject, one then has an isomorphism,

SubSets(X) ∼= P (X)

i.e. every subobject is represented by a unique subset. We shall use both no-
tions of subobject, making clear when monos are intended, and when equiv-
alence classes thereof are intended.

5.2 Pullbacks

The notion of a pullback, like that of a product, is one that comes up very
often in mathematics and logic. It is a generalization of both intersection
and inverse image.

We begin with the definition:

Definition 5.5. In any category C, a pullback of arrows f, g with cod(f) =
cod(g)

B

A
f

> C

g

∨

consists of arrows

P
p2

> B

A

p1

∨
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such that fp1 = gp2, and universal with this property. I.e. given any z1 :
Z → A and z2 : Z → B with fz1 = gz2, there exists a unique

u : Z → P

with z1 = p1u and z2 = p2u.

Here’s the picture:

Z
......

u ......R

HHHHHHHHHHHH

z2

j

A
A
A
A
A
A
A
A
A
A
A
A
A

z1

U

P
p2

> B

A

p1

∨

f
> C

g

∨

Remark 5.6. One sometimes uses product-style notation for pullbacks:

Z

@
@
〈z1, z2〉

@
@R

HHHHHHHHHHHHj

A
A
A
A
A
A
A
A
A
A
A
A
AU

A×C B
p2

> B

A

p1

∨

f
> C

g

∨

Pullbacks are clearly unique up to isomorphism since they’re given by an
UMP. Here this means that given two pullbacks of a given pair of arrows,
the uniquely determined maps between the pullbacks are mutually inverse.
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In terms of generalized elements, any z ∈ A×CB, can be written uniquely
as z = 〈z1, z2〉 with fz1 = gz2.

Z

@
@
z

@
@R

A
A
A
A
A
A
A
A
A
A
A
A
A

z1

U

HHHHHHHHHHHH

z2

j
A×C B

p2

> B

A

p1

∨

f
> C

g

∨

This makes

A×C B = {〈z1, z2〉 ∈ A×B | fz1 = gz2}

look like a subobject of A×B, determined as an equalizer of f ◦π1 and g◦π2.
In fact, this is so:

Proposition 5.7. In a category with products and equalizers, given a corner
of arrows:

B

A
f

> C

g

∨
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Consider the diagram

E

@@@
e
@@@R

HHHHHHHHHHHHH

p2

j

A
A
A
A
A
A
A
A
A
A
A
A
A

p1

U

A×B
π2

> B

A

π1

∨

f
> C

g

∨

in which e is an equalizer of fπ1 and gπ2 and p1 = π1e, p2 = π2e. Then
E, p1, p2 is a pullback of f and g. Conversely, if E, p1, p2 are given as such
a pullback, then the arrow

e = 〈p1, p2〉 : E → A×B

is an equalizer of fπ1 and gπ2.

Proof. Take

Z
z2

> B

A

z1

∨

with fz1 = gz2. We have 〈z1, z2〉 : Z → A× B so

fπ1〈z1, z2〉 = gπ2〈z1, z2〉.

Thus, there is a u : Z → E to the equalizer with eu = 〈z1, z2〉 then

p1u = π1eu = π1〈z1, z2〉 = z1

and
p2u = π2eu = π2〈z1, z2〉 = z2.

If also u′ : Z → E has piu
′ = zi, i = 1, 2, then πieu

′ = zi so eu′ = 〈z1, z2〉 = eu
whence u′ = u since e in monic. The converse is similar.
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Corollary 5.8. If a category C has binary products and equalizers, then it
has pullbacks.

The foregoing gives an explicit construction of a pullback in Sets as a
subset of the product:

{〈a, b〉 | fa = gb} = A×C B →֒ A× B

Example 5.9. In Sets, take a function f : A→ B and a subset V ⊆ B. Let,
as usual,

f−1(V ) = {a ∈ A | f(a) ∈ V } ⊆ A

and consider

f−1(V )
f̄

> V

A

j

∨

f
> B

i

∨

where i and j are the canonical inclusions and f̄ is the evident factorization
of the restriction of f to f−1(V ) (since a ∈ f−1(V )⇒ f(a) ∈ V ).

This diagram is a pullback (observe that z ∈ f−1(V ) ⇔ fz ∈ V for all
z : Z → A). Thus, the inverse image

f−1(V ) ⊆ A

is determined uniquely up to isomorphism as a pullback.

As suggested by the previous example, we can use pullbacks to define
inverse images in categories other than Sets. Indeed, given a pullback in any
category:

A×B M >M

A

m′

∨

f
> B

m

∨
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if m monic, then m′ is monic. (Exercise!)

Thus we see that, for fixed f : A→ B, taking pullbacks induces a map

f−1 : Sub(B)→ Sub(A)

m 7→ m′.

We’ll show that f−1 also respects equivalence of subobjects:

M ≡ N ⇒ f−1(M) = f−1(N) ,

by showing that f−1 is a functor; that is our next goal.

5.3 Properties of pullbacks

We start with the following simple lemma, which seems to come up all the
time.

Lemma 5.10. (Two-pullbacks) Consider the commutative diagram below in
a category with pullbacks:

F
f ′

> E
g′

>D

A

h′′

∨

f
> B

h′

∨

g
> C

h

∨

1. If the two squares are pullbacks, so is the outer rectangle. Thus,

A×B (B ×C D) ∼= A×C D.

2. If the right square and the outer rectangle are pullbacks, so is the left
square.

Proof. Diagram chase.
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Corollary 5.11. The pullback of a commutative triangle is a commutative
triangle. Specifically, given a commutative triangle as on the right end of the
following “prism diagram”:

A′

hα
> A

..............

γ′

R

@
@

@
@

@

γ

R

B′

hβ
> B

	�
�

�
�

�

β ′

	�
�

�
�

�

β

C ′

α′

∨

h
> C

α

∨

for any h : C ′ → C, if one can form the pullbacks α′ and β ′ as on the left end,
then there exists a unique γ′ as indicated, making the left end a commutative
triangle, and the upper face a commutative rectangle, and indeed a pullback.

Proof. Apply the two-pullbacks lemma.

Proposition 5.12. Pullback is a functor. I.e. for fixed h : C ′ → C in a
category C with pullbacks, there is a functor

h∗ : C/C → C/C ′

defined by

(A
α
→ C) 7→ (C ′ ×C A

α′

→ C ′)

where α′ is the pullback of α along h, and the effect on an arrow γ : α → β
is given by the foregoing corollary.

Proof. One must check that

h∗(1X) = 1h∗X

and
h∗(g ◦ f) = h∗(g) ◦ h∗(f)
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These can easily be verified by repeated applications of the two-pullbacks
lemma. E.g. for the first condition, consider

A′

h′
> A

A′

1A′

∨

h′
> A

1A

∨

C ′

α′

∨

h
> C

α

∨

if the lower square is a pullback, then plainly so is the outer rectangle, whence
the upper square is, too, and we have:

h∗1X = 1X′ = 1h∗X .

Corollary 5.13. Let C be a category with pullbacks. For any arrow f : A→
B in C we have the following diagram of categories and functors:

Sub(A) <
f−1

Sub(B)

C/A
∨

<

f ∗
C/B

∨

This commutes simply because f−1 is defined to be the restriction of f ∗ to
the subcategory Sub(B). Thus in particular, f−1 is functorial:

M ⊆ N ⇒ f−1(M) ⊆ f−1(N)

It follows that M ≡ N implies f−1(M) ≡ f−1(N), so that f−1 is also defined
on equivalence classes,

f−1/≡ : Sub(B)/≡ −→ Sub(A)/≡
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Example 5.14. Consider a pullback in Sets:

E
f ′

> B

A

g′

∨

f
> C

g

∨

we saw that
E = {〈a, b〉 | f(a) = g(b)}.

can be constructed as an equalizer:

E
〈f ′, g′〉

> A×B
fπ1

>

gπ2

> C

Now let B = 1, C = 2 = {⊤,⊥}, and g = ⊤ : 1→ 2. Then the equalizer

E > A× 1
fπ1

>

⊤π2

> 2

is how we already described the “extension” of the “propositional function”
f : A → 2. Thus and we can rephrase the correspondence between subsets
U ⊆ A and their characteristic functions χU : A→ 2 in terms of pullbacks:

U
!

> 1

A
∨

χU
> 2

⊤

∨

Precisely, the isomorphism,
2A ∼= P (A)

given by taking a function ϕ : A→ 2 to its “extension”:

Vϕ = {x ∈ A | ϕ(x) = ⊤}
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can be described as a pullback:

Vϕ = {x ∈ A | ϕ(x) = ⊤} = ϕ−1(⊤)

Now suppose we have any function

f : B → A

and consider the induced inverse image operation,

f−1 : P (A)→ P (B)

given by pullback, as in the example above. Taking some extension Vϕ ⊆ A,
consider the two-pullback diagram:

f−1(Vϕ) > Vϕ > 1

B
∨

f
> A

∨

ϕ
> 2

⊤

∨

We therefore have (by the two-pullbacks lemma):

f−1(Vϕ) = f−1(ϕ−1(⊤)) = (ϕf)−1(⊤) = Vϕf

Which from a logical point of view expresses the fact that the substitution
of a term f for the variable x in the propositional function ϕ is modeled by
taking the pullback along f of the corresponding extension:

f−1({x ∈ A | ϕ(x) = ⊤}) = {y ∈ B | ϕ(f(y)) = ⊤}

Note that we have shown that for any function f : B → A the following
square commutes,

2A
∼=

> P (A)

2B

2f

∨

∼=
> P (B)

f−1

∨
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where 2f : 2A → 2B is precomposition 2f(g) = g ◦ f . In a situation like this,
one says that the isomorphism,

2A ∼= P (A)

is natural in A, which is obviously a much stronger condition than just having
isomorphisms at each object A. We will consider such “naturality” system-
atically later. It was in fact one of the phenomena that originally gave rise
to category theory.

Example 5.15. Let I be an index set, and consider an I-indexed family of
sets:

(Ai)i∈I

Given any function α : J → I, there is a J-indexed family,

(Aα(j))j∈J ,

obtained by “reindexing along α”. This reindexing can also be described as
a pullback. Specifically, for each set Ai take the constant, i-valued function
pi : Ai → I, and consider the induced map on the coproduct,

p = [pi] :
∐

i∈I

Ai → I .

The reindexed family (Aα(j))j∈J can be obtained by taking a pullback along
α, as indicated in the following diagram:

∐

j∈J

Aα(j) >
∐

i∈I

Ai

J

q

∨

α
> I

p

∨

where q is the indexing projection for (Aα(j))j∈J analogous to p. In other
words, we have:

J ×I (
∐

i∈I

Ai) ∼=
∐

j∈J

Aα(j)

The reader should work out the details as an instructive exercise.
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5.4 Limits

We’ve already seen that the notions of product, equalizer, and pullback are
not independent; the precise relation between them is this:

Proposition 5.16. A category has finite products and equalizers iff it has
pullbacks and a terminal object.

Proof. The “only if” direction has already been done. For the other direction,
suppose C has pullbacks and a terminal object 1.

• For any objects A,B we clearly have A×B ∼= A×1 B, as indicated in
the following:

A× B > B

A
∨

> 1
∨

• For any arrows f, g : A → B, the equalizer e : E → A is constructed
as the following pullback

E
h

> B

A

e

∨

〈f, g〉
> B × B

∆ = 〈1B, 1B〉

∨

Intuitively, we are taking,

E = {(a, b) | 〈f, g〉(a) = ∆b}

where 〈f, g〉(a) = 〈fa, ga〉 and ∆(b) = 〈b, b〉. So,

E = {〈a, b〉 | f(a) = b = g(a)}
∼= {a | f(a) = g(a)}
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which is just what we want. An easy diagram chase shows that

E
e

> A
f

>

g
> B

is indeed an equalizer.

Product, terminal object, pullback, and equalizer, are all special cases of
the general notion of a limit, which we’ll consider now. First, we need some
preliminary definitions:

Definition 5.17. Let J and C be categories. A diagram of type J in C is a
functor,

D : J→ C.

We’ll write the objects in the “index category” J lower case, i, j, ... and the
values of the functor D : J→ C in the form Di, Dj, etc.

A cone to a diagram D consists of an object C in C and a family of
arrows in C,

cj : C → Dj

one for each object j ∈ J , such that for each arrow α : i → j in J, the
following triangle commutes.

C
cj

>Dj

�
�

�
�

�

Dα

�

Di

ci

∨

A morphism of cones,

ϑ : (C, cj)→ (C ′, c′j)

is an arrow ϑ in C making each triangle,

C
ϑ

> C ′

@
@

@
@

@
cj

R

Dj

c′j

∨
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commute. I.e. such that cj = c′j ◦ ϑ for all j ∈ J. Thus we have an apparent
category:

Cone(D)

of cones to D.

We are here thinking of the diagram D as a “picture of J in C”. A cone
to such a diagram D is then imagined as a many-sided pyramid over the
“base” D, and a morphism of cones is an arrow between the apexes of such
pyramids (The reader should draw some pictures at this point!)

Definition 5.18. A limit for a diagram D : J → C is a terminal object in
Cone(D). A finite limit is a limit for a diagram on a finite index category J.

We often denote a limit in the form,

pi : lim←−
j

Dj → Di

Spelling out the definition, the limit of a diagram D has the following UMP:
given any cone (C, cj) to D, there is a unique arrow u : C → lim

←−j
Dj such

that for all j,
pj ◦ u = cj

Example 5.19. Take J = {1, 2} the discrete category with two objects and no
non-identity arrows. A diagram D : J→ C is a pair of objects D1, D2 ∈ C.
A cone on D is an object of C equipped with arrows

D1 <
c1

C
c2

> D2

And a limit of D is a terminal such cone, i.e. a product in C of D1 and D2,

D1 <
p1

D1 ×D2

p2
> D2

Thus, in this case,
lim
←−
j

Dj
∼= D1 ×D2

Example 5.20. Take J to be the category

·
α

>

β
> ·
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A diagram of type J looks like

D1

Dα
>

Dβ

>D2

and a cone is a pair of arrows

D1

Dα
>

Dβ

>D2

�
�

�
�

�

c2

�

C

c1

∧

such that Dαc1 = c2 and Dβc1 = c2, thus such that Dαc1 = Dβc1. A limit
for D is therefore an equalizer for Dα, Dβ .

Example 5.21. If J is empty, there’s just one diagram D : J→ C, and a limit
for it is thus a terminal object in C,

lim←−
j∈0

Dj
∼= 1

Example 5.22. If J is the finite category:

·

· > ·
∨

we see that a limit for a diagram of the form:

B

A
f

> C

g

∨

is just a pullback of f and g,

lim←−
j

Dj
∼= A×C B
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Thus we’ve shown half of the following:

Proposition 5.23. A category has all finite limits iff it has finite products
and equalizers (resp. pullbacks and a terminal object by the last proposition).

Here a category C is said to have all finite limits if every finite diagram
D : J→ C in C has a limit in C.

Proof. We need to show that any finite limit can be constructed from finite
products and equalizers. Take a finite diagram,

D : J→ C.

Consider the finite products:

∏

i∈J0

Di and
∏

(α:i→j)∈J1

Dj

Define two arrows:

∏

i

Di

φ
>

ψ
>

∏

α:i→j

Dj

by taking their composites with the projections πα from the second product
to be, respectively:

πα ◦ φ = φα = πcod(α)

πα ◦ ψ = ψα = Dα ◦ πdom(α)

where πcod(α) and πdom(α) are projections from the first product.
Now we take the equalizer

E
e

>
∏

i

Di

φ
>

ψ
>

∏

α:i→j

Dj

We will show that (E, ei) is a limit for D, where ei = πi ◦ e. To that end,
take any arrow c : C →

∏
iDi, and write c = 〈ci〉 for ci = πi ◦ c. Observe

that the family of arrows (ci : C → Di) is a cone to D if and only iff φc = ψc.
Indeed,

φ〈ci〉 = ψ〈ci〉
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iff for all α,
παφ〈ci〉 = παψ〈ci〉

But,
παφ〈ci〉 = φα〈ci〉 = πcod(α)〈ci〉 = cj

and
παψ〈ci〉 = ψα〈ci〉 = Dα ◦ πdom(α)〈ci〉 = Dα ◦ ci

Whence φc = ψc iff for all α : i→ j we have cj = Dα◦ci thus iff (ci : C → Di)
is a cone, as claimed. It follows that (E, ei) is a cone, and that any cone
(ci : C → Di) gives an arrow 〈ci〉 : C →

∏
iDi with φ〈ci〉 = ψ〈ci〉, thus there

is a unique factorization u : C → E of 〈ci〉 through E, which is clearly a
morphism of cones.

The same proof yields the following:

Corollary 5.24. A category has all limits of some cardinality iff it has all
equalizers and products of that cardinality, where C has limits (resp. prod-
ucts) of cardinality κ iff C has a limit for every diagram D : J → C where
card(J1) ≤ κ (resp. C has all products of κ many objects).

The notions cones and limits of course dualize to give those of cocones
and colimits. One then has the following dual theorem.

Theorem 5.25. A category C has finite colimits iff it has finite coproducts
and coequalizers (resp. iff it has pushouts and an initial object). C has all
colimits of size κ iff it has coequalizers and coproducts of size κ.

5.5 Preservation of limits

Here is an application of limits by products and equalizers.

Definition 5.26. A functor F : C → D is said to preserve limits of type
J if, whenever pj : L → Dj is a limit for a diagram D : J → C, the cone
Fpj : FL→ FDj is then a limit for the diagram FD : J→ D. Briefly:

F (lim←−Dj) ∼= lim←−F (Dj).

A functor that preserves all limits is said to be continuous.
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For example, let C be locally small and recall the representable functor,

HomC(C,−) : C→ Sets

for any object C ∈ C, taking f : X → Y to

f∗ : Hom(C,X)→ Hom(C, Y )

where f∗(g : C → X) = f ◦ g.

Proposition 5.27. Representable functors preserve all limits.

It suffices to show that Hom(C,−) preserves products and equalizers.

• Suppose C has a terminal object 1. Then,

HomC(C, 1) = {!C} ∼= 1.

• Consider a binary product X × Y in C. Then we already know that,

Hom(C,X × Y ) ∼= Hom(C,X)× Hom(C, Y )

by composing any f : C → X × Y with the two product projections
p1 : X × Y → X, and p2 : X × Y → Y .

• For arbitrary products
∏

i∈I Xi one has analogously:

HomC(C,
∏

i

Xi) ∼=
∏

i

HomC(C,Xi)

• Given an equalizer in C,

E
e

> X
f

>

g
> Y

consider the resulting diagram,

Hom(C,E)
e∗
> Hom(C,X)

f∗
>

g∗
> Hom(C, Y )

To show this is an equalizer in Sets, let h : C → X ∈ Hom(C,X) with
f∗h = g∗h. Then fh = gh, so there is a unique u : C → E such that
eu = h. Thus we have a unique u ∈ Hom(C,E) with e∗u = eu = h. So
e∗ : Hom(C,E)→ Hom(C,X) is indeed the equalizer of f∗ and g∗.
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Definition 5.28. A functor of the form F : Cop → D is called a con-
travariant functor on C. Explicitly, such a functor takes f : A → B to
F (f) : F (B)→ F (A) and F (g ◦ f) = F (f) ◦ F (g).

A typical example of a contravariant functor is a representable functor of
the form,

HomC(−, C) : Cop → Sets

for any C ∈ C (where C is any locally small category). Such a contravariant
representable functor takes f : X → Y to,

f ∗ : Hom(Y, C)→ Hom(X,C)

by f ∗(g : X → C) = g ◦ f .
The dual version of the foregoing proposition is then this:

Corollary 5.29. Contravariant representable functors map all colimits to
limits.

For example, given a coproduct X + Y in any locally small category C,
there is a canonical isomorphism,

Hom(X + Y, C) ∼= Hom(X,C)×Hom(Y, C) (5.1)

given by precomposing with the two coproduct inclusions.
From an example in section 2.3 we can therefore conclude that the ultra-

filters in a coproduct A+B of boolean algebras correspond exactly to pairs of
ultrafilters (U, V ), with U in A and V in B. This follows because we showed
there that the ultrafilter functor Ult : Boolop → Sets is representable,

Ult(B) ∼= HomBool(B, 2)

Another case of the above iso (5.1) is the familiar law of exponents for
sets:

CX+Y ∼= CX × CY

The arithmetical law of exponents km+n = kn · km is actually special case of
this!

Another example of preservation of limits is provided by the description
of reindexing of indexed families of sets as pullback, mentioned in example
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5.15 above. There we showed that for any I-indexed family of sets (Ai)i∈I
and reindexing function α : J → I, there is an isomorphism:

J ×I (
∐

i∈I

Ai) ∼=
∐

j∈J

Aα(j)

But now observe that this says that the pullback functor,

α∗ : Sets/I −→ Sets/J

with,

α∗(p : A→ I) = α∗(p) : J ×I A → J

preserves coproducts. Indeed, for each indexing projection pi : Ai → I we
have:

α∗(Ai) ∼=
∐

j∈α−1(i)

Ai ∼=
∐

j∈α−1(i)

Aα(j)

and therefore:

α∗(
∐

i∈I

Ai) ∼= J ×I (
∐

i∈I

Ai)

∼=
∐

j∈J

Aα(j)

∼=
∐

i∈I

∐

j∈α−1(i)

Aα(j)

∼=
∐

i∈I

α∗(Ai)

5.6 Colimits

Let us briefly discuss some special colimits, since we didn’t really say much
about them in the foregoing section.

First, we consider pushouts in Sets.
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Suppose we have two functions,

A
g

> C

B

f

∨

We can construct the pushout of f and g like this. Start with the coproduct
(disjoint sum):

B > B + C < C

Now identify those elements b ∈ B and c ∈ C such that, for some a ∈ A,

f(a) = b and g(a) = c

That is, we take the equivalence relation ∼ on B + C generated by the
conditions f(a) ∼ g(a) for all a ∈ A.

Then we take the quotient by ∼ to get the pushout:

B +A C ∼= (B + C)/∼

which can be imagined as B placed next to C, with the respective parts that
are images of A overlapping. This construction follows simply by dualizing
the one for pullbacks by products and equalizers.

In general, a colimit for a diagram D : J→ C is of course an initial object
in the category of cocones. Explicitly, a cocone from the base D consists of
an object C (the vertex) and arrows cj : Dj → C for each j ∈ J, such that
for all α : i→ j in J,

cj ◦D(α) = ci

A morphism of cocones f : (C, (cj)) → (C ′, (cj
′)) is an arrow f : C → C ′ in

C such that f ◦ cj = cj
′ for all j ∈ J. An initial cocone is the expected thing:

one that maps uniquely to any other cocone from D.
We write such a colimit in the form:

lim
−→
j∈J

Dj
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Now let us consider some examples of a particular kind of colimit that
comes up quite often. Our first example is what is sometimes called a direct
limit of a sequence of algebraic objects, say groups. A similar construction
will work for any sort of algebras (but non-equational conditions are not
always preserved by direct limits).

Example 5.30. Direct limit of groups. Suppose we’re given a sequence,

G0 −→
g0

G1 −→
g1

G2 −→
g2

. . .

of groups and homomorphisms, and we want a “colimiting” group G∞ with
homomorphisms

un : Gn → G∞

satisfying un+1 ◦ gn = un. Moreover, G∞ should be “universal” with this
property. I think you can see the colimit setup here:

• the index category is the ordinal number ω = (N,≤), regarded as a
poset category,

• the sequence
G0 −→

g0
G1 −→

g1
G2 −→

g2
. . .

is a diagram of type ω in the category Groups,

• the colimiting group is the colimit of the sequence:

G∞
∼= lim−→

n∈ω

Gn

This group always exists, and can be constructed as follows. Begin with
the coproduct (disjoint sum) of sets,

∐

n∈ω

Gn

Then make identifications xn ∼ ym, where xn ∈ Gn and ym ∈ Gm, to ensure
in particular that:

xn ∼ gn(xn)

for all xn ∈ Gn and gn : Gn → Gn+1.
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This means specifically that the elements of G∞ are equivalence classes
of the form,

[xn], xn ∈ Gn

for any n, and [xn] = [ym] iff for some k ≥ m,n,

gn,k(xn) = gm,k(ym) ,

where, generally, if i ≤ j, we define:

gi,j : Gi → . . .→ Gj

by composing consecutive g’s as in gi,j = gj−1 ◦ . . . ◦ gi. The reader can
easily check that this is indeed the equivalence relation generated by all the
conditions xn ∼ gn(xn).

The operations on G∞ are now defined by:

[x] · [y] = [x′ · y′]

where x ∼ x′, y ∼ y′, and x′, y′ ∈ Gn for n sufficiently large. The unit is just
[u0], and we take,

[x]−1 = [x−1] .

One can easily check that these operations are well-defined, and determine a
group structure on G∞, which moreover makes all the evident functions:

un : Gn → G∞ , un(x) = [x]

into homomorphisms.

The universality of G∞ and the un results from the fact that the con-
struction is essentially a colimit in Sets, equipped with an induced group
structure. Indeed, given any group H and homomorphisms hn : Gn → H
with hn+1 ◦ gn = hn define hω : Gω → H by gω([xn]) = gn(xn). This is easily
seen to be well-defined, and indeed a homomorphism. Moreover, it is the
unique function that commutes with all the un.

The fact that the ω-colimitG∞ of groups can be constructed as the colimit
of the underlying sets is a case of a general phenomenon, expressed by saying
that the forgetful functor U : Groups→ Sets “creates ω-colimits”.
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Definition 5.31. A functor F : C → D is said to create limits of type J if
for every diagram C : J→ C and limit pj : L→ FCj in D there is a unique
cone pj : L → Cj in C with F (pj) = pj and F (L) = L, which, furthermore,
is a limit for C. Briefly, every limit in D is the image of a unique cone in C,
which is a limit there. The notion of creating colimits is defined analogously.

In these terms, then we have the following proposition, the remaining
details of which have already been discussed:

Proposition 5.32. The forgetful functor U : Groups → Sets creates ω-
colimits. It also creates all limits.

The same fact holds quite generally for other categories of algebraic ob-
jects, i.e. sets equipped with operations satisfying some equations. Observe
that not all colimits are created in this way. For instance, we have already
seen that the coproduct of abelian groups has their product as underlying
set, G+H ∼= G×H .

Example 5.33. Cumulative hierarchy. Another example of this kind is the
“cumulative hierarchy” construction encountered in set theory. Let us set,

V0 = ∅

V1 = P (∅)

. . .

Vn+1 = P (Vn)

Then there is a sequence of subset inclusions,

∅ = V0 ⊆ V1 ⊆ V2 ⊆ . . .

since, generally, A ⊆ B implies P (A) ⊆ P (B) for any sets A and B. The
colimit of the sequence,

Vω = lim
−→
n

Vn

is called the cumulative hierarchy of rank ω. One can of course continue this
construction through higher ordinals ω + 1, ω + 2, . . ..

More generally, let us start with some set A (of “atoms”), and let:

V0(A) = A
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and then put:

Vn+1(A) = A + P (Vn(A))

There is a sequence V0(A)→ V1(A)→ V2(A)→ . . . as follows. Let

v0 : V0(A) = A→ A+ P (A) = V1(A)

be the left coproduct inclusion. Given vn−1 : Vn−1(A) → Vn(A), let vn :
Vn(A)→ Vn+1(A) be defined by,

vn = 1A + P!(vn−1) : A+ P (Vn−1(A))→ A + P (Vn(A))

where P! denotes the covariant powerset functor, taking a function f : X →
Y to the “image under f” operation P!(f) : P (X)→ P (Y ) defined by taking
U ⊆ X to

P!(f)(U) = {f(u) | u ∈ U} ⊆ Y

The idea behind the sequence is that we start with A, then add all the subsets
of A, then add all the new subsets that can be formed from all those, and so
on. The colimit of the sequence,

Vω(A) = lim−→
n

Vn(A) ,

is called the cumulative hierarchy (of rank ω) over A. Of course, Vω = Vω(∅).
Now suppose we have some function,

f : A→ B

Then there is a map,

Vω(f) : Vω(A)→ Vω(B)

determined by the colimit description of Vω, as indicated in the following
diagram.

V0(A) > V1(A) > V2(A) > . . . > Vω(A)

. . .

V0(B)

f0

∨

> V1(B)

f1

∨

> V2(B)

f2

∨

> . . . > Vω(B)

fω

∨
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Here the fn are defined by:

f0 = f : A→ B

f1 = f + P!(f) : A+ P (A)→ B + P (B)

. . .

fn+1 = f + P!(fn) : A + P (Vn(A))→ B + P (Vn(B))

Since all the squares clearly commute, we have a cocone on the diagram
Vn(A) with vertex Vω(B), and there is thus a unique fω : Vω(A) → Vω(B)
that completes the diagram.

Thus we see that the cumulative hierarchy is functorial.

Example 5.34. ωCPOs. An ωCPO is a poset that is “ω-cocomplete,” meaning
it has all colimits of type ω = (N,≤). Specifically, a poset D is an ωCPO if
for every diagram d : ω → D, i.e. every chain of elements of D,

d0 ≤ d1 ≤ d2 ≤ . . .

we have a colimit dω = lim
−→

dn. This is an element such that:

1. dn ≤ dω for all n ∈ ω

2. for all x ∈ D, if dn ≤ x for all n ∈ ω, then also dω ≤ x.

A monotone map of ωCPOs,

h : D → E

is usually called continuous if it preserves colimits of type ω, i.e.

h(lim
−→

dn) = lim
−→

h(dn)

An application of these notions is the following:

Proposition 5.35. If D is an ωCPO with initial element 0 and

h : D → D

is continuous, then h has a fixed point,

h(x) = x

which, moreover, is least among all fixed points.
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Proof. We use “Newton’s method”, which can be used e.g. to find fixed points
of monotone, continuous functions f : [0, 1] → [0, 1]. Consider the sequence
d : ω → D, defined by

d0 = 0

dn+1 = h(dn)

Since 0 ≤ d0, repeated application of h gives dn ≤ dn+1. Now take the colimit
dω = lim−→n∈ω

dn. Then

h(dω) = h(lim−→
n∈ω

dn)

= lim
−→
n∈ω

h(dn)

= lim−→
n∈ω

dn+1

= dω

The last step follows because the first term d0 = 0 of the sequence is trivial.
Moreover, if x is also a fixed point, h(x) = x, then we have

d0 = 0 ≤ x

d1 = h(0) ≤ h(x) = x

. . .

dn+1 = h(dn) ≤ h(x) = x

So also dω ≤ x, since dω is a colimit.

Finally, here is an example of how (co)limits depend on the ambient
category: we consider colimits of posets and ωCPOs, rather than in them.

Let us define the finite ωCPOs:

ωn = {k ≤ n | k ∈ ω}

then we have continuous inclusion maps:

ω0 → ω1 → ω2 → . . .

In Pos, the colimit exists, and is ω, as can be easily checked. But ω itself
is not ω-complete. Indeed, the sequence:

0 ≤ 1 ≤ 2 ≤ . . .
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has no colimit. So the colimit of the ωn in the category of ωCPOs, if it exists,
must be something else. In fact it is ω + 1:

0 ≤ 1 ≤ 2 ≤ . . . ≤ ω.

For then any bounded sequence has a colimit in the bounded part, and any
unbounded one has ω as colimit
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5.7 Exercises

1. Show that an arrow m : M → C in any category is monic if and only
if the diagram below is a pullback.

M
1M

>M

M

1M

∨

m
> X

m

∨

Conclude that representable functors Hom(C,−) preserve monos.

2. Show that in any category, given a pullback square

M ′ >M

A′

m′

∨

f
> A

m

∨

if m is monic, then so is m′.

3. (Equalizers by pullbacks and products) Show that a category with pull-
backs and products has equalizers as follows: given arrows f, g : A →
B, take the pullback indicated below, where ∆ =< 1B, 1B >:

E > B

A

e

∨

< f, g >
> B × B

∆

∨

Show that e : E → A is the equalizer of f and g.
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4. * (Partial maps) For any category C with pullbacks, define the category
Par(C) of partial maps in C as follows: the objects are the same as
those of C, but an arrow f : A→ B is a pair (|f |, Uf) where Uf ֌ A is
a subobject (an equivalence class of monomorphisms) and |f | : Uf → B
(take a suitably-defined equivalence class of arrows), as indicated in the
diagram:

Uf
|f |

> B

A
∨

∨

Composition of (|f |, Uf) : A → B and (|g|, Ug) : B → C is given
by taking a pullback and then composing to get (|g ◦ f |, |f |∗(Ug), as
suggested by the follow diagram.

|f |∗(Ug) > Ug
|g|

> C

Uf
∨

∨

|f |
> B

∨

∨

A
∨

∨

Check to see that this really does define a category.

5. (Pushouts)

(a) Dualize the definition of a pullback to define the “copullback”
(usually called the “pushout”) of two arrows with common do-
main.
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(b) Indicate how to construct pushouts using coproducts and coequal-
izers (proof “by duality”).



Chapter 6

Exponentials

We have now managed to unify most of the universal mapping properties
that we’ve seen so far with the notion of limits (or colimits). Of course, the
free algebras are an exception to this. In fact, it will turn out that there
is a common source of UMP’s, but it lies somewhat deeper, in the notion
of adjoints, which unify free algebras, limits, and other universals of various
kinds.

Next we’re going to look at one more elementary universal structure,
which is also an example of a universal that’s not a limit. This important
structure is called an “exponential” and it can be thought of as a categorical
notion of a “function space”. As we’ll see it subsumes much more than just
that, however.

6.1 Exponential in a category

Let’s start by considering a function of sets,

f(x, y) : A× B → C

written using variables x over A and y over B. If we now hold a ∈ A fixed,
we have a function

f(a, y) : B → C,

and thus an element
f(a, y) ∈ CB

of the set of all such functions.

127
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Letting a vary over A then gives a map, which I’ll write like this:

f̃ : A→ CB

defined by a 7→ f(a, y).
The map f̃ : A → CB takes the “parameter” a to the function fa(y) :

B → C. It’s uniquely determined by the equation,

f̃(a)(b) = f(a, b).

Indeed, any map,
φ : A→ CB

is uniquely of the form,
φ = f̃

for some f : A×B → C. For we can set

f(a, b) := φ(a)(b).

What this means, in sum, is that we have an isomorphism of sets,

Sets(A× B,C) ∼= Sets(A,CB)

That is, there is a bijective correspondence between functions of the form
f : A×B → C and those of the form f̃ : A→ CB. Moreover, this bijection is
mediated by a certain operation of evaluation, which we’ve indicated in the
foregoing by using variables. In order to generalize the indicated bijection
to other categories, we’re going to need to make this evaluation operation
explicit, too.

In Sets, it’s the function,

eval : CB × B → C

defined by (g, b) 7→ g(b), i.e.:

eval(g, b) = g(b)

This evaluation function has the following universal mapping property :
given any set A and any function,

f : A×B → C,
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there’s a unique function,
f̃ : A→ CB

such that eval ◦ (f̃ × 1B) = f . That is,

eval(f̃(a), b) = f(a, b). (6.1)

Here’s the diagram:

CB CB × B
eval

> C

�
�

�
�

�

f

�

A

f̄

∧

A×B

f̃ × 1B

∧

You can read the equation (6.1) off from this diagram by taking a pair of
elements (a, b) ∈ A× B and chasing them around both ways, using the fact
that (f̃ × 1B)(a, b) = (f̄(a), b).

Now, the property just stated of the evaluation function and the set CB

of functions B → C is one that will make sense in any category having binary
products.

So, in that form, we can use it to define the notion we seek:

Definition 6.1. Let the category C have binary products. An exponential
of objects B and C of C consists of an object

CB

and an arrow
ǫ : CB × B → C

such that, for any object Z and arrow

f : Z ×B → C

there’s a unique arrow
f̃ : Z → CB

such that
ǫ ◦ (f̃ × 1B) = f,
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all as in the diagram:

CB CB × B
ǫ

> C

�
�

�
�

�

f

�

Z

f̃

∧

Z × B

f̃ × 1B

∧

Here’s some terminology:

• ǫ : CB × B → C is called evaluation.

• f̃ : Z → CB is called the (exponential) transpose of f .

• Given an arrow
g : Z → CB

we write
ḡ := ǫ(g × 1B) : Z × B → C

and also call ḡ the transpose of g. By the uniqueness clause of the
definition, then,

˜̄g = g ,

and for any f : Z ×B → C,

¯̃
f = f .

Briefly, transposition of transposition is the identity.

Thus transposition provides the desired isomorphism,

HomC(Z × B,C) ∼= HomC(Z,CB)

where f 7→ f̃ and g 7→ ḡ.

6.2 Cartesian closed categories

Definition 6.2. A category is called cartesian closed if it has all finite prod-
ucts and exponentials.
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Example 6.3. We already have Sets as one example, but note that also
Setsfin is cartesian closed, since for finite sets M,N , the set of functions
NM has cardinality

|NM | = |N ||M |

and so is also finite.

Example 6.4. Recall that the category Pos of posets has as arrows f : P → Q
the monotone functions, p ≤ p′ implies fp ≤ fp′. Given posets P and Q, the
poset P ×Q has pairs (p, q) as elements, and is partially ordered by,

(p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′

Thus the evident projections,

P <

π1

P ×Q
π2

> Q

are monotone, as is the pairing 〈f, g〉 : X → P × Q if f : X → P and
g : X → Q are monotone.

For the exponential QP , we take the set of monotone functions,

QP = {f : P → Q | f monotone }

ordered pointwise, i.e.:

f ≤ g iff fp ≤ gp for all p ∈ P

The evaluation,
ǫ : QP × P → Q

and transposition,
f̃ : X → QP

of a given arrow,
f : X × P → Q

are the usual ones of the underlying functions. Thus we need only show that
these are monotone.

To that end, given (f, p) ≤ (f ′, p′) in QP × P we have

ǫ(f, p) = f(p)

≤ f(p′)

≤ f ′(p′)

= ǫ(f ′, p′)
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so ǫ is monotone. Now take f : X × P → Q monotone and let x ≤ x′. We
need to show:

f̃(x) ≤ f̃(x′) in QP

which means:

f̃(x)(p) ≤ f̃(x′)(p) for all p ∈ P

But:

f̃(x)(p) = f(x, p)

≤ f(x′, p)

≤ f ′(x′, p)

= f̃(x′)(p)

Example 6.5. Now let’s consider what happens if we restrict to the category
of ωCPOs. Given two ωCPOs P and Q, we’ll take as an exponential the
subset,

QP = {f : P → Q | f monotone and ω-continuous}

Then take evaluation ǫ : QP × P → Q and transposition as before, for
functions. Then, since we know the the required equations are satisfied, we
just need to check the following:

• QP is an ωCPO

• ǫ is ω-continuous

• f̃ is ω-continuous if f is

We leave this as a homework exercise!

We now derive some of the basic facts about exponentials and cartesian
closed categories. First, let us ask, what is the transpose of evaluation?

ǫ : BA × A→ B

It must be an arrow ǫ̃ : BA → BA such that

ǫ(ǫ̃× 1A) = ǫ
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i.e. making the following diagram commute:

BA ×A
ǫ

> B

�
�

�
�

�

ǫ

�

BA ×A

ǫ̃× 1A

∧

Since 1BA × 1A = 1(BA×A) clearly has this property, we must have,

ǫ̃ = 1BA

and so we also know that ǫ = (1BA).
Now let us show that the operation X 7→ XA on a CCC is functorial.

Proposition 6.6. In any cartesian closed category C, exponentiation by a
fixed object A is a functor,

−A : C→ C

Toward the proof, consider first the case of sets. Given some function

β : B → C

we put:
βA : BA → CA

defined by
f 7→ β ◦ f,

I.e.

A

@
@

@
@

@

β ◦ f = βA(f)

R

B

f

∨

β
> C

This assignment is functorial, because: for any α : C → D:

(α ◦ β)A(f) = α ◦ β ◦ f

= α ◦ βA(f)

= αA ◦ βA(f)
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Whence (α ◦ β)A = αA ◦ βA. Also:

(1B)A(f) = 1B ◦ f

= f

= 1BA(f)

So (1B)A = 1BA.
In a general CCC then, given β : B → C, we define

βA : BA → CA

by
βA := ˜(β ◦ ǫ).

That is, we take the transpose of:

BA × A
ǫ
→ B

β
→ C,

giving
βA : BA → CA.

It’s easier to see in the form:

CA CA × A
ǫ

> C

BA

βA

∧

BA × A

βA × 1A

∧

ǫ
> B

β

∧

Now, clearly,
(1B)A = 1BA : BA → BA

by examining:

BA × A > B

BA × A

1(BA×A) = 1BA × 1A

∧

ǫ
> B

1B

∧
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Quite similarly, given:

B
β
→ C

γ
→ D

we have:

γA ◦ βA = (γ ◦ β)A

This follows from considering the commutative diagram:

DA × A
ǫ

>D

CA ×A

γA × 1A

∧

ǫ
> C

γ

∧

BA ×A

βA × 1A

∧

ǫ
> B

β

∧

We use the fact that:

(γA × 1A) ◦ (βA × 1A) = ((γA ◦ βA)× 1A)

The result follows by the uniqueness of transposes.

This suggests looking for another “universal” arrow, namely the transpose
of the identity 1A×B : A× B → A× B,

1̃A×B : A→ (A× B)B

In Sets it has the values 1̃A×B(a)(b) = (a, b). Let us denote this map by
η = 1̃A×B, so that:

η(a)(b) = (a, b)

The map η lets us compute f̃ from the functor −A. Indeed, given f :
Z ×A→ B take:

fA : (Z × A)A → BA
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and precompose with η : Z → (Z × A)A, as indicated in:

(Z ×A)A
fA

> BA

�
�

�
�

�

f̄

�

Z

η

∧

This gives the useful equation:

f̃ = fA ◦ η

which the reader should prove.

6.3 Heyting algebras

Any Boolean algebra B, regarded as a poset category, has finite products 1
and a ∧ b. We can also define the exponential in B by

ba = (¬a ∨ b)

which we’ll also write a⇒ b. The evaluation arrow is:

(a⇒ b) ∧ a ≤ b

This always holds since

(¬a ∨ b) ∧ a = (¬a ∧ a) ∨ (b ∧ a) = 0 ∨ (b ∧ a) = b ∧ a ≤ b.

To show that a ⇒ b is indeed an exponential in B, we just need to verify
that if a ∧ b ≤ c then a ≤ b⇒ c, i.e. transposition. But if a ∧ b ≤ c, then

¬b ∨ (a ∧ b) ≤ ¬b ∨ c = b⇒ c

But we also have,

a ≤ ¬b ∨ a ≤ (¬b ∨ a) ∧ (¬b ∨ b) = ¬b ∨ (a ∧ b)

This example suggests generalizing the notion of a boolean algebra to
that of a cartesian closed poset. Indeed, consider first the following useful
notion.
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Definition 6.7. A heyting algebra is a poset with:

1. finite meets: 1 and p ∧ q,

2. finite joins: 0 and p ∨ q,

3. exponentials: for each a, b, an element a⇒ b such that

a ∧ b ≤ c iff a ≤ b⇒ c.

The stated condition on exponentials a⇒ b is equivalent to the UMP in
the case of posets. Indeed, given the condition, the transpose of a ∧ b ≤ c
is a ≤ b ⇒ c and the evaluation (a ⇒ b) ∧ a ≤ b follows immediately from
a⇒ b ≤ a⇒ b (the converse is just as simple).

Every Heyting algebra is a distributive lattice, since we have:

(a ∨ b) ∧ c ≤ z iff a ∨ b ≤ c⇒ z

iff a ≤ c⇒ z and b ≤ c⇒ z

iff a ∧ c ≤ z and b ∧ c ≤ z

iff (a ∧ c) ∨ (b ∧ c) ≤ z

Now pick z = (a ∨ b) ∧ c, respectively z = (a ∧ c) ∨ (b ∧ c).
One may well wonder whether all distributive lattices are Heyting alge-

bras. The answer is in general, no; but certain ones are:

Definition 6.8. A poset is (co)complete if it is so as a category, thus if it has
all set-indexed meets

∧
i∈I ai (resp. joins

∨
i∈I ai). For posets, completeness

and cocompleteness are equivalent (exercise!). A lattice, Heyting algebra,
Boolean algebra, etc. is called complete if it is so as a poset.

Proposition 6.9. A complete lattice is a HA iff it satisfies the infinite dis-
tributive law:

a ∧ (
∨

i

bi) =
∨

i

(a ∧ bi)

Proof. One shows that Heyting algebra implies distributivity just like in the
finite case. To show that the infinite distributive law implies Heyting algebra,
set:

a⇒ b =
∨

x∧a≤b

x .
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Then if
y ∧ a ≤ b

then y ≤
∨
x∧a≤b x = a ⇒ b. And conversely, if y ≤ a ⇒ b then y ∧ a ≤

(
∨
x∧a≤b x) ∧ a =

∨
x∧a≤b(x ∧ a) ≤

∨
b = b.

Example 6.10. For any set A, the powerset P (A) is a complete Heyting
algebra with unions and intersections as joins and meets, since it satisfies
the infinite distributive law. More generally, the lattice of open sets of a
topological space is also a Heyting algebra, since the open sets are closed
under finite intersections and arbitrary unions.

Of course, every Boolean algebra is a Heyting algebra with a ⇒ b =
¬a∨b, as we already showed. But in general, a Heyting algebra isn’t boolean.
Indeed, we can define a proposed negation by,

¬a = a⇒ 0

as must be the case, since in a Boolean algebra ¬a = ¬a ∨ 0 = a⇒ 0. Then
a ≤ ¬¬a since a ∧ (a ⇒ 0) ≤ 0. But, conversely, ¬¬a ≤ a need not hold in
a Heyting algebra. Indeed, in a topological space X, the negation ¬U of an
open subset U is the interior of the complement X − U . Thus e.g. in the
real interval [0, 1] we have ¬¬(0, 1) = [0, 1].

Moreover, the law,
1 ≤ a ∨ ¬a

also need not hold in general. In fact, the concept of a Heyting algebra
is the algebraic equivalent of the intuitionistic propositional calculus, in the
same sense that Boolean algebras are an algebraic formulation of the classical
propositional calculus.

To make this more precise, we first give a system of rules for the intu-
itionistic propositional calculus (IPC) in terms of entailments p ⊢ q between
formulas p and q.

1. ⊢ is reflexive and transitive

2. p ⊢ ⊤

3. ⊥ ⊢ p

4. p ⊢ q and p ⊢ r iff p ⊢ q ∧ r
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5. p ⊢ r and q ⊢ r iff p ∨ q ⊢ r

6. p ∧ q ⊢ r iff p ⊢ q ⇒ r

This is a complete system for IPC, equivalent to the more standard pre-
sentations the reader may have seen. To show this, note first that we have
an“evaluation” entailment by reflexivity and (6):

p⇒ q ⊢ p⇒ q

(p⇒ q) ∧ p ⊢ q

We therefore have the rule of “modus ponens” by (4) and transitivity:

⊤ ⊢ p⇒ q and ⊤ ⊢ p

⊤ ⊢ (p⇒ q) ∧ p

⊤ ⊢ q

Moreover, by (4) there are “projections”:

p ∧ q ⊢ p ∧ q

p ∧ q ⊢ p (resp. q)

from which it follows that p ⊣⊢ ⊤ ∧ p. Thus we get one of the usual axioms
for products,

p ∧ q ⊢ p

⊤ ∧ (p ∧ q) ⊢ p

⊤ ⊢ (p ∧ q)⇒ p

Now let us derive the usual axioms for ⇒, namely:

1. p⇒ p,

2. p⇒ (q ⇒ p),

3. (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)).
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The first two are almost immediate:

p ⊢ p

⊤∧ p ⊢ p

⊤ ⊢ p⇒ p

p ∧ q ⊢ p

p ⊢ q ⇒ p

⊤∧ p ⊢ (q ⇒ p)

⊤ ⊢ p⇒ (q ⇒ p)

For the third one, we shall use the fact that ⇒ distributes over ∧ on the
right:

a⇒ (b ∧ c) ⊣⊢ (a⇒ b) ∧ (a⇒ c)

This is a special case of the homework :

(B × C)A ∼= BA × CA

We also use the following simple fact, which will be recognized as a special
case of proposition 6.6:

a ⊢ b implies p⇒ a ⊢ p⇒ b (6.2)

Then we have,

(q ⇒ r) ∧ q ⊢ r

p⇒ ((q ⇒ r) ∧ q) ⊢ p⇒ r

(p⇒ (q ⇒ r)) ∧ (p⇒ q) ⊢ p⇒ r by (6.3)

(p⇒ (q ⇒ r)) ⊢ (p⇒ q)⇒ (p⇒ r)

⊤ ⊢ (p⇒ (q ⇒ r))⇒ ((p⇒ q) ∧ (p⇒ r))

The “positive” fragment of IPC, involving only the logical operations,

⊤, ∧, ⇒

corresponds to the notion of a cartesian closed poset. We then add ⊥ and
disjunction p ∨ q on the logical side, and finite joins on the algebraic side,
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to arrive at a correspondence between IPC and Heyting algebras. The exact
correspondence is given by mutually inverse constructions between Heyting
algebras and intuitionistic propositional calculi. We briefly indicate the in-
teresting direction, leaving the more routine one to the reader’s ingenuity.

Given any intuitionistic propositional calculus L, consisting of proposi-
tional formulas p, q, r, . . . over some set of variables x, y, z, . . . together with
the rules of inference stated above, and perhaps some distinguished formu-
las a, b, c, . . . as axioms, one constructs from L a Heyting algebra HA(L),
called the Lindenbaum-Tarski algebra, consisting of equivalence classes [p] of
formulas p, where:

[p] = [q] iff p ⊣⊢ q (6.3)

The ordering in HA(L) is given by,

[p] ≤ [q] iff p ⊢ q (6.4)

This is clearly well-defined on equivalence classes, in the sense that if p ⊢ q
and [p] = [p′] then p′ ⊢ q, and similarly for q. The operations in HA(L) are
then induced in the expected way by the logical operations,

1 = [⊤]

0 = [⊥]

[p] ∧ [q] = [p ∧ q]

[p] ∨ [q] = [p ∨ q]

[p]⇒ [q] = [p⇒ q]

Again, these operations are easily seen to be well-defined on equivalence
classes, and they satisfy the laws for a Heyting algebra because the logical
rules evidently imply them.

By (6.3) this Heyting algebra then has the property that a formula p
is provable in L just if [p] = 1. We therefore have the following logical
completeness theorem for IPC.

Proposition 6.11. The intuitionistic propositional calculus is complete with
respect to models in Heyting algebras.

Proof. Suppose a formula p is true in all Heyting algebras. Then in particu-
lar, it is so in HA(L). Thus p = 1 in HA(L), and so ⊤ ⊢ p.
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In sum, then, a particular instance L of intuitionistic propositional calcu-
lus can be regarded as a way of specifying (and reasoning about) a particular
Heyting algebra HA(L), i.e., it is a presentation by generators and relations,
in just the way that we’ve already seen other algebraic objects like monoids
have such presentations. Indeed, the Heyting algebra HA(L) even has a
universal mapping property with respect to L that is entirely analogous to
the UMP of a monoid that is finitely presented by generators and relations.
Specifically, if for instance L consists of the two elements a, b and the sin-
gle “axiom” a ∨ b ⇒ a ∧ b, then in HA(L) the elements [a] and [b] satisfy
[a]∨[b] ≤ [a]∧[b] (which is of course equivalent to ([a]∨[b] ⇒ [a]∧[b]) = 1), and
given any Heyting algebraA with two elements x and y satisfying x∨y ≤ x∧y,
there is a unique Heyting homomorphism h : HA(L) → A with h([a]) = x
and h([b]) = y.

6.4 Equational definition

The following description of CCCs in terms of operations and equations on
a category is sometimes useful. The proof is entirely routine and left to the
reader.

Proposition 6.12. A category C is a CCC iff it has the following structure:

• A distinguished object 1, and for each object C there is given an arrow

!C : C → 1

such that for each arrow f : C → 1,

f =!C

• For each pair of objects A,B, there is given an object A×B and arrows,

p1 : A× B → A and p2 : A× B → B

and for each pair of arrows f : Z → A and g : Z → B, there is given
an arrow,

〈f, g〉 : Z → A×B
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such that:

p1〈f, g〉 = f

p2〈f, g〉 = g

〈p1h, p2h〉 = h for all h : Z → A×B

• For each pair of objects A,B, there is given an object BA and an arrow,

ǫ : BA × A→ B

and for each arrow f : Z × A→ B there is given an arrow

f̃ : Z → BA

such that:
ǫ ◦ (f̃ × 1A) = f

and
(ǫ ◦ (g × 1A))̃ = g

for all g : Z → BA, where,

g × 1A = 〈gp1, p2〉 : Z × A→ BA × A

It is sometimes easier to check these equational conditions than to verify
the corresponding universal mapping properties. The next section provides
an example of this sort.

6.5 λ-calculus

We have seen that the notions of a cartesian closed poset with finite joins (i.e.
a Heyting algebra) and intuitionistic propositional calculus are essentially the
same,

HA ∼ IPC

These are two different ways of describing one and the same structure;
whereby, to be sure, the logical description contains some superfluous data
in the choice of a particular presentation, not required by the algebraic de-
scription.
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We now want to consider another, very similar, correspondence between
logic and categories, involving more general CCC’s. Indeed, the foregoing
correspondence was the poset case of the following general one between CCCs
and λ-calculus,

CCC ∼ λ−calculus

These notions are also essentially equivalent, in a sense that we’ll now sketch
(a more detailed treatment can be found in the book by Lambek and Scott).
They are two different ways of representing the same idea, namely that of
a collection of objects and functions, with operations of pairing, projection,
application, and transposition (or “currying”).

First, recall the notion of a (typed) λ-calculus from Chapter 2. It consists
of:

• Types: A× B, A→ B, . . . (and some basic types)

• Terms: x, y, z, . . . : A (variables for each type A)

a : A, b : B, . . . (possibly some typed constants)

〈a, b〉 : A×B (a : A, b : B)

fst(c) : A (c : A× B)

snd(c) : B (c : A× B)

ca : B (c : A→ B, a : A)

λx.b : A→ B (x : A, b : B)

• Equations:

fst(〈a, b〉) = a

snd(〈a, b〉) = b

〈fst(c), snd(c)〉) = c

(λx.b)a = b[a/x]

λx.cx = c (no x in c)

Given a particular such λ-calculus L, the associated category of types
C(L) was then defined as follows:

• objects: the types,
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• arrows A → B: equivalence classes of closed terms [c] : A → B,
identified according to,

[a] = [b] iff L ⊢ a = b (6.5)

• identities: 1A = λx.x (where x : A),

• composition: c ◦ b = λx.c(bx).

We have already seen that this is a well-defined category, and that it has
binary products. It’s a simple matter to add a terminal object. Now let
us use the equational characterization of CCCs to show that it is cartesian
closed. Given any objects A,B, we set BA = A→ B, and as the evaluation
arrow we take,

ǫ = λz. fst(z)snd(z) : BA ×A→ B (z : Z)

Then for any arrow f : Z ×A→ B, we take as the transpose,

f̃ = λzλx. f〈z, x〉 : Z → BA (z : Z, x : A)

It is now a straightforward λ-calculus calculation to verify the two required
equations, namely:

ǫ ◦ (f̃ × 1A) = f

(ǫ ◦ (g × 1A))̃ = g

In detail, for the first one recall that:

α× β = λw.〈αfst(w), βsnd(w)〉

So we have:

ǫ ◦ (f̃ × 1A) = (λz.fst(z)snd(z)) ◦ [(λyλx.f〈y, x〉)× λu.u]

= λv.(λz.fst(z)snd(z))[(λyλx.f〈y, x〉)× λu.u]v

= λv.(λz.fst(z)snd(z))[λw.〈(λyλx.f〈y, x〉)fst(w), (λu.u)snd(w)〉]v

= λv.(λz.fst(z)snd(z))[λw.〈(λx.f〈fst(w), x〉), snd(w)〉]v

= λv.(λz.fst(z)snd(z))[〈(λx.f〈fst(v), x〉), snd(v)〉]

= λv.(λx.f〈fst(v), x〉)snd(v)

= λv.f〈fst(v), snd(v)〉

= λv.fv

= f
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The second equation is proved similarly.
Let us call a set of basic types and terms, together with a set of equa-

tions between terms, a theory in the λ-calculus. Given such a theory L, the
cartesian closed category C(L) built from the λ-calculus over L is the CCC
presented by the generators and relations stated by L. Just as in the poset
case of IPC and Heyting algebras, there is a logical completeness theorem
that follows from this fact. To state it, we first require the notion of a model
of a theory L in the λ-calculus in an arbitrary cartesian closed category C.
Roughly, a model is an assignment of the types and terms of L to objects
and arrows of C,

X basic type ; [[X]] object

b : A→ B basic term ; [[b]] : [[A]]→ [[B]] arrow

This assignment is then extended to all types and terms in such a way that
the λ-calculus operations are taken to the corresponding CCC ones,

[[A× B]] = [[A]]× [[B]]

[[〈f, g〉]] = 〈[[f ]], [[g]]〉

etc.

Finally, it is required that all the equations of L are satisfied, in the sense
that:

L ⊢ [a] = [b] : A→ B implies [[a]] = [[b]] : [[A]]→ [[B]] (6.6)

This is essentially what is sometimes called “denotational semantics” for the
λ-calculus. It is essentially the conventional, set-theoretic semantics for first-
order logic, but extended to higher types, restricted to equational theories,
and generalized to CCCs.

For example, let L be the theory with one basic type X, two basic terms,

u : X

m : X ×X → X

and the usual equations for associativity and units,

m〈u, x〉 = x

m〈x, u〉 = x

m〈x,m〈y, z〉〉 = m〈m〈x, y〉, z〉
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Thus L is just the usual equational theory of monoids. Then a model of L
in a cartesian closed category C is nothing but a monoid in C, i.e. an object
M = [[X]] equipped with a distinguished point,

[[u]] : 1→ M

and a binary operation,

[[m]] : M ×M → M

satisfying the unit and associativity laws.
Note that by (6.5) and (6.6), there is a model of L in C(L) with the

property that [[a]] = [[b]] : X → Y if and only if a = b is provable in L. In this
way, one can prove the following CCC completeness theorem for λ-calculus.

Proposition 6.13. For any theory L in the λ-calculus, and any terms a, b
in L,

L ⊢ a = b if for all models M in CCC’s, [[a]]M = [[b]]M

This proposition says that the λ-calculus is deductively complete for mod-
els in CCC’s. It is worth emphasizing that this is not true if one restricts
attention to models in the single category Sets; indeed there are many ex-
amples of theories in λ-calculus in which equations holding for all models in
Sets are still not provable (see the exercises for an example).

The cartesian closed category C(L) has the following universal mapping
property, analogous to the one for any algebra presented by generators and
relations. Given any model M of L in any cartesian closed category C, there
is a unique functor,

[[−]]M : C(L)→ C

preserving the CCC structure, given by,

[[X]]M = M

for the basic type X, and similarly for the other basic types and terms of L.
In this precise sense, the theory L is a presentation of the cartesian closed
category C(L) by generators and relations.

Finally, let’s note that the notions of λ-calculus and CCC are essentially
“equivalent”, in the sense that any cartesian closed category C also gives rise
to a λ-calculus L(C),

L; C(L)
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and this construction is essentially inverse to the one just sketched.
Briefly, given C, we define L(C) by:

• Basic Types: the objects of C

• Basic Terms: a : A→ B for each a : A→ B in C

• Equations: many equations identifying the λ-calculus operations with
the corresponding category and CCC structure on C, for example:

λx.fst(x) = p1

λx.snd(x) = p2

λy.f(x, y) = f̃(x)

g(f(x)) = (g ◦ f)(x)

λy. y = 1A

This suffices to ensure that there is an isomorphism of categories:

C(L(C)) ∼= C

Moreover, the theories L and L(C(L)) will also be “equivalent” in a suitable
sense, involving the kinds of considerations typical of comparing different
presentations of algebras. We refer the reader to the book by Lambek and
Scott for further details.
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6.6 Exercises

1. * Show that for any three objects A,B,C in a cartesian closed category,
there are isomorphisms:

(a) (A× B)C ∼= AC × BC

(b) (AB)C ∼= AB×C

2. Is the category of monoids cartesian closed?

3. Show that for any objects A,B in a cartesian closed category, there is
a bijective correspondence between points of the exponential 1 → BA

and arrows A→ B.

4. Show that the category of ωCPOs is cartesian closed, but that the
category of strict ωCPOs is not (the strict ωCPOs are the ones with
initial object ⊥, and the continuous maps between them are supposed
to preserve ⊥).

5. Show that in any cartesian closed poset, the third law of positive in-
tuitionistic propositional calculus holds (in addition to the other two
shown in class):

(p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r))

6. In the λ-calculus, consider the theory (due to Dana Scott) of a reflexive
domain: there is one basic type D, two constants s and r of types
s : (D → D)→ D and r : D → (D → D), and two equations,

srx = x (x : D)

rsy = y (y : D → D)

Prove that, up to isomorphism, this theory has only one model M in
Sets, and thatevery equation holds in M .
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Chapter 7

Functors and Naturality

We now want to start considering categories and functors more systemati-
cally, developing the “category theory” of category theory itself, rather than
of other mathematical objects, like groups, or formulas in a logical system.
Let me emphasize that, while some of this may look a bit like “abstract non-
sense”, the idea behind it is that when one then has a particular application
at hand, the theory can be specialized to that concrete case. The notion of a
functor is a case in point; developing its general theory makes it a clarifying,
simplifying, and powerful tool in its many instances.

7.1 Category of categories

We begin by reviewing what we know about the category Cat of categories
and functors, tying up some loose ends.

We’ve already seen that Cat has finite coproducts 0, C + D; and finite
products 1, C × D. It is very easy to see that there are also all small
coproducts and products, constructed analogously. We can therefore show
that Cat has all limits by constructing equalizers. Thus let categories C and
D and parallel functors F and G be given, and define the category E and
functor E,

E
E

> C
F

>

G
> D

as follows (recall that for a category C, we write C0 and C1 for the collections

151
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of objects and arrows respectively):

E0 = {C ∈ C0 | F (C) = G(C)}

E1 = {f ∈ C1 | F (f) = G(f)}

and let E : E → C be the evident inclusion. This is then an equalizer, as
the reader can easily check.

The category E is an example of a subcategory, i.e. a monomorphism in
Cat (recall that equalizers are monic). Often, by a subcategory of a category
C one means specifically a collection U of some of the objects and arrows,
U0 ⊆ C0 and U1 ⊆ C1), that is closed under the operations dom, cod, id,
and ◦. There is then an evident inclusion functor

i : U→ C

which is clearly monic.

In general, coequalizers of categories are more complicated to describe —
indeed, even for posets, determining the coequalizer of a pair of monotone
maps can be quite involved, as the reader should consider.

There are various properties of functors other than being monic and epic
which turn out to be quite useful in Cat. A few of these are given by the
following.

Definition 7.1. A functor F : C→ D is said to be:

• injective on objects if the object part F0 : C0 → D0 is injective, it is
surjective on objects if F0 is surjective.

• Similarly F is injective (resp. surjective) on arrows if the arrow part
F1 : C1 → D1 is injective (resp. surjective).

• F is faithful if for all A,B ∈ C0, the map

FA,B : HomC(A,B)→ HomD(FA, FB)

defined by f 7→ F (f) is injective.

• Similarly, F is full if FA,B is always surjective.
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What is the difference between being faithful and being injective on ar-
rows? Consider for example the “codiagonal functor” ∇ : C + C → C, as
indicated in the following:

C > C + C < C

@
@

@
@

@
1C

R 	�
�

�
�

�

1C

C

∇

∨

∇ is faithful, but not injective on arrows.
A full subcategory

U ֌ C

consists of some objects of C and all of the arrows between them (thus
satisfying the closure conditions for a subcategory). For example, the inclu-
sion functor Setsfin ֌ Sets is full and faithful, but the forgetful functor
Groups ֌ Sets is faithful but not full.

Example 7.2. There is another “forgetful” functor for groups, namely into
the category Cat of categories,

G : Groups→ Cat

Observe that this functor is full and faithful, since a functor between groups
F : G(A)→ G(B) is exactly the same thing as a group homomorphisms.

And exactly the same situation holds for monoids.
For posets, too, there is a full and faithful, forgetful functor,

P : Pos→ Cat

again because a functor between posets F : P (A) → P (B) is exactly a
monotone map. And the same thing holds for the “discrete category” functor
S : Sets→ Cat.

Thus Cat provides a setting for comparing structures of many different
kinds. For instance, one can have a functor R : G→ C from a group G to a
category C that is not a group. If C is a poset, then any such functor must be
trivial (why?). But if C is, say, the category of finite dimensional, real vector
spaces and linear maps, then a functor R is exactly a linear representation
of the group G, representing every element of G as an invertible matrix of
real numbers, and the group multiplication as matrix multiplication.
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What is a functor g : P → G from a poset to a group? Since G has only
one object ∗, it will have g(p) = ∗ = g(q) for all p, q ∈ P . For each p ≤ q, it
picks an element gp,q in such a way that,

gp,p = u (the unit of G)

gq,r · gp,q = gp,r

For example, take P = (R,≤) to be the ordered real numbers and G = (R,+)
the additive group of reals, then subtraction is a functor,

g : (R,≤)→ (R,+)

defined by,

gx,y = (y − x)

Indeed, we have,

gx,x = (x− x) = 0

gy,z · gx,y = (z − y) + (y − x) = (z − x) = gx,z

7.2 Representable structure

Let C be a locally small category, so that we have the representable functors,

HomC(C,−) : C→ Sets.

for all objects C ∈ C. This functor is evidently faithful if the object C has
the property that, for any objects X and Y and arrows f, g : X ⇉ Y , if f 6= g
then there is an arrow x : C → X such that fx 6= gx. That is, the arrows in
the category are distinguished by their effect on generalized elements based
at C. Such an object C is called a generator for C.

In the category of sets, for example, the terminal object 1 is a generator.
In groups, as we’ve already discussed, the free group F (1) on one element
is a generator. Indeed, the functor represented by F (1) is isomorphic to the
forgetful functor U : Grp→ Sets,

Hom(F (1), G) ∼= U(G) (7.1)
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This isomorphism not only holds for each group G, but also respects group
homomorphisms, in the sense that for any such h : G → H there is a com-
mutative square,

G Hom(F (1), G)
∼=

> U(G)

H

h

∨

Hom(F (1), H)

h∗

∨

∼=
> U(H)

U(h)

∨

One says that the isomorphism (7.1) is “natural in G”. In a certain sense,
this “explains” why the forgetful functor U preserves all limits, since repre-
sentable functors necessarily do. The related fact that the forgetful functor
is faithful is a precise way to capture the vague idea, which we initially used
for motivation, that the category of groups is “concrete”.

Recall that there are also contravariant representable functors,

HomC(−, C) : Cop → Sets

taking f : A→ B to f ∗ : HomC(B,C) → HomC(A,C) by f ∗(h) = h ◦ f for
h : B → C.

Example 7.3. Given a group G in a (locally small) category C, the contravari-
ant representable functor HomC(−, G) actually has a group structure, giving
a functor,

HomC(−, G) : Cop → Grp

In Sets, for example, for each set X we can define the operations on the
group Hom(X,G) pointwise,

u(x) = u (the unit of G)

(f · g)(x) = f(x) · g(x)

f−1(x) = f(x)−1

In this case, we have an isomorphism,

Hom(X,G) ∼= Πx∈XG
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with the product group. Functoriality in X is given simply by precomposi-
tion; thus for any function h : Y → X, one has:

h∗(f · g)(y) = (f · g)(h(y))

= f(h(y)) · g(h(y))

= h∗(f)(y) · h∗(g)(y)

= (h∗(f) · h∗(g))(y)

and similarly for inverses and the unit. Indeed, it is easy to see that this
construction works just as well for any other algebraic structure, defined by
operations and equations.

For instance, in topology one has the ring R of real numbers and, for any
space X, the ring,

C(X) = HomTop(X,R)

of real-valued, continuous functions on X. Just as in the previous case, if

h : Y → X

is any continuous function, we then get a ring homomorphism,

h∗ : C(X)→ C(Y )

by precomposing with h. The recognition of C(X) as representable ensures
that this “ring of real-valued functions” construction is functorial,

C : Topop → Rings

In passing from R to HomTop(X,R), all the algebraic structure of R is
retained, but properties determined by conditions that are not strictly equa-
tional are not necessarily preserved. For instance, R is not only a ring, but
also a field, meaning that every non-zero real number r has a multiplicative
inverse r−1, formally:

∀x(x = 0 ∨ ∃y. y · x = 1)

To see that this condition fails in e.g. C(R), consider the continuous function
f(x) = x2. For any argument y 6= 0, the multiplicative inverse must be
g(y) = 1/y2. But if this function were to be continuous, at 0 it would have
to be limy→0 1/y2 which does not exist in R.
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Example 7.4. A very similar situation occurs in the category BA of boolean
algebras. Given the boolean algebra 2 with the usual (truth-table) operations
∧,∨,¬, 0, 1, for any set X, we make the set,

HomSets(X, 2)

into a boolean algebra with the pointwise operations:

0(x) = 0

1(x) = 1

(f ∧ g)(x) = f(x) ∧ g(x)

etc.

When we define the operations in this way in terms of those on 2 we see
immediately that Hom(X, 2) is a boolean algebra too, and that precomposi-
tion is a contravariant functor,

Hom(−, 2) : Setsop → BA

into the category BA of boolean algebras and their homomorphisms.
Now observe that for any set X, the familiar isomorphism

Hom(X, 2) ∼= P(X)

between characteristic functions φ : X → 2 and subsets Vφ = φ−1(1) ⊆ X,
relates the pointwise boolean operations in Hom(X, 2) to the subset opera-
tions of intersection, union, etc. in P(X),

Vφ∧ψ = Vφ ∩ Vψ

Vφ∨ψ = Vφ ∪ Vψ

V¬φ = X − Vφ

V1 = X

V0 = ∅

In this sense, the set-theoretic boolean operations on P(X) are induced by
those on 2, and the powerset P is seen to be a contravariant functor to the
category of boolean algebras,

PBA : Setsop → BA
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As was the case for the covariant representable functor HomGrp(F (1),−)
and the forgetful functor U from groups to sets, here the contravariant func-
tors HomSets(−, 2) and PBA from sets to boolean algebras can also be seen
to be naturally isomorphic, in the sense that for any function f : Y → X,
the following square of boolean algebras and homomorphisms commutes:

X Hom(X, 2)
∼=

> P (X)

Y

f

∧

Hom(Y, 2)

f ∗

∨

∼=
> P (Y )

f−1

∨

7.3 Stone duality

Before considering the topic of naturality more systematically, let us take a
closer look at the foregoing example of powersets and boolean algebras.

Recall that an ultrafilter in a boolean algebra B is a proper subset U ⊂ B
such that:

• 1 ∈ U

• x, y ∈ U implies x ∧ y ∈ U

• x ∈ U and x ≤ y implies y ∈ U

• if U ⊂ U ′ and U ′ is a filter, then U ′ = B

The maximality condition on U is equivalent to the condition that for every
x ∈ B, either x ∈ U or ¬x ∈ U (exercise!).

We already know that there is an isomorphism between the set Ult(B) of
ultrafilters on B and the boolean homomorphisms B → 2,

Ult(B) ∼= HomBA(B, 2)

This assignment Ult(B) is functorial and contravariant, and the displayed
isomorphism above is natural in B. Indeed, given a boolean homomorphism
h : B → B′, let:

Ult(h) = h−1 : Ult(B′)→ Ult(B)
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Of course, we have to show that the inverse image h−1(U) ⊂ B of an ultra-
filter U ⊂ B′ is an ultrafilter in B. But since we know that U = χ−1

U (1) for
some χU : B′ → 2, we have:

Ult(h)(U) = h−1(χ−1
U (1))

= (χU ◦ h)
−1(1)

So Ult(h)(U) is also an ultrafilter. Thus we have a contravariant functor of
ultrafilters,

Ult : BAop → Sets

as well as the contravariant powerset functor coming back,

PBA : Setsop → BA

The constructions,

BAop <
(PBA)

op

Ult
> Sets

are not mutually inverse, however. For in general, Ult(P(X)) is much larger
than X, since there are many ultrafilters in P(X) that are not “principal”,
i.e. of the form {U ⊆ X | x ∈ U} for some x ∈ X. (But what if X is
finite?) Instead, there is a more subtle relation between these functors which
we’ll consider in more detail later; namely, these are an example of adjoint
functors.

For now, consider the following observations. Let,

U = Ult ◦ (PBA)
op

: Sets→ BAop → Sets

so that,
U(X) = {U ⊆ P(X) | U is an ultrafilter}

is a covariant functor on Sets. Now observe that for any set X there is a
function,

η : X → U(X)

taking each element x ∈ X to the principal ultrafilter,

η(x) = {U ⊆ X | x ∈ U}
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This map is “natural” in X, i.e. for any function f : X → Y , the following
diagram commutes.

X
ηX

> U(X)

Y

f

∨

ηY
> U(Y )

U(f)

∨

This is so because, for any ultrafilter V in P(X),

U(f)(V) = {U ⊆ Y | f−1(U) ∈ V}

So in the case of the principal ultrafilters η(x), we have:

(U(f) ◦ ηX)(x) = U(f)(ηX(x))

= {V ⊆ Y | f−1(V ) ∈ ηX(x)}

= {V ⊆ Y | x ∈ f−1(V )}

= {V ⊆ Y | fx ∈ V }

= ηY (fx)

= (ηY ◦ f)(x)

Finally, observe that there is an analogous such natural map at the “other
side” of this situation, in the category of boolean algebras. Specifically, for
every boolean algebra B there is a homomorphism similar to the function η,

φB : B → P(Ult(B))

given by,
φB(b) = {V ∈ Ult(B) | b ∈ V}

It is not hard to see that φB is always injective. for given any distinct
elements b, b′ ∈ B, the boolean prime ideal theorem implies that there is an
ultrafilter V such that b ∈ V but not b′ ∈ V. The boolean algebra P(Ult(B)),
together with the homomorphism φB, is called the Stone representation of
B. It presents the arbitrary boolean algebra B as an algebra of subsets. For
the record, we thus have the following very special case of the far-reaching
Stone Duality Theorem:

Proposition 7.5. Every boolean algebra B is isomorphic to one consisting
of subsets of some set X, equipped with the set-theoretical boolean operations.
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7.4 Naturality

A natural transformation is a morphism of functors. That’s right: for fixed
categories C and D we can regard the functors C → D as the objects of a
new category, and the arrows between these objects are what we are going
to call natural transformations. They are to be thought of as different ways
of “relating” functors to each other, in a sense that we’ll now explain.

Let’s begin by considering a certain kind of situation that often arises: we
have some “construction” on a category C and some other “construction”,
and we observe that these two “constructions” are related to each other in a
way that is independent of the specific objects and arrows involved. That is,
the relation is really between the constructions themselves. To give a simple
example, suppose C has products and consider, for objects A,B,C ∈ C,

(A× B)× C and A× (B × C)

Regardless of what objects A,B, and C are, we have an isomorphism

h : (A× B)× C
∼
→ A× (B × C)

What does it mean that this isomorphism doesn’t really depend on the par-
ticular objects A,B,C? One way to explain it is this:

Given any f : A→ A′, we get a commutative square

(A×B)× C
hA

> A× (B × C)

(A′ × B)× C
∨

hA′

> A′ × (B × C)
∨

So what we really have is an isomorphism between the “constructions”,

(−× B)× C and −×(B × C)

without regard to what’s in the argument-place of these.
Now, by a “construction” we of course just mean a functor, and by a

“relation between constructors” we mean a morphism of functors (which is
what we are about to define). In the example, it’s an isomorphism:

(−×B)× C ∼= −× (B × C)
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For functors C → C. In fact, we can of course consider the functors of
three arguments:

F = (−1 ×−2)×−3 : C3 → C

and

G = −1 × (−2 ×−3) : C3 → C

and there is an analogous isomorphism

F ∼= G.

But an isomorphism is a special morphism, so let’s define the general notion
first:

Definition 7.6. For categories C,D and functors

F,G : C→ D,

a natural transformation (ϑ : F → G) is a family of arrows in D

(ϑC : FC → GC)C∈C0

such that, for any f : C → C ′ in C, one has ϑC′ ◦ F (f) = G(f) ◦ ϑC , i.e. the
following commutes:

FC
ϑC

> GC

FC ′

Ff

∨

ϑC′

> GC ′

Gf

∨

Given such a natural transformation ϑ : F → G, the D-arrow ϑC : FC →
GC is called the component of ϑ at C.

If you think of a functor F : C → D as “picture” of C in D, then you
can think of a natural transformation ϑC : FC → GC as a “cylinder” with
such a picture at each end.
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7.5 Examples of natural transformations

We have already seen several examples of natural transformations in previous
sections, namely the isomorphisms,

HomGrp(F (1), G) ∼= U(G)

HomSets(X, 2) ∼= P(X)

HomBA(B, 2) ∼= Ult(X)

There were also the maps from Stone duality,

ηX : X → Ult(P(X))

φB : B → P(Ult(B))

We now consider some further examples.

Example 7.7. Consider the free monoid M(X) on a set X, and define a
natural transformation η : 1Sets → UM , such that each component ηX :
X → UM(X) is given by the “insertion of generators” taking every element
x to itself, considered as a word.

X
ηX

> UM(X)

Y

f

∨

ηY
> UM(Y )

UM(f)

∨

................

This is natural, because the homomorphism M(f) on the free monoid M(X)
is completely determined by what f does to the generators.

Example 7.8. Let C be a category with products, A ∈ C fixed. A natural
transformation from the functor A×− : C→ C to 1C : C→ C is given by
taking the component at C to be the second projection

π2 : A× C → C

From this, together with the pairing operation 〈−,−〉, one can build up
the isomorphism,

h : (A× B)× C
∼
→ A× (B × C)
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For another such example in more detail, consider the functors,

× : C2 → C

×̄ : C2 → C

where ×̄ is defined on objects by

A×̄B = B × A ,

and on arrows by
α×̄β = β × α .

Define a “twist” natural transformation t : × → ×̄ by

t(A,B)〈a, b〉 = 〈b, a〉.

To check that the following commutes,

A×B
t(A,B)

> B × A

A′ ×B′

α× β

∨

t(A′,B′)

> B′ × A′

β × α

∨

observe that for any generalized elements a : Z → A and b : Z → B,

(β × α)t(A,B)〈a, b〉 = (β × α)〈b, a〉

= 〈βb, αa〉

= t(A′,B′)〈αa, βb〉

= t(A′,B′) ◦ (α× β)〈a, b〉

Thus t : × → ×̄ is natural. In fact, each component t(A,B) is an isomorphism
with inverse t(B,A). This is a simple case of an isomorphism of functors.

Definition 7.9. The functor category Fun(C,D) has

objects: functors F : C→ D,

arrows: natural transformations ϑ : F → G.
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For each object F , 1F has components

(1F )C = 1FC : FC → FC

and the composite of F
ϑ
→ G

φ
→ H has components

(φ ◦ ϑ)C = φC ◦ ϑC .

Definition 7.10. A natural isomorphism is a natural transformation

ϑ : F → G

which is an isomorphism in the functor category Fun(C,D)

Lemma 7.11. A natural transformation ϑ : F → G is a natural isomorphism
iff each component ϑC : FC → GC is an isomorphism.

Proof. Exercise!

In our first example we can therefore say that the isomorphism,

ϑA : (A× B)× C ∼= A× (B × C)

is natural in A, meaning that the functors,

F (A) = (A× B)× C

G(A) = A× (B × C)

are naturally isomorphic.
Here’s a classical example of a natural isomorphism.

Example 7.12. Consider the category,

Vect(R)

of real vector spaces and linear transformations,

f : V →W

Every vector space V has a dual space,

V ∗ = Vect(V,R)
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of linear transformations. And every linear transformation

f : V →W

gives rise to a dual linear transformation,

f ∗ : W ∗ → V ∗

defined by precomposition, f ∗(A) = A ◦ f for A : W → R. In brief
(−)∗ = Vect(−, R) : Vectop → Vect is the contravariant representable func-
tor endowed with vector space structure, just like the examples already con-
sidered in section 7.2.

As in those examples, there is a canonical linear transformation from each
vector space to its double dual,

ηV :V → V ∗∗

x 7→ (evx : V ∗ → R)

where evx(A) = A(x), for every A : V → R. This map is the component of
a natural transformation,

η : 1Vect → ∗∗

since the following always commutes.

V
ηV

> V ∗∗

W

f

∨

ηW
>W ∗∗

f ∗∗

∨

in Vect. Indeed, given any v ∈ V and A : W → R in W ∗, we have,

(f ∗∗ ◦ ηV )(v)(A) = f ∗∗(evv)(A)

= evv(f
∗(A)

= evv(A ◦ f)

= (A ◦ f)(v)

= A(fv)

= evfv(A)

= (ηW ◦ f)(v)(A)
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Now, it is a well-known fact in linear algebra that every finite dimensional
vector space V is isomorphic to its dual space V ∼= V ∗ just for reasons of di-
mension. However, there is no “natural” way to choose such an isomorphism.
On the other hand, the natural transformation,

ηV : V → V ∗∗

is a natural isomorphism when V is finite dimensional.
Thus the formal notion of naturality captures the informal fact that V ∼=

V ∗∗ “naturally”, unlike V ∼= V ∗.

A similar situation occurs in Sets. Here we take 2 instead of R, and the
dual A∗ of a set A then becomes

A∗ = P(A) ∼= Sets(A, 2)

while the dual of a map f : A→ B is the inverse image f ∗ : P(B)→ P(A).
Note that the evaluation corresponds to (the characteristic function of)

the membership relation on A× P(A):

2A × A
ǫ

> 2

A× P (A)

∼=

∨

∈̃
> 2

id

∨

Transposing again gives a map:

A
ηA

> PP (A)= A∗∗

@
@

@
@

@R

2P (A)

∼=

∧

which is described by:

ηA(a) = {U ⊆ A | a ∈ U}.

In Sets, one always has A strictly smaller than P(A), so ηA : A →
A∗∗ is never an isomorphism. Nonetheless, η : 1Sets → ∗∗ is a natural
transformation, which the reader should prove.
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7.6 Exponentials of categories

We now want to show that the category Cat of (small) categories and func-
tors is cartesian closed, by showing that any two categories C,D have an
exponential DC. Of course, we’ll take DC = Fun(C,D), the category of
functors and natural transformations, for which we need to prove the re-
quired universal mapping property. (By the way, this is the same as the
category Diag(C,D) of diagrams from the exercises).

Proposition 7.13. Cat is cartesian closed, with the exponentials:

DC = Fun(C,D)

Before giving the proof, let us note the following. Since exponentials are
unique up to isomorphism, this gives us a way to verify that we have found
the “right’” definition of a morphism of functors. For the notion of a natural
transformation is completely determined by the requirement that it makes
the set Hom(C,D) into an exponential category. This is an example of how
category theory can serve as a conceptual tool for discovering new concepts.
Before giving the proof, we need the following.

Lemma 7.14 (Bifunctor lemma). Given categories A,B and C, a map of
arrows and objects,

F0 : A0 ×B0 → C0

F1 : A1 ×B1 → C1

is a functor F : A×B→ C iff

1. F is functorial in each argument: F (A,−) : B → C and F (−, B) :
A→ C are functors for all A ∈ A0 and B ∈ B0.

2. F satisfies the following “interchange law”: Given α : A → A′ ∈ A

and β : B → B′ ∈ B, the following commutes.

F (A,B)
F (A, β)

> F (A,B′)

F (A′, B)

F (α,B)

∨

F (A′, β)
> F (A′, B′)

F (α,B′)

∨
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i.e. F (A′, β) ◦ F (α,B) = F (α,B′) ◦ F (A, β) in C.

Proof. (of Lemma) In A×B any arrow,

〈α, β〉 : 〈A,B〉 → 〈A′, B′〉

factors as:

〈A,B〉
〈1A, β〉

> 〈A,B′〉

〈A′, B〉

〈α, 1B〉

∨

〈1A′, β〉
> 〈A′, B′〉

〈α, 1B′〉

∨

So (1) and (2) are clearly necessary. To show that they are also sufficient,
we can define the (proposed) functor:

F (〈A,B〉) = F (A,B)

F (〈α, β〉) = F (A′, β) ◦ F (α,B)

The interchange law, together with functoriality in each argument, then en-
sures that

F (α′, β ′) ◦ F (α, β) = F (〈α′, β ′〉 ◦ 〈α, β〉)

as can be read off from the following diagram.

F (A,B)
Q

Q
Q

Q
Q

Q
Q

F (α, β)

s

F (A′, B)

F (α,B)

∨

F (A′, β)
> F (A′, B′)

Q
Q

Q
Q

Q
Q

Q

F (α′, β ′)

s

F (A′, B)

F (α′, B)

∨

................
....................
F (A′′, β)

> F (A′′, B′)

F (α,B′)

∨

F (A′′, β ′)
> F (A′′, B′′)
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Proof. (of Proposition) We need to show:

1. ǫ = eval : Fun(C,D)×C→ D is functorial.

2. For any category X and functor

F : X×C→ D

there is a functor
F̃ : X→ Fun(C,D)

such that ǫ ◦ (F̃ × 1C) = F .

3. Given any functor
G : X→ Fun(C,D)

one has ˜(ǫ ◦ (G× 1C)) = G.

(1) Using the bifunctor lemma, we show that ǫ is functorial:
Fix F : C → D and consider ǫ(F,−) = F : C → D. This is clearly

functorial!
Next, fix C ∈ C0 and consider ǫ(−, C) : Fun(C,D)→ D defined by:

(ϑ : F → G) 7→ (ϑC : FC → GC)

This is also clearly functorial.
For the interchange law, consider any ϑ : F → G ∈ Fun(C,D) and

(f : C → C ′) ∈ C, then we need the following to commute:

ev(F,C)
ϑC

> ev(G,C)

ev(F,C ′)

F (f)

∨

ϑC′

> ev(G,C ′)

G(f)

∨

But this holds because ev(F,C) = F (C) and ϑ is a natural transformation.
The conditions (2) and (3) are now routine. E.g. for (2), given

F : X×C→ D
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let
F̄ : X→ Fun(C,D)

be defined by:
F̄ (X)(C) = F (X,C)

7.7 Functor categories

Let us consider some particular functor categories.

Example 7.15. First, clearly C1 = C for the terminal category 1. Next, what
about C2, where 2 = · → · is the single arrow category? This is just the
arrow category of C that we already know:

C2 = C→

Consider instead the discrete category, 2 = {0, 1}. Then clearly,

C2 ∼= C×C

Similarly for any set I (regarded as a discrete category) we have,

CI ∼=
∏

i∈I

C

Example 7.16. “Transcendental deduction of natural transformations”
Given the possibility of functor categories DC, we can determine what the
objects and arrows therein must be as follows:

Objects: these correspond uniquely to functors of the form:

1→ DC

and hence to functors:
C→ D

Arrows: by the foregoing example, these correspond uniquely to functors of
the form:

1→ (DC)2
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thus to functors of the form:

2→ DC

and hence to functors:

C× 2→ D

respectively:

C→ D2

But a functor from C into the arrow category D2 (respectively a functor
into D from the cylinder category C×2) is exactly a natural transfor-
mation between two functors from C into D, as the reader can see by
drawing a picture of the functor’s image in D.

Example 7.17. Recall that a (directed) graph can be regarded as a pair of
sets and a pair of functions,

G1

t
>

s
> G0

where G1 is the set of edges, G0 is the set of vertices, and s and t are the
source and target operations.

A homomorphism of graphs h : G → H is a map that preserves sources
and targets. In detail, this is a pair of functions h1 : G1 → H1 and h0 : G0 →
H0 such that for all edges e ∈ G, we have sh1(e) = h0s(e) and similarly
for t. But this amounts exactly to saying that the following two diagrams
commute.

G1

h1
>H1 G1

h1
> H1

G0

sG

∨

h0

>H0

sH

∨

G0

tG

∨

h0

> H0

tH

∨

Now consider the category Γ pictured:

· >
> ·
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It has exactly two objects and two distinct, parallel, non-identity arrows. A
graph G is then exactly a functor,

G : Γ→ Sets

and a homomorphism of graphs h : G → H is exactly a natural transfor-
mation between these functors. Thus the category of graphs is a functor
category,

Graphs = SetsΓ

As we shall see below, it follows from this fact that Graphs is cartesian
closed.

Example 7.18. Given a product C ×D of categories, take the first product
projection,

C×D→ C

and transpose it to get a functor,

∆ : C→ CD

For C ∈ C, the functor ∆(C) is the “constant C-valued functor”,

• ∆(C)(X) = C for all X ∈ D0

• ∆(x) = 1C for all x ∈ D1

Moreover, ∆(f) : ∆(C)→ ∆(C ′) is the natural transformation, each compo-
nent of which is f .

Now suppose we have any functor,

F : D→ C

and a natural transformation,

ϑ : ∆(C)→ F

Then the components of ϑ all look like:

ϑD : C → F (D)
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since ∆(C)(D) = C. Moreover, for any d : D → D′ in D, the usual naturality
square becomes a triangle, since ∆(C)(d) = 1C for all d : D → D′,

C
ϑD

> FD

C

1C

∨

ϑD′

> FD′

Fd

∨

Thus such a natural transformation ϑ : ∆(C) → F is exactly a cone to the
base F (with vertex C). Similarly, a map of cones ϑ → ϕ is a constant
natural transformation, i.e. one of the form ∆(h) for some h : C → D,
making a commutative triangle,

∆(C)
∆(h)

> ∆(D)

A
A
A
A
A
A

ϑ
U ��

�
�
�
�
�

ϕ

F

!

Example 7.19. Take posets P,Q and consider the functor category,

QP

The functors Q → P , as we know, are just monotone maps, but what is a
natural transformation?

ϑ : f → g

For each p ∈ P we must have

ϑp : fp ≤ gp

and if p ≤ q, then there must be a commutative square involving fp ≤ fq
and gp ≤ gq, which, however, is automatic. Thus the only condition is that
fp ≤ gp for all p, i.e. f ≤ g pointwise. Since this is just the usual ordering of
the poset QP , the exponential poset agrees with the functor category. Thus
we have the following:
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Proposition 7.20. The inclusion functor,

Pos→ Cat

preserves CCC structure.

Example 7.21. What happens if we take the functor category of two groups
G and H ,

HG

do we get an exponential of groups? Let us first ask, what is a natural
transformation between two group homomorphisms f, g : G → H ? Such a
map ϑ : f → g would be an element h ∈ H such that for every x ∈ G, we
have,

f(x) · h = h · g(x)

or, equivalently,
h−1 · f(x) · h = g(x)

Therefore, a natural transformation ϑ : f → g is an inner automorphism
y 7→ h−1 · y · h of H (called conjugation by h), that takes f to g. Clearly,
every such arrow ϑ : f → g has an inverse ϑ−1 : g → f (conjugation by
h−1). But HG is still not usually a group, simply because there may be
many different homomorphisms G → H , so the functor category HG has
more than one object.

This suggest enlarging the category of groups to include also categories
with more than one object, but still having inverses for all arrows. Such cate-
gories are called groupoids, and have been studied by topologists (they occur
as the paths between different points in a topological space). A groupoid can
thus be regarded as a generalized group, in which the domains and codomains
of elements x and y must match up, as in any category, for the multiplication
x · y to be defined.

It is clear that if G and H are any groupoids, then the functor category
HG is also a groupoid. Thus we have the following proposition, the detailed
proof of which is left as an exercise.

Proposition 7.22. The category Grpd of groupoids is cartesian closed, and
the inclusion functor,

Grpd→ Cat

preserves the CCC structure.
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7.8 Equivalence of categories

Before examining some particular functor categories in more detail, we con-
sider one very special application of the idea of natural isomorphism. Con-
sider first the following situation.

Example 7.23. Let Ordfin be the category of finite ordinal numbers. Thus
the objects are the sets 0, 1, 2, . . ., where 0 = ∅ and n = {0, . . . , n− 1}, while
the arrows are all functions between these sets. Now suppose that for each
finite set A we select an ordinal |A| that is its cardinal, and an isomorphism,

A ∼= |A|

Then for each function f : A → B of finite sets we have a function |f | by
completing the square,

A
∼=

> |A|

B

f

∨

∼=
> |B|

|f |

∨

................

(7.2)

This clearly gives us a functor,

| − | : Setsfin → Ordfin

Actually, all the maps in the above square are in Setsfin, so we should also
make the inclusion functor,

i : Ordfin → Setsfin

explicit. Then we have the selected isos,

ϑA : A
∼
→ i|A|

and we know by (7.2) that,

i(|f |) ◦ ϑA = ϑB ◦ f
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This of course says that we have a natural isomorphism,

ϑ : 1Setsfin
→ i ◦ | − |

between two functors of the form:

Setsfin → Setsfin

On the other hand, if we take an ordinal and take its ordinal, we get nothing
new,

|i(−)| = 1Ordfin
: Ordfin → Ordfin

This is so because, for any cardinal n,

|i(n)| = n

and we can assume that we take ϑn = 1n : n→ |i(n)|, so that also,

|i(f)| = f : n→ m

In sum, then, we have a situation where two categories are very similar;
but they are not the same, and they are not even isomorphic (why?). This
kind of correspondence is what is captured by the notion of equivalence of
categories.

Definition 7.24. An equivalence of categories consists of a pair of functors,

E : C→ D

F : D→ C

and a pair of natural isomorphisms,

α : 1C
∼
→ F ◦ E in CC

β : 1D
∼
→ E ◦ F in DD

In this situation, the functor F is called a pseudo-inverse of E. The
categories C and D are then said to be equivalent, written C ≃ D.

Observe that equivalence of categories is a generalization of isomorphism.
Indeed, two categories C,D are isomorphic if there are functors,

E : C→ D

F : D→ C
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such that

1C = GF

1D = FG

In the case of equivalence C ≃ D, we replace the identity natural transfor-
mations by natural isomorphisms.

Experience has shown that the mathematically significant properties of
objects are those that are invariant under isomorphisms, and in category the-
ory, identity of objects is a much less important relation than isomorphism.
So it’s really equivalence of categories that is the more important notion of
“similarity” for categories. One can think of equivalence of categories as
“isomorphism up to isomorphism”.

In the foregoing example Setsfin ≃ Ordfin, we see that every set is iso-
morphic to an ordinal, and the maps between ordinals are just the maps
between them as sets. Thus we have:

1. for every set A, there’s some ordinal n with A ∼= i(n),

2. for any ordinals n,m, there is an isomorphism

HomOrdfin
(n,m) ∼= HomSetsfin

(i(n), i(m))

where i : Ordfin → Setsfin is the inclusion functor.

In fact, these conditions are characteristic of equivalences, as the following
proposition shows.

Proposition 7.25. The following conditions on a functor F : C → D are
equivalent:

1. F is (part of) an equivalence of categories.

2. F is full and faithful and “essentially surjective” on objects: for every
D ∈ D there’s some C ∈ C such that FC ∼= D.

Proof. (1 implies 2) Take E : D→ C, and

α : 1C
∼
→ EF

β : 1D
∼
→ FE
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In C, for any C, we then have αC : C
∼
→ EF (C), and

C
αC

> EF (C)

C ′

f

∨

αC′

> EF (C ′)

EF (f)

∨

commutes for any f : C → C ′.
Thus, if F (f) = F (f ′), then EF (f) = EF (f ′), so f = f ′. So F is faithful.

Note that by symmetry, E is also faithful.
Now take any arrow

h : F (C)→ F (C ′) in D,

and consider

C
∼=

> EF (C)

C ′

f

∨

∼=
> EF (C ′)

E(h)

∨

where f = (αC′)−1 ◦ E(h) ◦ αC . Then we have also F (f) : F (C) → F (C ′)
and,

EF (f) = E(h) : EF (C)→ EF (C ′)

by the square:

C
αC

> EF (C)

C ′

f

∨

αC′

> EF (C ′)

EF (f)

∨



180 CHAPTER 7. FUNCTORS AND NATURALITY

Since E is faithful, F (f) = h. So F is also full.

Finally, for any object D ∈ D, we have:

β : 1D
∼
→ FE

so

βD : D ∼= F (ED), for ED ∈ C0

(2 implies 1) We need to define E : D→ C and natural transformations,

α : 1C
∼
→ EF

β : 1D
∼
→ FE

Since F is essentially surjective, for each D ∈ D0 we can pick some E(D) ∈
C0 such that there’s some βD : D

∼
→ FE(D). That gives E on objects, and

the proposed components of β : 1D → FE.

Given h : D → D′ in D, consider:

D
βD

> FE(D)

D′

h

∨

βD′

> FE(D′)

βD′ ◦ h ◦ β−1
D

∨

................

Since F : C→ D is full and faithful, we can find a unique arrow:

E(h) : E(D)→ E(D′)

with FE(h) = βD′ ◦ h ◦ β−1
D . It’s easy to see that then E : D → C is a

functor, and β : 1D
∼
→ FE is clearly a natural isomorphism.

To find α : 1C → EF , apply F to C and consider βFC : F (C) →
FEF (C). Since F is full and faithful, the preimage of βFC is an isomorphism,

αC = F−1(βFC) : C
∼
→ EF (C),

which is easily seen to be natural, since β is.
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7.9 Examples of equivalence

Example 7.26. Pointed sets and partial maps
Let Par be the category of sets and partial functions. An arrow

f : A ⇁ B

is a function |f | : Uf → B for some Uf ⊆ A. Identities in Par are the same
as those in Sets, i.e. 1A is the total identity function on A. The composite
of f : A ⇁ B and g : B ⇁ C is given as follows: Let U(g◦f) := f−1(Ug) ⊆ A,
and |g ◦f | : U(g◦f) → C is the horizontal composite indicated in the following
diagram, in which the square is a pullback,

|f |−1(Ug) > Ug
|g|

> C

Uf
∨

∨

|f |
> B

∨

∨

A
∨

∨

It’s easy to see that composition is associative and that the identities are
units.

The category of pointed sets,

Sets∗

has as objects, sets A equipped with a distinguished “point” a ∈ A, i.e. pairs:

(A, a) with a ∈ A

Arrows are functions that preserve the point, i.e. an arrow f : (A, a)→ (B, b)
is a function f : A→ B such that f(a) = b.

Now we show:

Proposition 7.27. Par ∼= Sets∗
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The functors establishing the equivalence are as follows:

F : Par→ Sets∗

is defined on an object A by F (A) = (A∪{∗}, ∗) where ∗ is a new point that
we add to A. We also write A∗ = A ∪ {∗}. For arrows, given f : A ⇁ B,
F (f) : A∗ → B∗ is defined by:

f∗(x) =

{
f(x) if x ∈ Uf

∗ otherwise.

Then clearly f∗(∗A) = ∗B, so in fact f∗ : A∗ → B∗ as required.
Coming back, the functor,

G : Sets∗ → Par

is defined on an object (A, a) by G(A, a) = A − {a} and for an arrow f :
(A, a)→ (B, b),

G(f) : A− {a}⇁ B − {b}

is the function with domain,

UG(f) = A− f−1(b)

defined by G(f)(x) = f(x) for every f(x) 6= b.
Now F ◦G is the identity on Par, because we’re just adding a new point

and then throwing it away. But G ◦ F is only naturally isomorphic to 1Sets∗

since we have:
(A, a) ∼= ((A− {a}) ∪ {∗}, ∗)

These sets are not equal, since a 6= ∗. It still needs to be checked, of course,
that F and G are functorial, and that the comparison (A, a) ∼= ((A− {a})∪
{∗}, ∗) is natural, but we leave these easy verifications to the reader.

Example 7.28. Slice categories and indexed families
For any set I, the functor category SetsI is the category of I-indexed

sets. The objects are I-indexed families of sets,

(Ai)i∈I

and the arrows are I-indexed families of functions,

(fi : Ai → Bi)i∈I : (Ai)i∈I −→ (Bi)i∈I
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This category has an equivalent description that is often quite useful: it is
equivalent to the slice category of Sets over I, consisting of arrows α : A→ I
and “commutative triangles” over I (see section 1.6),

SetsI ≃ Sets/I

Indeed, define functors,

Φ : SetsI −→ Sets/I

Ψ : Sets/I −→ SetsI

on objects as follows:

Φ((Ai)i∈I) = π :
∑

i∈I

Ai → I (the indexing projection)

Ψ(α : A→ I) = (α−1{i})i∈I

and analogously on arrows. We leave it as an exercise to show that these are
mutually pseudo-inverse functors. (Why are they not inverses?)

The equivalent description of SetsI as Sets/I has the advantage that the
slice category E/E makes sense for any object E in a general category E ,
where the functor category EE usually does not (for instance, in topological
spaces). This allows the intuition of an “E-indexed family of objects of E”
to be made precise. If E has pullbacks, reindexing along an arrow f : E → F
in E is then represented by the pullback functor f ∗ : E/F → E/E. This is
also worked out in the exercises.

Example 7.29. Stone duality
A class of examples of equivalences of categories are given by what are

called “dualities”. Often, classical duality theorems are not of the form
C ∼= Dop (much less C = Dop), but rather C ≃ Dop, i.e. C is equivalent
to the opposite (or “dual”) category of D. This is because the duality is
established by a construction which returns the original thing only up to
isomorphism, not “on the nose”. Here is a simple example, which is a very
special case of the far-reaching Stone-Duality theorem.

Proposition 7.30. The category of finite boolean algebras is equivalent to the
opposite of the category of finite sets,

BAfin ≃ Sets
op
fin
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Proof. The functors involved here are the contravariant powerset functor,

PBA : Sets
op
fin → BAfin

on one side (the powerset of a finite set is finite!). Going back, we will use
the functor,

A : BA
op
fin → Setsfin

taking the set of atoms of a boolean algebra,

A(B) = {a ∈ B | 0 < a and (b < a⇒ b = 0)}

In the finite case, this is isomorphic to the ultrafilter functor that we have
already studied (see 7.3).

Lemma 7.31. For any finite boolean algebra B, there is an isomorphism be-
tween atoms a in B and ultrafilters U ⊆ B, given by

U 7→
∧

b∈U

b

and
a 7→ ↑(a)

Proof. If a is an atom, then ↑ (a) is an ultrafilter, since for any b either
a ∧ b = a, and then b ∈↑(a), or a ∧ b = 0, and so ¬b ∈↑(a).

If U ⊆ B is an ultrafilter then 0 <
∧
b∈U b, because, since U is finite and

closed under intersections, we must have
∧
b∈U b ∈ U . If 0 6= b0 <

∧
b∈U b,

then b0 is not in U , so ¬b0 ∈ U . But then b0 < ¬b0, and so b0 = 0.
Plainly ↑(

∧
b∈U b) ⊆ U since b ∈ U implies

∧
b∈U b ⊆ b. Now let

∧
b∈U b ≤

a for some a not in U . Then ¬a ∈ U implies that also
∧
b∈U b ≤ ¬a, and so∧

b∈U b ≤ a ∧ ¬a = 0, which is impossible.

Since we know that the set of ultrafilters Ult(B) is contravariantly functo-
rial (it’s represented by the boolean algebra 2, see section 7.3), we therefore
also have a contravariant functor of atoms A ∼= Ult. The explicit description
of this functor is this: if h : B → B′ and a′ ∈ A(B′), then it follows from
the lemma that there’s a unique atom a ∈ B such that a′ ≤ h(b) iff a ≤ b
for all b ∈ B. To find this atom a, take the intersection over the ultrafilter
h−1(↑(a′)). Thus we can set A(h)(a′) = a, to get a function,

A(h) : A(B′)→ A(B)
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Of course, we must still check that this a pseudo-inverse for PBA : Sets
op
fin →

BAfin. The required natural isomorphisms,

αX : X → A(P(X))

βB : B → P(A(B))

are explicitly described as follows.
The atoms in a finite powerset P(X) are just the singletons {x} for x ∈ X,

thus αX(x) = {x} is clearly an isomorphism.
To define βB let,

βB(b) = {a ∈ A(B) | a ≤ b}

To see that βB is also iso, consider the proposed inverse,

(βB)−1(B) =
∨

a∈B

a for B ⊆ A(B)

The isomorphism then follows from the following lemma, the proof of which
is routine.

Lemma 7.32. For any finite boolean algebra B,

1. b =
∨
{a ∈ A(B) | a ≤ b}

2. If a is an atom and a ≤ b ∨ b′, then a ≤ b or a ≤ b′

Of course, one must still check that α and β really are natural transfor-
mations. This is left to the reader.

Finally, we remark that the duality,

BAfin ≃ Sets
op
fin

extends to one between all sets, on the one side, and the complete, atomic
boolean algebras, on the other,

caBA ≃ Setsop

where a boolean algebra B is complete if every subset U ⊆ B has a join∨
U ∈ B, and a complete homomorphism preserves these joins, and B is

atomic if every non-zero element 0 6= b ∈ B has some a ≤ b with a an atom.
Moreover, this is just the discrete case of the full Stone Duality Theorem,

which states an equivalence between the category of all boolean algebras
and the opposite of a certain category of topological spaces, called “Stone
spaces”, and all continuous maps between them. See the book by Johnstone
for details.
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7.10 Exercises

1. Using the fact that representable functors preserve finite limits, show
that for any sets A,B,C:

AB+C ∼= AB × AC .

Conclude that for any sets A, B with power sets P (A), P (B), etc.:

P (A+B) ∼= P (A)× P (B).

2. Consider the (covariant) composite functor,

F = PBA ◦ Ultop : BA→ Setsop → BA

taking each boolean algebra B to the powerset algebra of sets of ultra-
filters in B. Note that,

F(B) ∼= HomSets(HomBA(B, 2), 2)

is a sort of “double-dual” boolean algebra. There is always a homo-
morphism,

φB : B → F(B)

given by φB(b) = {V ∈ Ult(B) | b ∈ V}. Show that for any boolean
homomorphism h : A→ B, the following square commutes.

A
φA

> F(A)

B

h

∨

φB
> F(B)

F(h)

∨

3. Consider the forgetful functors:

Groups
U
−→Monoids

V
−→ Sets

Say whether each is faithful, full, injective on arrows, surjective on
arrows, injective on objects, surjective on objects.
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4. * Make every poset (X,≤) into a topological space by letting U ⊆ X be
open just if x ∈ U and x ≤ y implies y ∈ U (U is “closed upwards”).
This is called the Alexandroff topology on X. Show that it gives a
functor

A : Pos→ Top

from posets and monotone maps to spaces and continuous maps by
showing that any monotone map of posets f : P → Q is continuous
with respect to this topology on P and Q (the inverse image of an open
set must be open).

Is A faithful? Is it full?

How would the situation change if instead one took as open sets those
subsets that are closed downwards?

5. * Prove that every functor F : C→ D can be factored as

C
E
−→ E

M
−→ D

in the following two ways:

(a) E : C → E is bijective on objects and full, and M : E → D is
faithful;

(b) E : C → E surjective on objects and M : E → D is injective on
objects and full and faithful.

When do the two factorizations agree?

6. Show that a natural transformation is a natural isomorphism just if
each of its components is an isomorphism. Is the same true for monomor-
phisms?

7. Prove that for any finite boolean algebra B, the Stone representation,

φ : B → PUlt(B)

is an isomorphism of boolean algebras. Note the similarity to the case
of finite dimensional vector spaces.

8. Show that a functor category DC has binary products if D does (con-
struct the product of two functors F and G “objectwise”: (F×G)(C) =
F (C)×G(C)).
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9. Show that the map of sets

ηA : A −→ PP (A)

a 7−→ {U ⊆ A|a ∈ U}

is the component at A of a natural transformation η : 1Sets → PP ,
where P : Setsop → Sets is the (contravariant) power-set functor.

10. Let C be a locally small category. Show that there is a functor

Hom : Cop ×C→ Sets

such that for each object C of C,

Hom(C,−) : C→ Sets

is the covariant representable functor and

Hom(−, C) : Cop → Sets

is the contravariant one. (Hint: use the Bifunctor Lemma)

11. What sorts of properties of categories do not respect equivalence? Find
one that respects isomorphism, but not equivalence.

12. A category is skeletal if isomorphic objects are always identical. Show
that every category is equivalent to a skeletal subcategory. (Every
category has a “skeleton”.)

13. Complete the proof that, for any set I, the category of I-indexed fami-
lies of sets, regarded as the functor category SetsI , is equivalent to the
slice category Sets/I of sets over I.

SetsI ≃ Sets/I

Show that reindexing of families along a function f : J → I, given by
precomposition,

Setsf((Ai)i∈I) = (Af(j))j∈J
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is represented by pullback, in the sense that the following diagram of
categories and functors commutes up to natural isomorphism.

SetsI
≃

> Sets/I

SetsJ

Setsf

∨

≃
> Sets/J

f ∗

∨

Here f ∗ : Sets/J → Sets/I is the pullback functor along f : J → I.
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Chapter 8

Categories of Diagrams

In this chapter we will prove a very useful technical result called the Yoneda
Lemma. It’s probably the single most used result in category theory. Indeed,
it is amazing how often it comes up, especially in view of the fact that it is a
straightforward generalization of facts that we were able to show fairly easily
about monoids and posets.

8.1 Set-valued functor categories

We are going to focus on special functor categories of the form,

SetsC

where the category C is locally small. Thus the objects are set-valued func-
tors,

P,Q : C→ Sets

(sometimes called “diagrams on C”), and the arrows are natural transforma-
tions

α, β : P → Q

Remember that, for each object C ∈ C, we can evaluate any commutative

191
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diagram in SetsCop

,

P
α

> Q

@
@

@
@

@
βα

R

R

β

∨

at any object C to get a commutative diagram in Sets,

PC
αC

> QC

@
@

@
@

@
(βα)C

R

RC

βC

∨

(8.1)

Thus for each object C there is an evaluation functor,

evC : SetsCop

→ Sets

Moreover, naturality means that if we have any arrow f : D → C, we get a
“cylinder” over the diagram (8.1) in Sets. One way of thinking about such
functor categories that was already considered in section 7.7 is suggested by
considering the case where C is the category Γ pictured:

1 >
> 0

Then a set-valued functor G : Γ → Sets is just a graph, and a natural
transformation, α : G→ H is a graph homomorphism. Thus, for this case,

SetsΓ = Graphs

This suggests regarding an arbitrary category of the form SetsC as a
generalized “category of structured sets” and their “homomorphisms”; in-
deed, this is a very useful way of thinking of such functors and their natural
transformations.
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8.2 The Yoneda embedding

Among the objects of SetsC are certain very special ones, namely the (co-
variant) representable functors,

HomC(C,−) : C→ Sets

Observe that for each h : C → D in C, we have a natural transformation

HomC(h,−) : HomC(D,−)→ HomC(C,−)

(note the direction!) where the component at X is defined by

(f : D → X) 7→ (f ◦ h : C → X)

Thus we have a contravariant functor:

k : Cop → SetsC

defined by k(C) = HomC(C,−). Of course, this functor k is just the expo-
nential transpose of the bifunctor,

HomC : Cop ×C→ Sets

which was shown as an exercise to be functorial.
If we instead transpose HomC with respect to its other argument, we get

a covariant functor,
y : C→ SetsCop

from C to a category of contravariant set-valued functors, sometimes called
“presheaves”. (Or, what amounts to the same thing, we can put D = Cop

and apply the previous considerations to D in place of C.) More formally:

Definition 8.1. The Yoneda embedding is the functor y : C → SetsCop

taking C ∈ C to the contravariant representable functor,

yC = HomC(−, C) : Cop → Sets

and taking f : C → D to the natural transformation,

yf = HomC(−, f) : HomC(−, C)→ HomC(−, D)
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A functor F : C → D is called an embedding if it is full, faithful and
injective on objects. We will soon show that y really is an embedding; this
is a corollary of the Yoneda Lemma.

One should thus think of the Yoneda embedding y as a “representation”
of C in a category of set-valued functors and natural transformations on some
index category. Compared to the Cayley representation considered in section
1.5, this one has the virtue of being full : any map ϑ : yC → yD in SetsCop

comes from a unique map h : C → D in C as yh = ϑ. Indeed, recall that the
Cayley representation of a group G was an injective group homomorphism,

G ֌ Aut(|G|) ⊆ |G||G|

where each g ∈ G is represented as an automorphism g̃ of the set |G| of
elements (i.e. a “permutation”), by letting it “act on the left”,

g̃(x) = g · x

and the group multiplication is represented by composition of permutations,

g̃ · h = g̃ ◦ h̃

We also showed a generalization of this representation to arbitrary categories.
Thus for any monoid M , there is an analogous representation,

M ֌ End(|M |) ⊆ |M ||M |

by left action, representing the elements of M as endomorphisms of |M |.
Similarly, any poset P can be represented as a poset of subsets and in-

clusions by considering the poset Low(P ) of “lower sets” A ⊆ P , i.e. subsets
that are “closed down” in the sense that a′ ≤ a ∈ A implies a′ ∈ A, ordered
by inclusion. Taking the “principal lower set”

↓(p) = {q ∈ P | q ≤ p}

of each element p ∈ P determines a monotone injection,

↓ : P ֌ Low(P ) ⊆ P(|P |)

such that p ≤ q iff ↓(p) ⊆ ↓(q).
The representation given by the Yoneda embedding is “better” than these

in that it cuts down the arrows in the codomain category to just those in the
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image of the representation functor y : C→ SetsCop

(since y is full). Indeed,
there may be many automorphisms α : G→ G of a group G that are not left
actions by an element, but if we require α to commute with all right actions
α(x·g) = α(x)·g, then α must itself be a left action. This is what the Yoneda
embedding does in general; it adds enough “structure” to the objects yA in
the image of the representation that the only “homomorphisms” ϑ : yA→ yB
between those objects are the representable ones ϑ = yh for some h : A→ B.
In this sense, the Yoneda embedding y represents the objects and arrows of
C as certain “structured sets” and (all of ) their “homomorphisms”.

8.3 The Yoneda lemma

Lemma 8.2 (Yoneda). Let C be locally small. For any object C ∈ C, and
functor F ∈ SetsCop

, there’s an isomorphism,

Hom(yC, F ) ∼= FC,

which, moreover, is natural in both F and C.

Here:

1. the Hom is HomSetsC
op

2. naturality in F means that, given any ϑ : F → G, the following diagram
commutes:

Hom(yC, F )
∼=

> FC

Hom(yC,G)

Hom(yC, ϑ)

∨

∼=
> GC

ϑC

∨

3. naturality in C means that, given any h : C → D, the following diagram
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commutes:

Hom(yC, F )
∼=

> FC

Hom(yD, F )

Hom(yh, F )

∧

∼=
> FD

Fh

∧

Proof. To define the desired isomorphism,

ηC,F : Hom(yC, F )
∼=
−→ FC

take ϑ : yC → F and let
ηC,F (ϑ) = ϑC(1C)

which we shall also write as,

xϑ = ϑC(1C)

where ϑC : C(C,C)→ FC and so ϑC(1C) ∈ FC.
Conversely, given any a ∈ FC we define the natural transformation ϑa :

yC → F as follows. Given any C ′ we define the component,

(ϑa)C′ : Hom(C ′, C)→ FC ′

by setting:
(ϑa)C′(h) = F (h)(a)

for h : C ′ → C.
To show that ϑa is natural, take any f : C ′′ → C ′, and consider the

diagram:

Hom(C ′′, C)
(ϑa)C′′

> FC ′′

Hom(C ′, C)

Hom(f, C)

∧

(ϑa)C′

> FC ′

F (f)

∧
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We then calculate, for any h ∈ yC(C ′):

(ϑa)C′′ ◦ Hom(f, C)(h) = (ϑa)C′′(h ◦ f)

= F (h ◦ f)(a)

= F (f) ◦ F (h)(a)

= F (f)(ϑa)C′(h).

So ϑa is indeed natural.
Now to show that ϑa and xϑ are mutually inverse, let us calculate ϑxϑ

for
a given ϑ : yC → F . First, just from the definitions, we have that for any
h : C ′ → C,

(ϑ(xϑ))C′(h) = F (h)(ϑC(1C))

But since ϑ is natural, the following commutes.

yC(C)
ϑC

> FC

yC(C ′)

yC(h)

∨

ϑC′

> FC ′

Fh

∨

So, continuing,

(ϑ(xϑ)
)C′(h) = F (h)(ϑC(1C))

= ϑC′ ◦ yC(h)(1C)

= ϑC′(h)

Therefore ϑ(xϑ) = ϑ.
Going the other way around, for any a ∈ FC we have:

xϑa = (ϑa)C(1C)

= F (1C)(a)

= 1FC(a)

= a

Thus Hom(yC, F ) ∼= FC, as required.
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The naturality claims are also easy: given φ : F → F ′, taking ϑ ∈
Hom(yC, F ), and chasing around the diagram:

(yC, F )
ηC,F

> FC

(yC, F ′)

(yC, φ)

∨

ηC,F ′

> F ′C

φC

∨

we get:

φC(xϑ) = φC(ϑC(1C))

= (φϑ)C(1C)

= x(φϑ)

= ηC,F ′((yC, φ)(ϑ)).

For naturality in C, take some f : C ′ → C. We then have:

ηC′(yf)∗(ϑ) = ηC′(ϑ ◦ yf)

= (ϑ ◦ yf)C′(1C′)

= ϑC′ ◦ (yf)C′(1C′)

= ϑC′(f ◦ 1C′)

= ϑC′(f)

= ϑC′(1C ◦ f)

= ϑC′ ◦ (yC)(f)(1C)

= F (f) ◦ ϑC(1C)

= F (f)ηC(ϑ)

The penultimate equation is by the naturality square,

yC(C)
ϑC

> F (C)

yC(C ′)

yC(f)

∨

ϑC′

> F (C ′)

F (f)

∨
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Therefore, ηC′ ◦ (yf)∗ = F (f) ◦ ηC .

We leave the naturality in F as an exercise.

The Yoneda lemma is used to prove our first “theorem”:

Theorem 8.3. The Yoneda embedding y : C→ SetsCop

is full and faithful.

Proof. For any objects C,D ∈ C we have an isomorphism,

HomC(C,D) = yD(C) ∼= HomSetsC
op (yC, yD)

And this isomorphism is indeed induced by the functor y, since it takes
h : C → D to the natural transformation ϑh : yC → yD given by:

(ϑh)C′(f : C ′ → C) = yD(f)(h)

= HomC(f,D)(h)

= h ◦ f

= (yh)C′(f).

So ϑh = y(h).

Remark 8.4. Note the following:

• If C is small, then SetsCop

is locally small, and so Hom(yC, P ) in
SetsCop

is a set.

• If C is locally small, then SetsCop

need not be locally small. In this
case, the Yoneda Lemma tells us that Hom(yC, P ) is always a set.

• If C is not locally small, then y : C→ SetsCop

won’t even be defined,
so the Yoneda Lemma does not apply.

Finally, observe that the Yoneda embedding y : C → SetsCop

is also
injective on objects. For, given objects A,B in C, if yA = yB then 1C ∈
Hom(C,C) = yC(C) = yD(C) = Hom(C,D) implies C = D.
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8.4 Applications of the Yoneda Lemma

One frequent sort of application of the Yoneda Lemma is of the following
form: given objects A,B in a category C, to show that A ∼= B it suffices to
show that yA ∼= yB in SetsCop

. This results from the theorem and the fact
that, if F : C → D is any full and faithful functor, then FA ∼= FB clearly
implies A ∼= B. We record this as the following.

Corollary 8.5. Given objects A and B in any locally small category C,

yA ∼= yB implies A ∼= B

A typical such case is this. In any cartesian closed category C, there is
an isomorphism:

(AB)C ∼= A(B×C)

Recall how involved it was to prove this directly, using the compound uni-
versal mapping property. Now we just need to show that:

y((AB)C) ∼= y(A(B×C)).

To that end, take any object X ∈ C, then we have isomorphisms,

Hom(X, (AB)C) ∼= Hom(X × C,AB)
∼= Hom((X × C)× B,A)
∼= Hom(X × (B × C), A)

∼= Hom(X,A(B×C))

Of course, it must be checked that these isomorphisms are natural in X, but
that’s left as an easy exercise.

Let us do another example of this kind.

Proposition 8.6. If the cartesian closed category C has coproducts, then C

is “distributive”, i.e. there is a canonical isomorphism:

A× (B + C) ∼= (A×B) + (A× C)
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Proof. As in the previous proposition, we check that:

Hom(A× (B + C), X) ∼= Hom(B + C,XA)

∼= Hom(B,XA)× Hom(C,XA)
∼= Hom(A× B,X)× Hom(A× C,X)
∼= Hom((A× B) + (A× C), X)

Finally, one sees easily that these isos are all natural in X.

We have already seen a simple logical example of the Yoneda Lemma: to
show that in the propositional calculus one has ϕ ⊣⊢ ψ for some formulas
ϕ, ψ, it suffices to show that for any formula ϑ, one has ϑ ⊢ ϕ iff ϑ ⊢ ψ.

More generally, given any objects A,B in a locally small category C, to
find an arrow h : A → B it suffices to give one ϑ : yA → yB in SetsCop

,
for then there is a unique h with ϑ = yh. Why should it be easier to give
an arrow yA → yB than one A → B? The key difference is that in general
SetsCop

has much more structure to work with than does C; as we’ll see, it
is complete, cocomplete, cartesian closed, and more. So one can use various
“higher-order” tools, from limits to λ-calculus; and if the result is an arrow
of the form yA → yB, then it comes from a unique one A → B — despite
the fact that C may not admit the “higher-order” constructions. In that
sense, the category SetsCop

is like an extension of C by “ideal elements”
that permit calculations which can’t be done in C. This is something like
passing to the complex numbers to solve equations in the reals, or adding
higher types to an elementary logical theory.

8.5 Limits in categories of diagrams

Recall that a category E is said to be complete if it has all small limits;
that is, for any small category J and functor F : J → E there’s a limit
L = lim←−j∈J Fj in E and a “cone” η : ∆L→ F in EJ , universal among arrows

from constant functors ∆E. Here the constant functor ∆ : E → EJ is the
transposed projection E ×J → E . It provides a convenient way of organizing
cones and their arrows.

Proposition 8.7. For any locally small category C, the functor category
SetsCop

is complete. Moreover, for every object C ∈ C the evaluation func-
tor,

evC : SetsCop

→ Sets
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preserves all limits.

Proof. Suppose we have J small and F : J → SetsCop

. The limit of F , if it
exists, is an object in SetsCop

, hence a functor,

(lim←−
i∈J

Fi) : Cop → Sets

By the Yoneda Lemma, if we had such a functor, then for each object C ∈ C

we’d have a natural isomorphism,

(lim←−Fi)(C) ∼= Hom(yC, lim←−Fi)

But then it would be the case that,

Hom(yC, lim
←−

Fi) ∼= lim
←−

Hom(yC, Fi) in Sets

∼= lim
←−

Fi(C) in Sets

where the first isomorphism is because representable functors preserve limits,
and the second is Yoneda again. Thus if we simply define the limit lim←−i∈J Fi
to be:

(lim
←−
i∈J

Fi)(C) = lim
←−
i∈J

(FiC), (8.2)

i.e. the pointwise limit of the functors Fi, the foregoing argument shows that
it is a limit in SetsCop

.
The reader can easily work out how lim←−Fi acts on C-arrows, and what the

universal cone is. Finally, the preservation of limits by evaluation functors is
stated by (8.2).

8.6 Colimits in categories of diagrams

The notion of cocompleteness is of course the dual of completeness: a category
is cocomplete if it has all (small) colimits. Like the foregoing proposition
about the completeness of SetsCop

, its cocompleteness actually follows simply
from the fact that Sets is cocomplete. We leave the proof of the following
as an exercise.

Proposition 8.8. Given any categories C and D, if D is cocomplete, then so
is the functor category DC, and the colimits in DC are “computed pointwise”,
in the sense that for every C ∈ C, the evaluation functor

evC : DC → D
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preserves colimits. Thus for any small index category J and functor, A :
J → DC, for each C ∈ C there is a canonical isomorphism,

lim
−→
j∈J

(AjC) ∼= (lim
−→
j∈J

Aj)(C)

Proof. Exercise.

Corollary 8.9. For any locally small C, the functor category SetsCop

is
cocomplete, and colimits there are computed pointwise.

Proposition 8.10. For any small category C, every object P in the functor
category SetsCop

is a colimit of representable functors,

lim
−→
j∈J

yAj ∼= P

More precisely, there is a canonical choice of an index category J and a
functor A : J → C such that there is a natural isomorphism lim

−→J
y◦A ∼= P .

Proof. Given P : Cop → Sets, the index category we need is the so-called
category of elements of P , written,

∫

C

P

and defined as follows.

objects: pairs (x, C) where C ∈ C and x ∈ PC,

arrows: an h : (x′, C ′)→ (x, C) is an arrow h : C ′ → C in C such that

P (h)(x) = x′ (8.3)

actually, the arrows are triples of the form (h, (x′, C ′), (x, C)) satisfy-
ing (8.3).

The reader can easily work out the obvious identities and composites. See
Figure 8.1.

Note that
∫
C
P is a small category since C is small. There is a “projec-

tion” functor,

π :

∫

C

P → C
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Figure 8.1: Category of elements

defined by π(x, C) = C and π(h, (x′, C ′), (x, C)) = h.

To define the cocone of the form y ◦ π → P , take an object (x, C) ∈∫
C
P and observe that (by the Yoneda lemma) there is a natural, bijective

correspondence between,

x ∈ P (C)

x : yC → P

which we simply identify notationally. Moreover, given any arrow h : (x′, C ′)→
(x, C) naturality in C implies that there is a commutative triangle,

yC

@
@

@
@

@

x

R

P

�
�

�
�

�

x′

�

yC ′

yh

∧
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Indeed, the category
∫
C
P is equivalent to the full subcategory,

y/P ֌ SetsCop

/P

of the slice category over P on the objects (i.e. arrows in SetsCop

) with
representable domains.

We can therefore take the component of the desired cocone yπ → P at
(x, C) to be simply x : yC → P . To see that this is a colimiting cocone,
take any cocone yπ → Q with components ϑ(x,C) : yC → Q, and we require
a unique natural transformation ϑ : P → Q as indicated in the following
diagram:

yC

@
@

@
@

@
x

R

HHHHHHHHHHHH

ϑ(x,C)

j
P ......................

ϑ
> Q

�
�

�
�

�
x′

�

������������

ϑ(x′,C′)

*

yC ′

yh

∧

We can define ϑC : PC → QC by setting

ϑC(x) = ϑ(x,C)

where we again identify,
ϑ(x,C) ∈ Q(C)

ϑ(x,C) : yC → Q

This assignment is easily seen to be natural in C, again by the natural iso-
morphism of the Yoneda lemma. We leave the remaining verification of
uniqueness to the reader as well.

We include the following because it fits naturally here, but defer the proof
to the next chapter, where a neat proof can be given using adjoint functors.
The reader may wish to prove it at this point using the materials at hand,
which is also quite do-able.
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Proposition 8.11. For any small category C, the Yoneda embedding

y : C→ SetsCop

is the “free cocompletion” of C, in the following sense. Given any cocomplete
category E and functor F : C → E , there is a colimit preserving functor
F! : SetsCop

→ E , unique up to natural isomorphism with the property,

F! ◦ y ∼= A

as indicated in the following diagram.

SetsCop ................
F!

> E

�
�

�
�

�

F

�

C

y

∧

Proof. (Sketch, see proposition 9.16 below.) Given F : C → E , define F! as
follows. For any P ∈ SetsCop

, let

lim
−→
j∈J

yAj ∼= P

be the canonical presentation of P as a colimit of representables, with J =∫
C
P the category of elements of P . Then set,

F!(P ) = lim−→
j∈J

F (Aj)

which exists since E is cocomplete.

8.7 Exponentials in categories of diagrams

As an application, let us consider exponentials in categories of the form
SetsCop

for small C. We will need the following lemma.

Lemma 8.12. For any small index category J , functor A : J → SetsCop

and diagram B ∈ SetsCop

, there is a natural isomorphism:

lim−→
j

(Aj × B) ∼= (lim−→
j

Aj)× B (8.4)

Briefly, the functor −× B : SetsCop

→ SetsCop

preserves colimits.
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Proof. To specify the canonical natural transformation mentioned in (8.4),
start with the cocone,

ϑj : Aj → lim−→
j

Aj j ∈ J

apply the functor −× B to get a cocone,

ϑj ×B : Aj ×B → (lim
−→
j

Aj)×B j ∈ J

and so there is a “comparison arrow” from the colimit,

ϑ : lim−→
j

(Aj ×B)→ (lim−→
j

Aj)×B

which we claim is a natural isomorphism.
By a past exercise, it suffices to show that each component,

ϑC : (lim
−→
j

(Aj ×B))(C)→ ((lim
−→
j

Aj)× B)(C)

is iso. But since the limits and colimits involved are all computed pointwise,
it therefore suffices to show (8.4) under the assumption that the Aj and
B are just sets. To that end, take any set X and consider the following
isomorphisms in Sets,

Hom(lim−→
j

(Aj ×B), X) ∼= lim←−
j

Hom(Aj ×B,X)

∼= lim
←−
j

Hom(Aj , X
B) (Sets is CCC)

∼= Hom(lim
−→
j

Aj , X
B)

∼= Hom((lim
−→
j

Aj)×B,X)

Since these are natural in X, the claim follows by Yoneda.

Now suppose we have functors P,Q and we want QP . The reader should
try to construct the exponential “pointwise”,

QP (C)
?
= Q(C)P (C)



208 CHAPTER 8. CATEGORIES OF DIAGRAMS

to see that it does not work (it’s not functorial).
If we had such an exponential QP , we could compute its value at any

object C ∈ C by Yoneda:

QP (C) ∼= Hom(yC,QP )

And if it’s to be an exponential, then we must also have:

Hom(yC,QP ) ∼= Hom(yC × P,Q)

But this latter set does exist. Thus, we can just define:

QP (C) = Hom(yC × P,Q) (8.5)

with the action on h : C ′ → C being:

QP (h) = Hom(yh× 1P , Q)

This is clearly a contravariant, set-valued functor on C. Let us now check
that it indeed gives an exponential of P and Q.

Proposition 8.13. For any objects X,P,Q in SetsCop

, there is an isomor-
phism, natural in X,

Hom(X,QP ) ∼= Hom(X × P,Q)

Proof. By proposition 8.10, for a suitable index category J , we can write X
as a colimit of representables,

X ∼= lim
−→
j∈J

yCj

Thus we have isomorphisms,

Hom(X,QP ) ∼= Hom(lim−→
j

yCj, Q
P )

∼= lim
←−
j

Hom(yCj, Q
P )

∼= lim←−
j

QP (Cj) (Yoneda)

∼= lim←−Hom(yCj × P,Q) (8.5)

∼= Hom(lim
−→
j

(yCj × P ), Q)

∼= Hom(lim
−→
j

(yCj)× P,Q) (lemma 8.12)

∼= Hom(X × P,Q)
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And these isos are clearly natural in X.

Theorem 8.14. For any small category C, the category of diagrams SetsCop

is cartesian closed. Moreover, the Yoneda embedding,

y : C→ SetsCop

preserves all products and exponentials that exist in C.

Proof. In light of the foregoing proposition, it only remains to show that y
preserves products and exponentials. We leave this as an exercise.

8.8 Topoi

Since we are now so close to it, we might as well introduce the important
notion of a “topos”, even though this is not the place to develop that the-
ory, as appealing as it is. First we require the following generalization of
characteristic functions of subsets.

Definition 8.15. Let E be a category with all finite limits. A subobject
classifier in E consists of an object Ω together with an arrow t : 1→ Ω that
is a “universal subobject”, in the following sense:

Given any object E and any subobject U ֌ E, there is a unique
arrow u : E → Ω making the following diagram a pullback.

U > 1

E
∨

∨

u
> Ω

t

∨

(8.6)

The arrow u is called the classifying arrow of the subobject U ֌ E; it
can be thought of as taking exactly the part of E that is U to the “point”
t of Ω. The most familiar example of a subobject classifier is of course the
set 2 = {0, 1} with a selected element as t : 1→ 2. Then the fact that every
subset U ⊆ S of any set S has a unique characteristic function u : S → 2 is
exactly the subobject classifier condition.
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It is easy show that a subobject classifier is unique up to isomorphism:
the pullback condition is clearly equivalent to requiring the contravariant
subobject functor,

SubE(−) : Eop → Sets

(which acts by pullback) to be representable:

SubE(−) ∼= HomE(−,Ω).

The required isomorphism is just the pullback condition stated in the defini-
tion of a subobject classifier.

Definition 8.16. A topos is a category E such that:

1. E has all finite limits,

2. E has a subobject classifier,

3. E has all exponentials.

This compact definition proves to be amazingly rich in consequences: it
can be shown for instance that topoi also have all finite colimits and that
every slice category of a topos is again a topos. We refer the reader to the
books by Mac Lane and Moerdijk, Johnstone, and McLarty for information
on topoi, and here just give an example (albeit one the covers a very large
number of cases).

Proposition 8.17. For any small category C, the category of diagrams
SetsCop

is a topos.

Proof. Since we already know that SetsCop

has all limits, and we know that
it has exponentials by the foregoing section, we just need to find a subobject
classifier. To that end, for any category C we define a sieve on an object C
to be any set S of arrows f : · → C (with arbitrary domain) that is closed
under precomposition, i.e. if f : D → C is in S then so is f ◦g : E → D → C
for every g : E → D (think of a sieve as a generalization of a “lower set” in
a poset). Then let:

Ω(C) = {S ⊆ C1 | S is a sieve on C}

and given h : D → C let:

h∗ : Ω(C)→ Ω(D)
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be defined by:
h∗(S) = {g : · → D | h ◦ g ∈ S}.

This clearly defines a presheaf Ω : Cop → Sets, with a distinguished point,

t : 1→ Ω,

namely, at each C, the “total sieve”:

tC = {f : · → C}.

We claim that t : 1 → Ω so defined is a subobject classifier for SetsCop

.
Indeed, given any object E and subobject U ֌ E, define u : E → Ω at any
object C ∈ C by:

uC(e) = {f : D → C | f ∗(e) ∈ U(D) ֌ E(D)}

for any e ∈ E(C). That is, uC(e) is the sieve of arrows into C that take
e ∈ E(C) back into the subobject U .

The reader should verify that this specification does indeed determine a
unique classifying morphism for U ֌ E.

Remark 8.18. One of the most fascinating aspects of topoi is their relation
to logic. In virtue of the association of subobjects U ֌ E with arrows
u : E → Ω, the subobject classifier Ω can be regarded as an object of
“propositions” or “truth-values”, with t = true. An arrow u : E → Ω is then
a “propositional function” of which U ֌ E is the “extension”. For, by the
pullback condition (8.6), a generalized element x : X → E is “in” U (i.e.
factors through U ֌ E) just if ux = true,

x ∈E U iff ux = true,

so that, again in the notation of section 5.1:

U = {x ∈ E | ux = true}.

This permits an interpretation of first-order logic in any topos, since topoi
also have a way of modeling the logical quantifiers ∃ and ∀ as adjoints to
pullbacks (as will be described in section 9.5 below).

Since topoi are also cartesian closed, they have an internal type theory
described by the λ-calculus (see section 6.5). Combining this with the first-
order logic and subobject classifier Ω provides a natural interpretation of
higher-order logic, essentially employing the exponential ΩE as a “power
object” P (E) of subobjects of E. This logical aspect of topoi is also treated
in loc. cit..
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8.9 Exercises

1. If F : C→ D is full and faithful, then C ∼= C ′ iff FC ∼= FC ′.

2. Let C be a locally small, cartesian closed category. Use the Yoneda
embedding to show that for any objects A,B,C in C:

(A×B)C ∼= AC ×BC

(cf. Problem 1, chapter 6). If C also has binary coproducts, show that
also:

A(B+C) ∼= AB × AC

3. For any locally small category C, the functor category SetsCop

has
binary products F ×G, and these are computed pointwise:

(F ×G)(C) ∼= FC ×GC

for all C ∈ C0.

4. Let C be a locally small category with binary products, and show that
the Yoneda embedding

y : C→ SetsCop

preserves them. (Hint: this involves only a few lines of calculation.)

If C also has exponentials, show that y also preserves them.

5. Use the Yoneda Lemma to show that for any set A, the functor,

A×− : Sets→ Sets

preserves all colimits,

A× lim−→
i

Bi
∼= lim−→

i

(A× Bi)

for any diagram i : I → Sets.

6. (a) Explicitly determine the subobject classifiers for the topoi Sets2

and Setsω, where as always 2 is the poset 0 < 1 and ω is the poset
of natural numbers 0 < 1 < 2 < . . ..

(b) Show that (Setsfin)
2 is a topos.



Chapter 9

Adjoints

This chapter represents the high point of this book, the goal toward which
we have been working steadily. The notion of adjoint functor applies every-
thing that we’ve learned up to now to unify and subsume all the different
universal mapping properties that we have encountered, from free groups to
limits to exponentials. But more importantly, it also captures an important
mathematical phenomenon that is invisible without the lens of category the-
ory. Indeed, I will make the admittedly provocative claim that adjointness
is a concept of fundamental logical and mathematical importance that is not
captured elsewhere in mathematics.

Many of the most striking applications of category theory involve adjoints,
and many important and fundamental mathematical notions are instances
of adjoint functors. As such, they share the common behavior and formal
properties of all adjoints, and in many cases this fact alone accounts for all
of their essential features.

9.1 Preliminary definition

We begin by recalling the universal mapping property of free monoids: every
monoid M has an underlying set U(M), and every set X has a free monoid
F (X), and there is a function,

iX : X → UF (X)

with the UMP:

213
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For every monoid M and every function f : X → U(M) there is
a unique homomorphism g : F (X)→M such that f = U(g)◦ iX ,
all as indicated in the diagram:

F (X) ..................
g

>M

UF (X)
U(g)

> U(M)

�
�

�
�

�

f

�

X

iX

∧

Now consider the following map,

φ : HomMon(F (X),M)→ HomSets(X,U(M))

defined by:
g 7→ U(g) ◦ iX

The UMP above says exactly that φ is an isomorphism,

HomMon(F (X),M) ∼= HomSets(X,U(M)) (9.1)

This bijection (9.1) can also be written schematically as a 2-way rule:

F (X) >M

X > U(M)

where one gets from an arrow g of the upper form to one φ(g) of the lower
form by the recipe,

φ(g) = U(g) ◦ iX

We pattern our preliminary definition of adjunction on this situation. It
is preliminary because it really only gives half of the picture, as it were; in the
next section, an equivalent definition will emerge as both more convenient
and conceptually clearer.

Definition 9.1 (preliminary). An adjunction between categories C and D

consists of functors,

F : C <
> D : U
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and a natural transformation,

η : 1C → U ◦ F

with the property:

(*) For any C ∈ C, D ∈ D, and f : C → U(D), there exists a
unique g : FC → D such that:

f = U(g) ◦ ηC

as indicated in:

F (C) ....................
g

> D

U(F (C))
U(g)

> U(D)

�
�

�
�

�

f

�

C

ηC

∧

Terminology and notation:

• F is called the left adjoint, U is called the right adjoint, and η is called
the unit of the adjunction.

• One sometimes writes F ⊣ U for “F is left and U right adjoint”.

• The statement (*) is the UMP of the unit η.

Note that the situation F ⊣ U is a generalization of equivalence of cat-
egories, in that a pseudo-inverse is an adjoint. In that case, however, it is
the relation between categories that one is interested in. Here, one is con-
cerned with the relation between specific functors. Thus it is not the relation
on categories “there exists an adjunction”, but rather “this functor has an
adjoint” that we are concerned with.

Suppose now that we have an adjunction in this sense,

C <
U

F
> D
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Then, as in the example of monoids, take C ∈ C and D ∈ D and consider
the operation:

φ : HomD(FC,D)→ HomC(C,UD)

given by φ(g) = U(g) ◦ ηC . Since, by the UMP of η, every f : C → UD is
φ(g) for a unique g, just as in our example we see that φ is an isomorphism:

HomD(F (C), D) ∼= HomC(C,U(D)) (9.2)

which, again, can be displayed as the two-way rule:

F (C) >D

C > U(D)

Example 9.2. Consider the “diagonal” functor,

∆ : C→ C×C

defined on objects by:
δ(C) = (C,C)

and on arrows by:

∆(f : C → C ′) = (f, f) : (C,C)→ (C ′, C ′)

What would it mean for this functor to have a right adjoint? We would need
a functor R : C×C→ C such that for all C ∈ C and (X, Y ) ∈ C×C, there
is a bijection:

∆C > (X, Y )

C > R(X, Y )

That is, we would have:

HomC(C,R(X, Y )) ∼= HomC×C(∆C, (X, Y ))
∼= HomC(C,X)× HomC(C, Y )

We therefore must have R(X, Y ) ∼= X × Y , suggesting that ∆ has as a right
adjoint the product functor ×,

∆ ⊣ ×
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The counit η would have the form ηC : C → C × C, so we propose the
“diagonal arrow” ηC = 〈1C , 1C〉, and we need to check the UMP indicated in
the following.

(C,C) .............................
(f1, f2)

> (X, Y )

C × C
f1 × f2

>X × Y

�
�

�
�

�
�

�
�

�

f

3

C

ηC

∧

Indeed, given any f : C → X×Y , we have unique f1 and f2 with f = 〈f1, f2〉,
for which we then have:

(f1 × f2) ◦ ηC = 〈f1π1, f2π2〉ηC

= 〈f1π1ηC , f2π2ηC〉

= 〈f1, f2〉

= f

Thus in sum, the functor ∆ has a right adjoint if and only if C has binary
products.

Example 9.3. For an example of a different sort, consider the category Pos of
posets and monotone maps and CPos of cocomplete posets and cocontinuous
maps. A poset C is cocomplete just if it has a join

∨
i ci for every family of

elements (ci)i∈I indexed by a set I, and a monotone map f : C → D is
cocontinuous if it preserves all such joins, f(

∨
i ci) =

∨
i f(ci). There is an

obvious forgetful functor,

U : CPos→ Pos

What would a left adjoint F ⊣ U be? There would have to be a monotone
map η : P → UF (P ) with the property: given any cocomplete poset C and
monotone f : P → U(C), there exists a unique cocontinuous f̄ : F (P ) → C



218 CHAPTER 9. ADJOINTS

such that f = U(f̄) ◦ ηP , as indicated in:

F (P ) ...................
f̄

> C

UF (P )
U(f̄)

> U(C)

�
�

�
�

�

f

�

P

η

∧

In this precise sense, such a poset F (P ) would be a “free cocompletion” of
P , and η : P → UF (P ) a “best approximation” of P by a cocomplete poset.

We leave it to the reader to show that such a “cocompletion” always
exists, namely the poset of lower sets,

Low(P ) = {U ⊆ P | p′ ≤ p ∈ U implies p′ ∈ U}

9.2 Hom-set definition

The following proposition shows that the isomorphism (9.2) is in fact natural
in both C and D.

Proposition 9.4. Given categories and functors,

C <
U

F
> D

the following conditions are equivalent:

1. F is left adjoint to U ; i.e., there is a natural transformation,

η : 1C → U ◦ F

that has the UMP of the unit:

For any C ∈ C, D ∈ D, and f : C → U(D), there exists a
unique g : FC → D such that:

f = U(g) ◦ ηC
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2. For any C ∈ C and D ∈ D there’s an isomorphism,

φ : HomD(FC,D) ∼= HomC(C,UD)

that is natural in both C and D.

Moreover, the two conditions are related by the formulas:

φ(g) = U(g) ◦ ηC

ηC = φ(1FC)

Proof. (1 implies 2) The recipe for φ, given η is just the one stated, and we
have already observed it to be an isomorphism, given the UMP of the unit.
For naturality in C, take h : C ′ → C and consider the following diagram:

HomD(FC,D)
φC,D
∼=

> HomC(C,UD)

HomD(FC ′, D)

(Fh)∗

∨ ∼=

φC′,D

> HomC(C ′, UD)

h∗

∨

Then for any f : FC → D we have,

h∗(φC,D(f)) = (U(f) ◦ ηC) ◦ h

= U(f) ◦ UF (h) ◦ ηC′

= U(f ◦ F (h)) ◦ ηC′

= φC′,D(F (h)∗(f))

For naturality in D, take g : D → D′ and consider the diagram:

HomD(FC,D)
φC,D
∼=

> HomC(C,UD)

HomD(FC,D′)

g∗

∨ ∼=

φC′,D

> HomC(C,UD′)

U(g)∗

∨
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Then for any f : FC → D we have,

U(g)∗(φC,D(f)) = U(g) ◦ (U(f) ◦ ηC)

= U(g ◦ f) ◦ ηC

= φC′,D(g ◦ f) ◦ ηC

= φC′,D(g∗(f)) ◦ ηC

So φ is indeed natural.
(2 implies 1) We’re given a bijection φ,

F (C) >D

C > U(D)
(9.3)

for each C,D, that is natural in C and D. In detail, this means that given a
commutative triangle:

F (C)
f

>D

@
@

@
@

@
g ◦ f

R

D′

g

∨

there are two ways to get an arrow of the form C → UD′, namely:

C
φ(f)

> UD

@
@

@
@

@
φ(g ◦ f)

R

UD′

U(g)

∨

Naturality in D means that this diagram commutes:

φ(g ◦ f) = U(g) ◦ φ(f)

Dually, naturality in C means that given:

C ′

@
@

@
@

@

f ◦ h

R

C

h

∨

f
> UD
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and writing ψ = φ−1, the following commutes:

FC ′

@
@

@
@

@

ψ(f ◦ h)

R

FC

Fh

∨

ψ(f)
>D

That is:
ψ(f ◦ h) = ψ(f) ◦ F (h)

Now, given such a natural bijection φ we want, a natural transformation,

η : 1C → U ◦ F

with the UMP of the unit. To find

ηC : C → UFC

we put FC for D and 1FC : FC → FC in the adjoint schema (9.3) to get

1FC : FC > FC
φ

ηC : C > UFC

That is, we define:
ηC = φ(1FC)

Finally, to see that η has the required UMP of the unit, it clearly suffices to
show that for all g : FC → D, we have

φ(g) = U(g) ◦ ηC ,

since we’re assuming that φ is iso. But:

Ug ◦ ηC = Ug ◦ φ(1FC)

= φ(g ◦ 1FC)

= φ(g).
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Note that the second condition in the proposition is symmetric, but the
first condition is not. This implies that we also have following dual proposi-
tion.

Corollary 9.5. Given categories and functors,

C <
U

F
> D

the following conditions are equivalent:

1. For any C ∈ C, D ∈ D there is an isomorphism,

φ : HomD(FC,D) ∼= HomC(C,UD)

that is natural in C and D.

2. There’s a natural transformation,

ǫ : F ◦ U → 1D

with the following UMP:

For any C ∈ C, D ∈ D and g : F (C) → D, there exists a
unique f : C → UD such that:

g = ǫD ◦ F (f)

as indicated in the diagram:

C ..................
f

> U(D)

F (C)
F (f)

> FU(D)

@
@

@
@

@
g

R

D

ǫD

∨
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Moreover, the two conditions are related by the equations:

ψ(f) = ǫD ◦ F (f)

ǫD = ψ(1UD)

where ψ = φ−1.

Proof. Duality.

We take the symmetric “Hom-set” formulation as our “official” definition
of an adjunction:

Definition 9.6 (“official”). An adjunction consists of functors

F : C <
> D : U

and a natural isomorphism:

φ : HomD(FC,D) ∼= HomC(C,UD) : ψ

This definition has the virtue of being symmetric in F and U . The unit
η : 1C → U ◦ F and the counit ǫ : F ◦ U → 1D of the adjunction are then
determined as:

ηC = φ(1FC)

ǫD = ψ(1UD)

9.3 Examples of adjoints

Example 9.7. Suppose C has binary products. Take a fixed object A ∈ C,
and consider the product functor,

−× A : C→ C

defined on objects by
X 7→ X ×A

and on arrows by

(h : X → Y ) 7→ (h× 1A : X × A −→ Y × A)
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When does −×A have a right adjoint?
We would need a functor,

U : C→ C

such that for all X, Y ∈ C, there is a natural bijection,

X × A > Y

X > U(Y )

So let us try defining U by:
U(Y ) = Y A

on objects, and on arrows:

U(g : Y → Z) = gA : Y A −→ ZA

Putting U(Y ) for X in the adjoint schema above then gives the counit:

Y A × A
ǫ

> Y

Y A

1
> Y A

This is therefore an adjunction if ǫ has the following UMP:

for any f : X × A→ Y , there’s a unique f̄ : X → Y A such that
f = ǫ ◦ (f̄ × 1A).

But this is exactly the UMP of the exponential! Thus we do indeed have an
adjunction:

−× A ⊣ −A

Example 9.8. Here’s a much more simple example. For any category C,
consider the unique functor to the terminal category 1,

! : C→ 1

Now we ask, when does ! have a right adjoint? This would be an object
U : 1→ C such that for any C ∈ C, there is a bijective correspondence,

!C > ∗

C > U(∗)

Such a U would have to be a terminal object in C. So ! has a right adjoint
iff C has a terminal object. What do you think a left adjoint would be?
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This last example is a clear case of the following general fact:

Proposition 9.9. Adjoints are unique up to isomorphism. Specifically, given
a functor F : C→ D and right adjoints U, V : D→ C,

F ⊣ U and F ⊣ V,

we then have U ∼= V .

Proof. Here’s the easy way. For any D ∈ D, and C ∈ C we have:

HomC(C,UD) ∼= HomD(FC,D) naturally since F ⊣ U
∼= HomC(C, V D) naturally, since F ⊣ V

Thus, by Yoneda, UD ∼= V D. But this isomorphism is natural in D, again
by adjointness.

This proposition implies that one can use the condition of being right or
left adjoint to a given functor to define (uniquely characterize up to isomor-
phism) a new functor. This sort of characterization, like a universal mapping
property, determines an object or construction “intrinsically”, in terms of its
relation to some other given construction. Many important constructions
turn out to be adjoints to some particularly simple ones.

For example, what do you suppose would be a left adjoint to the diagonal
functor,

∆ : C→ C×C

in the earlier example, where ∆(C) = (C,C), and we had ∆ ⊣ × ? It would
have to be functor L(X, Y ) standing in the correspondence:

L(X, Y ) > C

(X, Y ) > (C,C)

Thus it could only be the coproduct L(X, Y ) = X + Y . Therefore ∆ has a
left adjoint if and only if C has binary coproducts, and then:

+ ⊣ ∆

Next, note that C×C ∼= C2 where 2 is the discrete two-object category
(i.e. any two-element set). Then ∆(C) is the constant C-valued functor
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for each C ∈ C. Let us now replace 2 by any small index category J, and
consider possible adjoints to the corresponding diagonal functor,

∆ : C→ CJ

with ∆(C)(j) = C for all C ∈ C and j ∈ J. In this case, one has left and
right adjoints,

lim−→ ⊣ ∆ ⊣ lim←−

if and only if C has colimits and limits, respectively, of type J. Thus all
of the particular limits and colimits we met earlier, such as pullbacks and
coequalizers, are instances of adjoints. We leave the proof of the general fact
as an exercise. What are the units and counits of these adjunctions?

Example 9.10. Polynomial rings: Let R be a commutative ring, (Z if you
like) and consider the ring R[x] of polynomials in one indeterminate x with
coefficients in R. The elements of R[x] all look like this:

r0 + r1x+ r2x
2 + . . .+ rnx

n (9.4)

with the coefficients ri ∈ R. Of course, there may be some identifications
between such expressions, depending on the ring R.

There is an evident homomorphism η : R → R[x], taking elements r to
constant polynomials r = r0, and it has the following UMP:

Given any ring A, homomorphism α : R→ A, and element a ∈ A,
there’s a unique homomorphism

a∗ : R[x]→ A

such that a∗(x) = a and a∗η = α.

R[x]
a∗

> A

�
�

�
�

�

α

�

R

η

∧
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Namely, for a∗ we take the “formal evaluation at a”:

a∗(r(x)) = α(r)(a/x)

given by applying α to the coefficients ri, substituting a for x, and evaluating
the result in A:

a∗(r0 + r1x+ r2x
2 + . . .+ rnx

n) = α(r0) + α(r1)a+ α(r2)a
2 + . . .+ α(rn)a

n

To describe this in terms of adjoints, define Rings∗ to be the category of
“pointed” rings, with objects of the form (A, a), where A is a ring and a ∈ A,
and arrows h : (A, a)→ (B, b) are homomorphisms h : A→ B that preserve
the distinguished point, h(a) = b.

The UMP just given says exactly that the functor,

U : Rings∗ → Rings

that “forgets the point” U(A, a) = A has as left adjoint the functor

[x] : Rings→ Rings∗

that “adjoins an indeterminate”,

[x](R) = (R[x], x)

and η : R → R[x] is the unit of the adjunction. The reader should have no
difficulty working out the details of this example. This provides a character-
ization of the polynomial ring R[x] that does not depend on the somewhat
vague description in terms of “formal polynomial expressions” like (9.4).

9.4 Order adjoints

Let P be a preordered set, i.e. a category in which there is at most one arrow
x → y between any two objects. A poset is a preorder that is skeletal. We
define an ordering relation on the objects of P by,

x ≤ y iff there exists an arrow x→ y

Given another such preorder Q, suppose we have adjoint functors:

P
F

>
<

U
Q F ⊣ U
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Then the correspondence Q(Fa, x) ∼= P (a, Ux) comes down to the simple
condition Fa ≤ x iff a ≤ Ux. Thus an adjunction on preorders consists
simply of order preserving maps F, U satisfying the two-way rule, or “bicon-
dition”:

Fa ≤ x

a ≤ Ux

For each p ∈ P , the unit is therefore an element p ≤ UFp that is least among
all x with p ≤ Ux. Dually, for each q ∈ Q the counit is an element FUq ≤ q
that is greatest among all y with Fy ≤ q.

Such a set-up on preordered sets is sometimes called a Galois connection.

Example 9.11. A basic example is the interior operation on the subsets of a
topological space X. Let O(X) be the set of open subsets of X, and consider
the operations of inclusion and interior,

inc : O(X)→ P(X)

int : P(X)→ O(X)

For any subset A and open subset U , the valid bicondition:

U ⊆ A

U ⊆ int(A)

means that the interior operation is right adjoint to the inclusion of the open
subsets among all the subsets,

inc ⊣ int

The counit here is the inclusion int(A) ⊆ A, valid for all subsets A. The case
of closed subsets and the closure operation is dual.

Example 9.12. A related example is the adjunction on powersets induced by
any function f : A → B, between the inverse image operation f−1 and the
direct image im(f),

P(A) <
f−1

im(f)
> P(B)

Here we have an adjunction im(f) ⊣ f−1 as indicated by the bicondition:

im(f)(U) ⊆ V

U ⊆ f−1(V )
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which is plainly valid for all subsets U ⊆ A and V ⊆ B.
The inverse image operation f−1 : P(B)→ P(A) also has a right adjoint,

given by:
f∗(U) = {b ∈ B | f−1(b) ⊆ U}

as we also leave for the reader to verify.
Note that if f is continuous, then f−1 restricts to the open sets f−1 :

O(B) → O(A). Then the left adjoint im(f) need not exist (on opens), but
the right adjoint f∗ still does,

O(A) <
f−1

f∗
> O(B)

Example 9.13. Suppose we have a preorder P . Then, as we know, P has meets
iff for all p, q ∈ P , there’s an element p ∧ q ∈ P satisfying the bicondition:

r ≤ p ∧ q

r ≤ p and r ≤ q

Dually, P has joins if there’s always an element p ∨ q ∈ P such that:

p ∨ q ≤ r

p ≤ r and q ≤ r

The Heyting implication q ⇒ r is characterized as an exponential by the
bicondition:

p ∧ q ≤ r

p ≤ q ⇒ r

Finally, an initial object 0 and a terminal object 1 are determined by the
conditions:

0 ≤ p

and
p ≤ 1

In this way, the notion of a heyting algebra can be formulated entirely in
terms of adjoints. Equivalently, the intuitionistic propositional calculus is
neatly axiomatized by the “adjoint rules of inference” just given. Together
with the reflexivity and transitivity of entailment p ⊢ q, these rules are
completely sufficient for the propositional logical operations. That is, they
can serve as the rules of inference for a logical calculus of “sequents” p ⊢ q
which is equivalent to the usual intuitionistic propositional calculus.
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When we furthermore define negation by ¬p = p ⇒ ⊥, we then get the
derived rule:

q ⊢ ¬p

p ⊢ ¬q

Finally, the classical propositional calculus results from adding the rule:

¬¬p ⊢ p

Let us now consider how this analysis can be extended to all of first-order
logic.

9.5 Quantifiers as adjoints

Traditionally, the main obstacle to the further development of algebraic logic
has been the treatment of the quantifiers. Categorical logic solves this prob-
lem beautifully with the recognition (due to F.W. Lawvere in the 1960s) that
they, too, are adjoint functors.

Let L be a first-order language. For any list x̄ = x1, . . . , xn of distinct
variables let us denote the set of formulas with at most those variables free
by:

Form(x̄) = {φ(x̄) | φ(x̄) has at most x̄ free }

Then Form(x̄) is a preorder under the entailment relation of first-order logic,

φ(x̄) ⊢ ψ(x̄)

Now let y be a variable not in the list x̄, and note that we have a trivial
operation,

∗ : Form(x̄)→ Form(x̄, y)

taking each φ(x̄) to itself; this is just a matter of observing that if φ(x̄) ∈
Form(x̄) then y cannot be free in φ(x̄). Of course, ∗ is a functor since,

φ(x̄) ⊢ ψ(x̄) in Form(x̄)

implies,
∗φ(x̄) ⊢ ∗ψ(x̄) in Form(x̄, y)

Now since for any ψ(x̄, y) ∈ Form(x̄, y) there is, of course, no free y in the
formula ∀y.ψ(x̄, y), there is a map,

∀y : Form(x̄, y)→ Form(x̄)
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We claim that this map is right adjoint to ∗,

∗ ⊣ ∀

Indeed, the usual rules of universal introduction and elimination imply that
the following two-way rule of inference holds:

∗φ(x̄) ⊢ ψ(x̄, y) Form(x̄, y)

φ(x̄) ⊢ ∀y. ψ(x̄, y) Form(x̄)

Observe that this derived rule, saying that the operation ∀y which binds
the variable y, is right adjoint to the trivial operation ∗, also takes account
of the usual “book-keeping” side-conditions of the quantifier rules.

Conversely, we could instead take this adjoint rule as basic and derive
the customary introduction and elimination rules from it. Indeed, the unit
of the adjunction is the usual ∀-elimination “axiom”,

∀y. ψ(x̄, y) ⊢ ψ(x̄, y)

It’s now natural to wonder about the other quantifier; indeed we have a
further adjunction:

∃ ⊣ ∗ ⊣ ∀

since the following two-way rule also holds:

∃y. ψ(x̄, y) ⊢ φ(x̄)

ψ(x̄, y) ⊢ φ(x̄)

Here the counit is the existential introduction “axiom”,

ψ(x̄, y) ⊢ ∃y. ψ(x̄, y)

It actually follows from these rules that ∃y and ∀y are in particular func-
tors, i.e. that ψ ⊢ φ implies ∃y.ψ ⊢ ∃y.φ, and similarly for ∀.

The adjoint rules just given can therefore be used in place of the custom-
ary introduction and elimination rules, to give a complete system of deduction
for quantificational logic. Many typical laws of predicate logic are just simple
formal manipulations of adjoints. For example:

ψ(x, y) ⊢ ψ(x, y)

ψ(x, y) ⊢ ∃y. ψ(x, y) (counit of ∃ ⊣ ∗)

∀x. ψ(x, y) ⊢ ∃y. ψ(x, y) (unit of ∗ ⊣ ∀)

∃y∀x. ψ(x, y) ⊢ ∃y. ψ(x, y) (∃ ⊣ ∗)

∃y∀x. ψ(x, y) ⊢ ∀x∃y. ψ(x, y) (∗ ⊣ ∀)



232 CHAPTER 9. ADJOINTS

The recognition of the quantifiers as adjoints also gives rise to the follow-
ing geometric interpretation. Take any L structure M and consider a formula
φ(x) in at most one variable x. It determines a subset,

[φ(x)]M = {m ∈M |M |= φ(m)} ⊆ M

Similarly, a formula in several variables determines a subset of the cartesian
product,

[ψ(x1, . . . , xn)]
M = {(m1, . . . , mn) |M |= ψ(m1, . . . , mn)} ⊆Mn

For instance [x = y]M is the diagonal subset {(m,m) | m ∈ M} ⊆ M ×M .
Let’s take two variables x, y and consider the effect of the ∗ operation on
these subsets. The assignment ∗[φ(x)] = [∗φ(x)] determines a functor,

∗ : P(M)→ P(M ×M)

Explicitly, given [φ(x)] ∈ P(M), we have:

∗[φ(x)] = {(m1, m2) ∈M ×M |M |= φ(m1)} = π−1([φ(x)])

where π : M ×M →M is the first projection. Thus:

∗ = π−1

Similarly, the existential quantifier can be regarded as an operation on
subsets by ∃[ψ(x, y)] = [∃y.ψ(x, y)],

∃ : P(M ×M)→ P(M)

Specifically, given [ψ(x, y)] ⊆M ×M , we have

∃[ψ(x, y)] = [∃y. ψ(x, y)]

= {m | for some y,M |= ψ(m, y)}

= im(π)[ψ(x, y)]

Therefore:
∃ = im(π)

In this way, you can actually “see” the adjunction,

∃y. ψ(x, y) ⊢ φ(x)

ψ(x, y) ⊢ φ(x)
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Figure 9.1: Quantifiers as adjoints
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It’s essentially the one we already considered, between direct and inverse
images, applied to the case of a product projection π : M ×M →M ,

im(π) ⊣ π−1

See Figure 9.1.
Finally, the universal quantifier can also be regarded as an operation of

the form,

∀ : P(M ×M)→ P(M)

by setting ∀[ψ(x, y)] = [∀y.ψ(x, y)]. Then given [ψ(x, y)] ⊆M ×M , we have:

∀[ψ(x, y)] = [∀y. ψ(x, y)]

= {m | for all y,M |= ψ(m, y)}

= {m | π−1{m} ⊆ [ψ(x, y)]}

= π∗([ψ(x, y)])

Therefore:

∀ = π∗

so the universal quantifier is the right adjoint to pullback along the projection
π. Again, in 9.1 one can see the adjunction,

φ(x) ≤ ψ(x, y)

φ(x) ≤ ∀y. ψ(x, y)

by considering the corresponding operations induced on subsets.

9.6 RAPL

In addition to the conceptual unification achieved by recognizing construc-
tions as different as existential quantifiers and free groups as instances of
adjoints, there is the practical benefit that one then knows that these op-
erations behave in certain ways that are common to all adjoints. We next
consider one of the fundamental properties of adjoints: preservation of limits.

In the previous section we had a string of three adjoints:

∃ ⊣ ∗ ⊣ ∀
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and it is easy to find other such strings. For example, there’s a string of four
adjoints between Cat and Sets,

V ⊣ F ⊣ U ⊣ R

where U : Cat→ Sets is the forgetful functor to the set of objects,

U(C) = C0 .

An obvious question in this kind of situation is “are there more?” That is,
given a functor, does it have an adjoint? A useful necessary condition which
shows that e.g. the strings above stop is the following proposition, which is
also important in its own right.

Proposition 9.14. Right adjoints preserve limits ( remember: “RAPL”!),
and left adjoints preserve colimits.

Proof. Here’s the easy way:suppose we have an adjunction:

C
F

>
<

U
D F ⊣ U

and we are given a diagram C : J → D such that the limit lim←−Dj exists in
D. Then for any X ∈ C, we have:

HomC(X,U(lim
←−

Dj)) ∼= HomD(FX, lim
←−

Dj)

∼= lim←−HomD(FX,Dj)

∼= lim←−HomC(X,UDj)

∼= HomC(X, lim
←−

UDj)

whence (by Yoneda), we have the required isomorphism:

U(lim
←−

Dj) ∼= lim
←−

UDj

It follows by duality that left adjoints preserve colimits.

It is illuminating to work out what the above argument “really means” in
a particular case, say binary products. Given a product A×B in D, consider



236 CHAPTER 9. ADJOINTS

the following diagram, in which the part on the left is in C, and that on the
right in D.

X FX

	�
�

�
�

�
f

@
@

@
@

@

g

R 	�
�

�
�

�
f̄

@
@

@
@

@

ḡ

R

UA < U(A× B)
∨

.................
> UB A < A× B

∨

.................
> B

Then given any f and g as indicated, we get the required unique arrow 〈f, g〉
by adjointness as:

〈f, g〉 = 〈f̄ , ḡ〉

where we write f̄ , etc., for both directions of the adjoint correspondence, and
use naturality.

For another example, recall that in the proof that SetsCop

has exponen-
tials we needed the following distributivity law for sets,

(lim←−
i

Xi)× A ∼= lim←−
i

(Xi × A)

We now see that this is a consequence of the fact that the functor (−) × A
is a left adjoint (namely to (−)A), and therefore preserves colimits.

It also follows immediately for the propositional calculus (and in any
heyting algebra) that e.g.:

p⇒ (a ∧ b) ⊣⊢ (p⇒ a) ∧ (p⇒ b)

and:
(a ∨ b) ∧ p ⊣⊢ (a ∧ p) ∨ (b ∧ p)

Similarly, for the quantifiers one has e.g.:

∀x(φ(x) ∧ ψ(x)) ⊣⊢ ∀xφ(x) ∧ ∀xψ(x)

Since this does not hold for ∃x, it cannot be a right adjoint to some other
“quantifier”. Similarly:

∃x(φ(x) ∨ ψ(x)) ⊣⊢ ∃xφ(x) ∨ ∃xψ(x)

And, as above, ∀x cannot be a left adjoint, since it does not have this prop-
erty.
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The proposition gives an extremely important and useful property of ad-
joints. As in the foregoing examples, it can be used to show that a given func-
tor does not have an adjoint by showing that it does not preserve (co)limits.
But also, to show that a given functor preserves all (co)limits, sometimes the
easiest way to do so is to show that it has an adjoint. For example, it is very
easy to recognize that the forgetful functor U : Pos → Sets from posets
to sets has a left adjoint (what is it?). Thus we know that limits of posets
are limits of the underlying sets. Dually, you may have shown “by hand”
as an exercise that the coproduct of free monoids is the free monoid on the
coproduct of their generating sets:

F (A) + F (B) ∼= F (A+B)

This now follows simply from the free ⊣ forgetful adjunction.

Example 9.15. Our final example of preservation of (co)limits by adjoints
involves the universal mapping property of categories of diagrams SetsCop

mentioned in the foregoing chapter. For a small category C, a contravari-
ant functor P : Cop → Sets is often called a presheaf on C, and the functor
category SetsCop

is accordingly called the category of presheaves on C, some-
times written Ĉ. This cocomplete category is the “free cocompletion” of C

in the following sense.

Proposition 9.16. For any small category C, the Yoneda embedding,

y : C→ SetsCop

has the following universal mapping property: given any cocomplete category
E and functor F : C→ E , there is a colimit preserving functor F! : SetsCop

→
E such that,

F! ◦ y ∼= F (9.5)

as indicated in the following diagram.

SetsCop ................
F!

> E

�
�

�
�

�

F

�

C

y

∧

Moreover, up to natural isomorphism, F! is the unique cocontinuous functor
with this property.
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Proof. We will show that there are adjoint functors,

SetsCop <
F ∗

F!

> D F! ⊣ F
∗

�
�

�
�

�
�

�
�

�

F

3

C

y

∧

with F! ◦ y ∼= F . It then follows that F! preserves all colimits. To define
F!, take any presheaf P ∈ SetsCop

, and write it as a canonical colimit of
representables,

lim
−→
j∈J

yCj ∼= P

with J =
∫
C
P the category of elements of P , as in proposition 8.10. Then

set,

F!(P ) = lim
−→
j∈J

FCj

with the colimit taken in E , which is cocomplete. (We leave it to the reader
to determine how to define F! on arrows). Clearly, if F! is to preserve all
colimits and satisfy (9.5), then up to isomorphism this must be its value for
P . For F ∗, take any E ∈ E and C ∈ C and observe that by (Yoneda and)
the intended adjunction, for F ∗(E)(C) we must have:

F ∗(E)(C) ∼= HomĈ(yC, F ∗(E))
∼= HomE(F!(yC), E)
∼= HomE(FC,E)

Thus we simply set:

F ∗(E)(C) = HomE(FC,E)

which is plainly a presheaf on C (we use here that E is locally small). Now
let us check that indeed F! ⊣ F

∗. For any E ∈ E and P ∈ Ĉ, we have natural
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isomorphisms:

HomĈ(P, F ∗(E)) ∼= HomĈ(lim−→
j∈J

yCj , F
∗(E))

∼= lim
←−
j∈J

HomĈ(yCj , F
∗(E))

∼= lim←−
j∈J

F ∗(E)(Cj)

∼= lim
←−
j∈J

HomE(FCj, E)

∼= HomE(lim−→
j∈J

FCj, E)

∼= HomE(F!(P ), E)

Finally, for any object C ∈ C,

F!(yC) = lim
−→
j∈J

FCj ∼= FC

since the category of elements J of a representable yC has a terminal object,
namely the element 1C ∈ HomC(C,C).

Corollary 9.17. Let f : C → D be a functor between small categories. The
precomposition functor,

f ∗ : SetsDop

→ SetsCop

given by,

f ∗(Q)(C) = Q(fC)

has both left and right adjoints,

f! ⊢ f
∗ ⊢ f∗.

Moreover, there is a natural isomorphism,

f! ◦ yC
∼= yD ◦ f

as indicated in the following diagram.
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SetsCop >
<

f!

>
SetsDop

C

yC

∧

f
> D

yD

∧

The induced functors f! and f∗ are sometimes referred to in the literature
as (left and right) Kan extensions.

Proof. First, define:

F = yD ◦ f : C→ SetsDop

.

Then by the foregoing proposition we have adjoints F! and F ∗ as indicated
in:

SetsCop <
F ∗

F!

> SetsDop

C

yC

∧

f
> D

yD

∧

and we know that F! ◦ yC
∼= yD ◦ f . We claim that F ∗ ∼= f ∗. Indeed, by the

definition of F ∗ we have,

F ∗(Q)(C) = HomD̂(FC,Q) ∼= HomD̂(y(fC), Q). ∼= Q(fC) = f ∗(Q)(C)

This therefore gives the functors f! ⊣ f
∗. For f∗, apply the proposition to

the composite,

f ∗ ◦ yD : D→ SetsDop

→ SetsCop

.

This gives an adjunction

(f ∗ ◦ yD)! ⊣ (f ∗ ◦ yD)∗
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so we just need to show that:

(f ∗ ◦ yD)!
∼= f ∗

in order to get the required right adjoint as f∗ = (f ∗ ◦ yD)∗. Since F ∗ ◦ yD
∼=

f ∗ ◦ yD, by the universal property of SetsDop

, it suffices to show that F ∗

preserves colimits. But for any colimit lim
−→j

Qj in SetsDop

,

(F ∗(lim
−→
j

Qj))(C) ∼= (lim
−→
j

Qj)(fC)

∼= lim
−→
j

(Qj(fC))

∼= lim
−→
j

((F ∗Qj)(C))

∼= (lim
−→
j

(F ∗Qj))(C).

This corollary says that, in a sense, every functor has an adjoint ! For,
given any f : C→ D, we indeed have the right adjoint,

f ∗ ◦ yD : D→ Ĉ

except that its values are in the “ideal elements” of the cocompletion Ĉ.

9.7 Locally cartesian closed categories

A special case of the situation described by corollary 9.17 is the change of
base for indexed families of sets along a “reindexing” function α : J → I. An
arbitrary such function between sets gives rise, by that corollary, to a triple
of adjoint functors,

SetsJ

α∗
>

<
α∗

α!
>

SetsI

α! ⊣ α
∗ ⊣ α∗
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Let us examine these functors more closely in this special case.
An object A of SetsI is an I-indexed family of sets,

(Ai)i∈I

Then α∗(A) = A ◦ α is the reindexing of A along α to a J-indexed family of
sets,

α∗(A) = (Aα(j))j∈J

Given a J-indexed family B, let is calculate α!(B) and α∗(B).
Consider first the case I = 1 and α =!J : J → 1. Then ((!J)

∗ : Sets →
SetsJ is the “constant family” or diagonal functor ∆(A)(j) = A, for which
we know the adjoints,

SetsJ

Π
>

<
∆

Σ
>

Sets

Σ ⊣ ∆ ⊣ Π

These are, namely, just the (disjoint) sum and cartesian product of the sets
in the family, ∑

j∈J

Bj ,
∏

j∈J

Bj

For recall that we have the adjunctions,

ϑj : Bj → A

(ϑj) :
∑

j Bj → A
,

ϑj : A→ Bj

〈ϑj〉 : A→
∏

j Bj

By uniqueness of adjoints, it therefore follows that (!J)!
∼= Σ and (!J)∗ ∼= Π.

A general reindexing α : J → I gives rise to generalized sum and product
operations along α,

Σα ⊣ α
∗ ⊣ Πα

defined on J-indexed families (Bj) by:

(Σα(Bj))i =
∑

α(j)=i

Bj

(Πα(Bj))i =
∏

α(j)=i

Bj
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These operations thus assign to an element i ∈ I the sum, respectively the
product, over all the sets indexed by the elements j in the preimage of i
under α.

Now let us recall from example 7.28 the equivalence between J-indexed
families of sets and the slice category of “sets over J”,

SetsJ ≃ Sets/J

It takes a family (Aj)j∈J to the indexing projection p :
∑

j∈J Aj → J , and a

map π : A→ J to the family (π−1(j))j∈J . We know, moreover, from exercise
13 in chapter 7 that this equivalence respects reindexing, in the sense that
for any α : J → I the following square commutes up to natural isomorphism.

J Sets/J
≃

> SetsJ

I

α

∨

Sets/I

α♯

∧

≃
> SetsI

α∗

∧

Here we write α♯ for the pullback functor along α. Since α∗ has both right
an left adjoints, we have the diagram of induced adjoints.

J Sets/J
≃

> SetsJ

I

α

∨

Sets/I

αL

∨

α♯

∧

α♯

∨ ≃
> SetsI

α!

∨

α∗

∧

α∗

∨

Proposition 9.18. For any function α : J → I, the pullback functor α♯ :
Sets/I → Sets/J has both left and right adjoints,

αL ⊣ α
♯ ⊣ α♯

In particular, it therefore preserves all limits and colimits.

Let us compute the functors explicitly. Given π : A→ J , let Aj = π−1(j)
and recall that,

α!(A)i =
∑

α(j)=i

Ai
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But then we have:

α!(A)i =
∑

α(j)=i

Ai

=
∑

i∈α−1(j)

Ai

=
∑

i∈α−1(j)

π−1(j)

= π−1 ◦ α−1(j)

= (α ◦ π)−1(i)

It follows that αL(π : A→ J) is simply the composite α ◦ π : A→ J → I,

αL(π : A→ J) = (α ◦ π : A→ J → I)

Indeed, it is easy to check directly that composition along any function α is
left adjoint to pullback along α.

As for the right adjoint,

α♯ : Sets/J −→ Sets/I

given π : A → J , the result α♯(π) : α♯(A) → I, can be described fiberwise
by:

(α♯(A))i = {s : α−1(i)→ A | “s is a partial section of π”}

where the condition “s is a partial section of π” means that the following
triangle commutes, with the canonical inclusion α−1(i) ⊆ J at the base.

A

�
�

�
�

�
s

�

α−1(i) ⊂ > J

π

∨

Henceforth, we shall also write these “change of base” adjoints along a
map α : J → I in the form,
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J Sets/J

Σα ⊣ α
∗ ⊣ Πα

I

α

∨

Sets/I

Σα

∨

α∗

∧

Πα

∨

Finally, let us reconsider the case I = 1, where these adjoints take the form,

J Sets/J

ΣJ ⊣ J
∗ ⊣ ΠJ

1

!

∨

Sets

ΣJ

∨

J∗

∧

ΠJ

∨

In this case we have:

ΣJ (π : A→ J) = A

J∗(A) = (p1 : J ×A→ J)

ΠJ(π : A→ J) = {s : J → A | π ◦ s = 1}

as the reader can easily verify. Moreover, one therefore has:

ΣJJ
∗(A) = J ×A

ΠJJ
∗(A) = AJ

Thus the product ⊣ exponential adjunction can be factored as a composite
of adjunctions as follows.

Sets
J × (−)

>
<

(−)J
Sets

Sets

wwwwwwwwww
J∗

>
<

ΠJ

Sets/J
ΣJ

>
<

J∗
Sets

wwwwwwwwww
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The following definition captures the notion of a category having this
sort of adjoint structure. In such a category E , the slice categories can be
regarded as categories of abstract indexed families of objects of E , and the
reindexing of such families can be carried out, and it has associated adjoint
operations of sum and product.

Definition 9.19. A category E is called locally cartesian closed if E has a
terminal object and for every arrow f : A→ B in E , the composition functor,

Σf : E/A→ E/B

has a right adjoint f ∗ which, in turn, has a right adjoint Πf ,

Σf ⊣ f
∗ ⊣ Πf

The choice of name for such categories is explained by the following im-
portant fact.

Proposition 9.20. For any category E with a terminal object, the following
are equivalent.

1. E is locally cartesian closed.

2. Every slice category E/A of E is cartesian closed.

Proof. Let E be locally cartesian closed. Since E has a terminal object,
products and exponentials in E can be built as:

A× B = ΣBB
∗A

BA = ΠBB
∗A

So E is cartesian closed. But clearly every slice category E/X is also locally
cartesian closed, since “a slice of a slice is a slice”. Thus every slice of E is
cartesian closed.

Conversely, suppose every slice of E is cartesian closed. Then E has
pullbacks, since these are just binary products in a slice. Thus we just need
to construct the “relative product” functor Πf : E/A → E/B along a map
f : A→ B. First, change notation:

F = E/B

F = f : A→ B

F/F = E/A
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Thus we want to construct ΠF : F/F → F . Given an object p : X → F in
F/F , the object ΠF (p) is constructed as the following pullback.

ΠF (p) >XF

1
∨

1̃F
> F F

pF

∨

where 1̃F is the exponential transpose of the composite arrow:

1× F ∼= F
1
−→ F

We leave it to the reader to recognize that there is then a natural bijection
of the form:

Y → ΠF (p)

F ∗Y → p

Remark 9.21. The reader should be aware that some authors do not require
the existence of a terminal object in the definition of a locally cartesian closed
category. Including it just makes every locally cartesian closed category
cartesian closed.

Example 9.22 (Presheaves). For any small category C, the category SetsCop

of presheaves on C is locally cartesian closed. This is a consequence of the
the following fact.

Lemma 9.23. For any object P ∈ SetsCop

, there is a small category D and
an equivalence of categories,

SetsDop

≃ SetsCop

/P

Moreover, there is also a functor p : D→ C such that the following diagram
commutes (up to natural isomorphism).
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SetsDop

≃
> SetsCop

/P

A
A
A
A
A
A

p!

U ��
�
�
�
�
�

ΣP

SetsCop

Proof. One can take:

D =

∫

C

P

p = π :

∫

C

P → C

Indeed, recall that by the Yoneda lemma,
∫
C
P can be described equivalently

(isomorphically, in fact) as the category that we shall write suggestively as
y/P , and is described as follows:

objects pairs (C, x) where C ∈ C and x : yC → P in SetsCop

arrows all arrows between such objects in the slice category over P ,

yC
ϑ

> yC ′

A
A
A
A
A
A

x
U ��

�
�
�
�
�

x′

P

Note that by Yoneda, each such arrow is of the form ϑ = yh for a
unique h : C → D in C, which, moreover, is such that P (h)(x′) = x.

Now let I : y/P → SetsCop

/P be the evident (full and faithful) inclusion
functor, and define a functor,

Φ : SetsCop

/P → Sets(y/P )op

by setting, for any q : Q→ P and (C, x) ∈ y/P ,

Φ(q)(C, x) = HomĈ/P (x, q)
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In other words, Φ(q) = I∗(yq), which is plainly functorial. We leave it to the
reader as an exercise to show that this functor establishes an equivalence of
categories.

Corollary 9.24. For any small category C, the category SetsCop

of presheaves
on C is locally cartesian closed.

Example 9.25 (Fibrations of posets). A monotone map of posets f : X → P
is a fibration if it has the following lifting property :

For every x ∈ X and p′ ≤ fx there is a unique x′ ≤ x such that
f(x′) = p′.

One says that x “lies over” p = f(x), and that any p′ ≤ p “lifts” to a unique
x′ ≤ x lying over it, as indicated in the following diagram.

X x′ ......................
≤

> x

P

f

∨

p′
≤

> p

The identity morphism of a given poset P is clearly a fibration, and the
composite of two fibrations is easily seen to be a fibration. Let Fib denote
the (non-full) subcategory of posets and fibrations between them as arrows.

Lemma 9.26. For any poset P , the slice category Fib/P is cartesian closed.

Proof. The category Fib/P is equivalent to the category of presheaves on P ,

Fib/P ≃ SetsP
op

To get a functor Φ : Fib/P → SetsP
op

, take a fibration q : Q → P to the
presheaf defined on objects by,

Φ(q)(p) = q−1(p) for p ∈ P

The lifting property then determines the action on arrows p′ ≤ p. For the
other direction Ψ : SetsP

op

→ Fib/P take a presheaf Q : P op → Sets to
(the indexing projection of) its category of elements,

Ψ(Q) =

∫

P

Q
π
−→ P

These are easily seen to be quasi-inverses.
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The category Fib itself is almost locally cartesian closed; it only lacks a
terminal object (why?). We can “fix” this simply by slicing it:

Corollary 9.27. For any poset P , the slice category Fib/P is locally cartesian
closed.

This sort of case is not uncommon, which is why the notion “locally
cartesian closed” is often formulated without a terminal object.

9.8 Adjoint functor theorem

The question we now want to consider systematically is, when does a functor
have an adjoint? Consider first the question, when does a functor of the
form C → Sets have a left adjoint? If U : C → Sets has F ⊣ U , then U is
representable U ∼= Hom(F1,−), since U(C) ∼= Hom(1, UC) ∼= Hom(F1, C).

A related necessary condition that makes sense for categories other than
Sets is preservation of limits. Suppose that C is complete and U : C → X

preserves limits; then we can ask whether U has a left adjoint. The Adjoint
Functor Theorem (AFT) gives a necessary and sufficient condition for this
case.

Theorem 9.28 (Freyd). Let C be locally small and complete. Given any
category X and functor,

U : C→ X

the following are equivalent:

1. U has a left adjoint

2. U preserves limits, and for each X ∈ X the functor U satisfies the
following:

Solution set condition: There exists a set of objects (Ci)i∈I in C such
that for any object C ∈ C and arrow f : X → UC, there exists an
i ∈ I and arrows ϕ : X → UCi and f̄ : Ci → C such that:

f = U(f̄) ◦ ϕ
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X
ϕ

> UCi Ci

@
@

@
@

@
f

R

UC

Uf̄

∨

C

f̄

∨

Briefly: “every arrow X → UC factors through some object Ci in the
solution set.”

For the proof, we require the following.

Lemma 9.29. Let D be locally small and complete. Then the following are
equivalent:

1. D has an initial object

2. D satisfies the following:

Solution set condition: There is a set of objects (Di)i∈I in D such that
for any object D ∈ C there is an arrow Di → D for some i ∈ I.

Proof. If D has an initial object 0, then {0} is obviously a solution set.
Conversely, suppose we have a solution set (Di)i∈I and consider the object,

W =
∏

i∈I

Di

Then W is “weakly initial” in the sense that for any object D there is a (not
necessarily unique) arrow W → D, namely the composite

∏

i∈I

Di → Di → D

for a suitable product projection
∏

i∈I Di → Di. Now take the joint equalizer
of all endomorphisms d : W → W (which is a set, since D is locally small),
as indicated in the diagram:

V >
h

>W
∆

>

〈d〉
>

∏

d:W→W

W
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Here the arrows ∆ and 〈d〉 have the d-projections 1W : W → W and d :
W → W , respectively. This equalizer then has the property that for any
endomorphism d : W → W ,

d ◦ h = h (9.6)

Note, moreover, that V is still weakly initial, since for anyD there is an arrow
V ֌ W → D. Suppose that for some D there are two arrows f, g : V → D.
Take their equalizer e : U → V , and consider the following diagram,

U >
e

> V
f

>

g
>D

W

s

∧

hes
>W

h

∨

∨

in which the arrow s comes from W being weakly initial. So for the endo-
morphism hes by (9.6) we have,

hesh = h

Since h is monic, esh = 1V . But then eshe = e, and so also she = 1U since
e is monic. Therefore U ∼= V , and so f = g. Thus V is an initial object.

Proof. (Theorem) If U has a left adjoint F ⊣ U , then {FX} is itself a solution
set for X, since we always have a factorization:

X
η

> UFX FX

@
@

@
@

@
f

R

UC

U(f̄)

∨

C

f̄

∨

where f̄ : FX → C is the adjoint transpose of f and η : X → UFX the unit
of the adjunction.

Conversely, consider the following so-called “comma-category” (X|U),
with:
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objects are pairs (C, f) with f : X → UC

arrows g : (C, f)→ (C ′, f ′) are arrows g : C → C ′ with f ′ = U(g)f .

UC C

X
�����f *

HHHHHf ′ j
UC ′

U(g)

∨

C ′

g

∨

Clearly U has a left adjoint F iff for each object X this category (X|U) has an
initial object, (FX, η : X → UFX), which then has the universal mapping
property of the unit. Thus to use the foregoing initial object lemma, we must
check:

1. (X|U) is locally small.

2. (X|U) satisfies the solution set condition in the lemma.

3. (X|U) is complete.

For (1), we just observe that C is locally small. For (2), the solution set
condition of the theorem implies that there are a set of objects,

{(Ci, ϕ : X → UCi) | i ∈ I}

such that every object (C, f : X → UC) has an arrow f̄ : (Ci, ϕ)→ (C, f),

X
ϕ

> UCi Ci

@
@

@
@

@
f

R

UC

Uf̄

∨

C

f̄

∨

Finally, to see that (X|U) is complete, one can check directly that it has
products and equalizers, because U preserves these. We leave this as an easy
exercise for the reader.

Remark 9.30. 1. The theorem simply doesn’t apply if C is not complete.
In that case, a given functor may have an adjoint, but the AFT won’t
tell us that.
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2. It is essential that the solution set in the theorem be a set (and that
C have all set-sized limits).

3. On the other hand, if C is itself small and complete, then we can
plainly drop the solution set condition entirely. In that case we have
the following.

Corollary 9.31. If C is a small and complete category and U : C→ X is a
functor that preserves all limits, then U has a left adjoint.

Example 9.32. For complete posets P,Q, a monotone function f : P → Q has
a right adjoint g : Q→ P iff f is cocontinuous, in the sense that f(

∨
i pi) =∨

i f(pi) for any set-indexed family of elements (pi)i∈I . (Of course, here we
are using the dual formulation of the AFT.)

Indeed, we can let,

g(q) =
∨

f(x)≤q

x

Then for any p ∈ P and q ∈ Q, if,

p ≤ g(q)

then,

f(p) ≤ fg(q) = f(
∨

f(x)≤q

x) =
∨

f(x)≤q

f(x) ≤ q

While, conversely, if,
f(p) ≤ q

then clearly,

p ≤
∨

f(x)≤q

x = g(q)

As a further consequence of the AFT, we have the following characteri-
zation of representable functors on small complete categories.

Corollary 9.33. If C is a small and complete category, then for any functor
U : C→ Sets the following are equivalent:

1. U preserves all limits.

2. U has a left adjoint.
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3. U is representable.

Proof. Immediate.

These corollaries are, however, somewhat weaker than it may at first
appear, in light of the following fact:

Proposition 9.34. If C is small and complete, then C is a preorder.

Proof. Suppose not, and take C,D ∈ C with Hom(C,D) ≥ 2. Let J be any
set, and take the product, ∏

J

D

There are isomorphisms:

Hom(C,
∏

J

D) ∼=
∏

J

Hom(C,D) ∼= Hom(C,D)J

So, for the cardinalities of these sets, we have

|Hom(C,
∏

J

D)| = |Hom(C,C ′)||J | ≥ 2|J | = |P (J)|

And that’s for any set J . On the other hand, clearly |C1| ≥ |Hom(C,
∏

J D)|.
So taking J = C1 in the above gives a contradiction.

Remark 9.35. An important special case of the AFT that often occurs “in
nature” is that in which the domain category satisfies certain conditions
that eliminate the need for the (rather unpleasant!) solution set condition
entirely. Specifically, let A be a locally small, complete category satisfying
the following conditions:

1. A is well powered : each object A has at most a set of subobjects
S ֌ A,

2. A has a cogenerating set : there is a set of objects {Ai | i ∈ I} (I some
index set), such that for any A,X and x 6= y : X ⇉ A in A there is
some s : A → Ai (for some i) that “separates” x and y, in the sense
that sx 6= sy.
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Then any functor U : A → X that preserves limits necessarily has a left
adjoint. In this form (also originally proved by Freyd), the theorem is usually
known as the Special Adjoint Functor Theorem (“SAFT”). We refer to Mac
Lane, V.8 for the proof, and some sample applications.

An important application of the AFT is that any equational theory T gives
rise to a free ⊣ forgetful adjunction between sets and the category of models of
the theory, or “T -algebras”. In somewhat more detail, let T be a (finitary)
equational theory, consisting of finitely many operation symbols, each of
some finite arity (including 0-ary operations, i.e. constant symbols), and a
set of equations between terms built from these operations and variables.
For instance, the theory of groups has a constant u (the group unit), a unary
operation g−1 (the inverse), and a binary operation g ·h (the group product),
and a handful of equations such as g · u = g. The theory of rings has a
further binary operation and some more equations. The theory of fields
is not equational, however, because the condition x 6= 0 is required for an
element x to have a multiplicative inverse. A T -algebra is a set equipped with
operations (of the proper arities) corresponding to the operation symbols in
T , and satisfying the equations of T . A homomorphism of T -algebras h :
A→ B is a function on the underlying sets that preserves all the operations,
in the usual sense. Let T -Alg be the category of all such algebras and their
homomorphisms. There is an evident forgetful functor,

U : T -Alg→ Sets

The AFT implies that this functor has a left adjoint F , the “free algebra”
functor.

Proposition 9.36. For any equational theory T , the forgetful functor to
Sets has a left adjoint.

Rather than proving this general proposition (for which see Mac Lane,
chapter V), it will be more illuminating to do a simple example.

Example 9.37. Let T be the theory with one constant and one unary opera-
tion (no axioms). A T -algebra is a set M with the structure,

1
A
−→M

F
−→ M

If 1
b
−→ N

g
−→ N is another such algebra, a homomorphism of T -algebras

φ : (M, a, f) → (N, b, g) is a function φ that preserves the element and the
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operation, in the expected sense that,

φa = b

φf = gφ

as indicated in the commutative diagram:

M
f

>M

1
�����a *

HHHHHb j
N

φ

∨

g
> N

φ

∨

There is an evident forgetful functor (forget the structure):

U : T -Alg→ Sets

This functor is easily seen to create all limits, as in the category of algebras
for any theory T . So in particular, T -Alg is complete and U preserves limits.
Thus in order to be able apply the AFT we just need to check the solution
set condition.

To that end, let X be any set and take any function,

h : X →M

The image h(X) ⊆M generates a sub-T -model of (M, a, f) as follows. Define
the set “generated by h(X)” to be,

〈h(X)〉 = {fn(z) | n ∈ N, z = a or z = h(x) for some x ∈ X}

Then a ∈ 〈h(X)〉, and f restricts to 〈h(X)〉 to give a function f ′ :
〈h(X)〉 → 〈h(X)〉. Moreover, the inclusion i : 〈h(X)〉 → M is a T -algebra
homomorphism,

〈h(X)〉
f ′

> 〈h(X)〉

1
�����a *

HHHHHa j
M

i

∨

∩

f
>M

i

∨

∩
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Furthermore, since h(X) ⊆ 〈h(X)〉 there is a factorization h′ of h, as
indicated in the following diagram.

X
h′

> 〈h(X)〉

@
@

@
@

@
h

R

M

i

∨

∩

Now observe that, given X, the cardinality |〈h(X)〉| is bounded, i.e. for a
sufficiently large κ independent of h and M , we have:

|〈h(X)〉| ≤ κ

Indeed, we can take κ = (|X|+ 1)× |N|.
To find a solution set for X, let us now take one representative N of

each isomorphism class of T -algebras with cardinality at most κ. The set
of all such algebras N is then a solution set for X and U . Indeed, as we
just showed, any function h : X →M factors through an element of this set
(namely an isomorphic copy N of 〈h(X)〉). By the AFT, there thus exists a
free functor,

F : Sets→ T -Alg

A similar argument works for any equational theory T .

Finally, let us consider the particular free model F (∅) in T -Alg. Since
left adjoints preserve colimits, this is an initial object. It follows that F (∅)
is a natural numbers object, in the following sense:

Definition 9.38. Let C be a category with a terminal object 1. A natural
numbers object (NNO) in C is a structure of the form

1
0
−→ N

s
−→ N

which is initial among all such structures. Precisely, given any 1
a
→ X

f
→ X

in C there is a unique arrow φ : N → X such that the following commutes.

N
s

> N

1
�����0 *

HHHHHa j
X

φ

∨

f
>X

φ

∨
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In other words, given any object X, a “starting point” a ∈ X and an
operation x 7→ f(x) on X, we can build up a unique φ : N → X recursively
by the equations:

φ(0) = a

φ(s(n)) = f(φ(n)) for all n ∈ N

Thus the universal mapping property of a natural numbers object says pre-
cisely that such an object supports recursive definitions. It’s easy to show
that the set N of natural numbers with the canonical structure of 0 and the
“successor function” s(n) = n + 1 is an NNO, and that any NNO in Sets

is isomorphic to it. The characterization of N in terms of the UMP of re-
cursive definitions is therefore equivalent to the usual logical definition using
the Peano axioms in Sets. But note that the notion of an NNO also makes
sense in many categories where the Peano axioms don’t make any sense.

Let us consider some simple examples of recursively defined functions
using this universal mapping property.

Example 9.39. 1. Let (N, 0, s) be an NNO in any category C. Take any
point a : 1→ N , and consider the new structure,

1
a
−→ N

s
−→ N

Then by the universal property of the NNO, there is a unique morphism
fa : N → N such that the following commutes.

N
s

> N

1
�����0 *

HHHHHa j
N

fa

∨

s
> N

fa

∨

Thus we have the following “recursion equations”:

fa(0) = a

fa(s(n)) = s(fa(n))

But then we must have fa(n) = a+n, and the above equations become
the familiar recursive definition of addition,

a+ 0 = a

a + (sn) = s(a+ n)
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2. Now take this arrow a + (−) : N → N together with 0 : 1 → N to
get another arrow ga : N → N , which is the unique one making the
following commute.

N
s

> N

1
�����0 *

HHHHH0 j
N

ga

∨

a+ (−)
> N

ga

∨

We then have the recursion equations:

ga(0) = 0

ga(sn) = a + ga(n)

It follows that ga(n) = a · n, and the above equations become the
familiar recursive definition of multiplication,

a · 0 = 0

a · (sn) = a + a · n

3. For an example of a different sort, suppose we have a category C and
an endofunctor F : C→ C. Then there is a structure,

1
id
−→ CC FC

−→ CC

where id : 1 → CC is the transpose of the identity 1C : C → C

composed with the iso projection 1 × C ∼= C. We therefore have a
unique functor f : N → CC making the following diagram commute
(we use the easy fact, which the reader should check, that the discrete
category N is an NNO in Cat).

N
s

> N

1
�����0 *

HHHHHid j
CC

f

∨

FC
> CC

f

∨
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Transposing gives the commutative diagram:

1×C
0× 1C

> N×C
s× 1C

> N×C

C

∼=

∨

id
> C

f̄

∨

F
> C

f̄

∨

from which we can read off the recursion equations:

f̄(0, C) = C

f̄(sn, C) = F (f̄(n, C))

It follows that f̄(n, C) = F (n)(C), i.e. f(n) is the n-th iterate of F .
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9.9 Exercises

1. Complete the proof that the “hom-set” definition of adjunction is equiv-
alent to the preliminary one by showing that the specification of the
unit ηC : C → UFC as ηC = φ(1FC) is a natural transformation with
the required UMP.

2. Show that every monoid M admits a surjection from a free monoid
F (X) → M , by considering the counit of the free ⊣ forgetful ad-
junction.

3. Let 2 be any two-element set and consider the “diagonal functor”

∆ : C→ C2

for any category C, i.e. the exponential transpose of the first product
projection

C× 2→ C.

∆ has a right (resp. left) adjoint if and only if C has binary products
(resp. coproducts).

Now let C = Sets and replace 2 with an arbitrary small category J.
Determine both left and right adjoints for ∆ : Sets → SetsJ. (Hint:
Sets is complete and cocomplete.)

4. Given a function f : A → B between sets, show that the direct image
operation im(f) : P (A) → P (B) is left adjoint to the inverse image
f−1 : P (B)→ P (A).

5. Show that the contravariant powerset functor P : Setsop → Sets is
self-adjoint.

6. * Given an object C in a category C when does the evident forgetful
functor from the slice category C/C,

U : C/C → C

have a right adjoint? What about a left adjoint?
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7. Let P be the category of propositions (i.e. the preorder category asso-
ciated to the propositional calculus, say with countably many propo-
sitional variables p, q, r, . . . , and a unique arrow p → q if and only if
p ⊢ q). Show that for any fixed object p, there is a functor

− ∧ p : P → P,

and that this functor has a right adjoint. What is the counit of the
adjunction? (When) does −∧ p have a left adjoint?

8. (a) Given any set I, explicitly describe the Yoneda embedding y : I →
SetsI of I into the category SetsI of I-indexed sets.

(b) Given any function f : J → I from another set J , prove directly
that the following diagram commutes up to natural isomorphism.

SetsI
f!

> SetsI

J

yJ

∧

f
> I

yI

∧

(c) Describe the result of composing the Yoneda embedding with the
equivalence,

SetsI ≃ Sets/I

(d) What does the commutativity of the above “change of base” square
mean in terms of the categories Sets/I and Sets/J?

(e) Consider the inclusion functor i : P (I) → Sets/I that takes a
subset U ⊆ I to its inclusion function i(U) : U → I. Show that
this is a functor, and that is has a left adjoint,

σ : Sets/I −→ P (I)

(f) (Lawvere’s Hyperdoctrine Diagram) In Sets, given any function
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f : I → J , consider the following diagram of functors.

Sets/I

Πf
>

<
f ∗

Σf
>

Sets/J

P (I)

σI

∨

iI

∧

∀f
>

<

f−1

∃f
>

P (J)

σJ

∨

iJ

∧

There are adjunctions σ ⊣ i (for both I and J), as well as Σf ⊣
f ∗ ⊣ Πf and ∃f ⊣ f−1 ⊣ ∀f , where f ∗ : Sets/J → Sets/I is
pullback and f−1 : P (J)→ P (I) is inverse image.

Consider, which of the many possible squares commute.

9. Use the adjoint functor theorem to prove the following facts, which
were shown by explicit constructions in chapter 1:

(a) Free monoids on sets exist.

(b) Free categories on graphs exist.

10. Let 1 → N → N be a natural numbers object in a cartesian closed
category C. Show how to define the exponentiation operation mn as
an arrow N ×N → N .



Chapter 10

Monads and algebras

In the foregoing chapter, the adjoint functor theorem was seen to imply
that the category of algebras for an equational theory T always has a “free
T -algebra” functor, left adjoint to the forgetful functor into Sets. This ad-
junction describes the notion of a T -algebra in a way that is independent of
the specific syntactic description given by the theory T , the operations and
equations of which are rather like a particular presentation of that notion.
In a certain sense that we are about to make precise, it turns out that every
adjunction describes, in a “syntax invariant” way, a notion of an “algebra”
for an abstract “equational theory”.

Toward this end, we begin with yet a third characterization of adjunc-
tions. This one has the virtue of being entirely equational.

10.1 The triangle identities

Suppose we are given an adjunction,

F : C >
< D : U

with unit and counit,

η : 1C → UF

ǫ : FU → 1D

We can take any f : FC → D to φ(f) = U(f) ◦ ηC : C → UD, and for any
g : C → UD we have φ−1(g) = ǫD ◦ F (g) : FC → D. This we know gives

265
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the isomorphism,

HomD(FC,D) ∼=φ HomC(C,UD)

Now put 1UD : UD → UD in place of g : C → UD in the foregoing. We
know that φ−1(1UD) = ǫD, and so:

1UD = φ(ǫD)

= U(ǫD) ◦ ηUD

And similarly, φ(1FC) = ηC , so:

1FC = φ−1(ηC)

= ǫFC ◦ F (ηC)

Thus the two diagrams below commute.

UD
1UD

> UD

@
@

@
@

@
ηUD

R �
�

�
�

�

UǫD

�

UFUD

FC
1FC

> FC

@
@

@
@

@
FηC

R �
�

�
�

�

ǫFC

�

FUFC

Indeed, one has the following equations of natural transformations:

Uǫ ◦ ηU = 1U (10.1)

ǫF ◦ Fη = 1F (10.2)

These are called the “triangle identities”.
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Proposition 10.1. Given categories, functors, and natural transformations

F : C >
< D : U

η : 1C → U ◦ F

ǫ : F ◦ U → 1D

one has F ⊣ U with unit η and counit ǫ iff the triangle identities (10.1) and
(10.2) hold.

Proof. We have already shown one direction. For the other, we just need a
natural isomorphism,

φ : HomD(FC,D) ∼= HomC(C,UD)

As above, we put:

φ(f : FC → D) = U(f) ◦ ηC

ϑ(g : C → UD) = ǫD ◦ F (g)

Then we check that these are mutually inverse:

φ(ϑ(g)) = φ(ǫD ◦ F (g))

= U(ǫD) ◦ UF (g) ◦ ηC

= U(ǫD) ◦ ηUD ◦ g η natural

= g (10.1)

Similarly,

ϑ(φ(f)) = ϑ(U(f) ◦ ηC)

= ǫD ◦ FU(f) ◦ FηC

= f ◦ ǫFC ◦ FηC ǫ natural

= f (10.2)

Moreover, this isomorphism is easily seen to be natural.

The triangle identities have the virtue of being entirely “algebraic” – no
quantifiers, limits, Hom-sets, infinite conditions, etc. Thus anything defined
by adjoints: free groups, product spaces, quantifiers, . . . can be defined equa-
tionally. This is not only a matter of conceptual simplification, it also has
important consequences for the existence and properties of the structures
that are so determined.
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10.2 Monads and adjoints

Next consider an adjunction F ⊣ U and the composite functor

U ◦ F : C→ D→ C

Given any category C and endofunctor

T : C→ C

one can ask:

Question: When is T = U ◦F for some adjoint functors F ⊣ U to and from
another category D?

Thus we seek necessary and sufficient conditions on the given endofunctor
T : C → C, for recovering a category D and adjunction F ⊣ U . Of course,
not every T arises so, and we’ll see that even if T = U ◦ F for some D and
F ⊣ U , we can’t always recover that adjunction. Thus a better way to ask
the question would be, given an adjunction, what sort of “trace” does it leave
on a category, and can we recover the adjunction from this?

First, suppose we have D and F ⊣ U and T is the composite functor
T = U ◦ F . We have then a natural transformation,

η : 1→ T

And from the counit ǫ at FC,

ǫFC : FUFC → FC

we have UǫFC : UFUFC → UFC, which we’ll call,

µ : T 2 → T

In general, then, as a first step toward answering our question, if T arises
from an adjunction, then it should have such a structure η : 1 → T and
µ : T 2 → T .

Now, what can be said about the structure (T, η, µ)? Actually, quite a bit!
Indeed, the triangle equalities give us the following commutative diagrams:

T 3 Tµ
> T 2

T 2

µT

∨

µ
> T

µ

∨
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µ ◦ µT = µ ◦ Tµ (10.3)

T
ηT

> T 2 <
Tη

T

@
@

@
@

@
=

R 	�
�

�
�

�

=

T

µ

∨

µ ◦ ηT = 1T = µ ◦ Tη (10.4)

To prove the first one, for any f : X → Y in D, the following square in
C commutes, just since ǫ is natural.

FUX
FUf

> FUY

X

ǫX

∨

f
> Y

ǫY

∨

Now take X = FUY and f = ǫY to get the following:

FUFUY
FUǫY

> FUY

FUY

ǫFUY

∨

ǫY
> Y

ǫY

∨

Putting FC for Y and applying U therefore gives this:

UFUFUFC
UFUǫFC

> UFUFC

UFUFC

UǫFUFC

∨

UǫFC
> UFC

UǫFC

∨
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which has the required form (10.3). The equations (10.4) in the form:

UFC
ηUFC

> UFUFC <
UFηC

UFC

@
@

@
@

@
=

R 	�
�

�
�

�

=

UFC

UǫFC

∨

are simply the triangle identities, once taken at FC, and once under U . We
record this data in the following.

Definition 10.2. A monad on a category C consists of an endofunctor T :
C→ C, and natural transformations η : 1C → T , and µ : T 2 → T satisfying
the commutative diagrams above, i.e.:

µ ◦ µT = µ ◦ Tµ

µ ◦ ηT = 1 = µ ◦ Tη

Note the formal analogy to the definition of a monoid. For this reason,
the equations are called the associativity and unit laws, respectively. It is
remarkable that the notion of a monad actually first arose independently of
adjunctions.

We’ve now shown the following:

Proposition 10.3. Every adjoint pair F ⊣ U with U : D → C, unit η :
UF → 1C and counit ǫ : 1D → FU gives rise to a monad (T, η, µ) on C

with:

T = U ◦ F : C→ C

η : 1→ T the unit

µ = UǫF : T 2 → T

Example 10.4. Let P be a poset. A monad on P is a monotone function
T : P → P with x ≤ Tx and T 2x ≤ Tx. But then T 2 = T , i.e. T is
idempotent. Such a T , that is both inflationary and idempotent, is sometimes
called a closure operation and written Tp = p̄, since it acts like the closure
operation on the subsets of a topological space. The “possibility operator”
⋄p in modal logic is another example.
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In the poset case, we can easily recover an adjunction from the monad.
First, let K = im(T )(P ) (the fixed points of T ), and let i : K → P be the
inclusion. Then let t be the factorization of T through K, as indicated in:

P
T

> P

A
A
A
A
A
A

t
U �

�
�
�
�
�

i

�

K

Observe that since TTp = Tp, for any element k ∈ K we then have, for some
p ∈ P , the equation itik = ititp = itp = ik, whence tik = k since i is monic.
We therefore have:

p ≤ ik implies tp ≤ tik = k

tp ≤ k implies p ≤ itp ≤ ik

So indeed t ⊣ i.

Example 10.5. Consider the covariant powerset functor,

P : Sets→ Sets

which takes each function f : X → Y to the image mapping im(f) : P (X)→
P (Y ). Let ηX : X → P(X) be the singleton operation

ηX(x) = {x}

and let µX : PP(X)→ P(X) be the union operation,

µX(α) =
⋃

α

The reader should verify as an exercise that these operations are in fact
natural in X, and that this defines a monad (P, {−},

⋃
) on Sets.

As we see in these examples, monads can, and often do, arise without
coming from evident adjunctions. In fact, the notion of a monad originally
did occur independently of adjunctions; they are also known as “triples”,
and “standard constructions”. Despite this, the question, when does an
endofunctor T arise from an adjunction, has the answer: just if it’s the
functor part of a monad.
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10.3 Algebras for a monad

Proposition 10.6. Every monad arises from an adjunction. More precisely,
given a monad (T, η, µ) on the category C, there exists a category D and an
adjunction F ⊣ U , η : 1→ UF , ǫ : FU → 1 with U : D→ C such that:

T = U ◦ F

η = η (the unit)

µ = UǫF

Proof. We will first define the important category CT called the Eilenberg-
Moore category of T . This will be our “D”. Then we need suitable functors,

F : C >
< CT : U

And, finally, we need natural transformations η : 1 → UF and ǫ : FU → 1
satisfying the triangle identities.

To begin, CT has as objects the “T -algebras”,

which are pairs (A, α) of the form α : TA→ A in C, such that:

1A = α ◦ ηA and α ◦ µA = α ◦ Tα (10.5)

A
ηA

> TA T 2A
Tα

> TA

@
@

@
@

@
1

R

A

α

∨

TA

µA

∨

α
> A

α

∨

A morphism of T -algebras,

h : (A, α)→ (B, β)

is simply an arrow h : A→ B in C, such that,

h ◦ α = β ◦ T (h)
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as indicated in the following diagram.

TA
Th

> TB

A

α

∨

h
> B

β

∨

It is obvious that CT is a category with the expected composites and iden-
tities coming from C and the fact that T is a functor.

Now define the functors,

U : CT → C

U(A, α) = A

and

F : C→ CT

FC = (TC, µC)

we need to check that (TC, µC) is a T -algebra. The equations (10.5) for
T -algebras in this case become:

TC
ηTC

> T 2C T 3C
TµC

> T 2C

@
@

@
@

@
1

R

TC

µC

∨

T 2C

µTC

∨

µ
> TC

µ

∨

But these come directly from the definition of a monad.
To see that F is a functor, given any h : C → D in C, we have:

T 2C
T 2h

> T 2D

TC

µC

∨

Th
> TD

µD

∨
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since µ is natural. But this is a T -algebra homomorphism FC → FD, so we
can put:

Fh = Th : TC → TD

to get an arrow in CT .
Now we’ve defined the category CT and the functors

C
F

>
<

U
CT

and we want to show that F ⊣ U . Next, we need the unit and counit,

η̄ : 1C → U ◦ F

ǫ : F ◦ U → 1CT

Given C ∈ C, we have:

UF (C) = U(TC, µC) = TC

so we can take η̄ = η : 1C → U ◦ F , as required.
Given (A, α) ∈ CT ,

FU(A, α) = (TA, µA)

and the definition of a T -algebra makes this diagram commute:

T 2A
Tα

> TA

TA

µA

∨

α
> A

α

∨

But this is a morphism ǫ(A,α) : (TA, µA)→ (A, α) in CT . Thus we’re setting:

ǫ(A,α) = α

And ǫ is natural by the definition of a morphism of T -algebras, as follows.
Given any h : (A, α)→ (B, β), we need to show:

h ◦ ǫ(A,α) = ǫ(B,β) ◦ Th

But by the definition of ǫ, that’s h ◦ α = β ◦ Th, which holds since h is a
T -algebra homomorphism.

Finally, the triangle-identities now read as follows:
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1. For (A, α) a T -algebra:

U(A, α) > U(A, α)

@
@

@
@

@
ηU(A,α)

R �
�

�
�

�

Uǫ(A,α)

�

UFU(A, α)

which amounts to:

A > A

@
@

@
@

@
ηA

R �
�

�
�

�

α

�

TA

which holds since (A, α) is T -algebra.

2. For any C ∈ C:

FC > FC

@
@

@
@

@
FηC

R �
�

�
�

�

ǫFC

�

FUFC

which is:

TC > TC

@
@

@
@

@
TηC

R �
�

�
�

�

µC

�

T 2C

which holds by one of the unit laws for T .

Finally, note that we indeed have:

T = U ◦ F

η = unit of F ⊣ U
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And for the multiplication,
µ̄ = UǫF

we have, for any C ∈ C,

µ̄C = UǫFC = Uǫ(TC,µC ) = UµC = µC

So µ̄ = µ and we’re done; the adjunction F ⊣ U via η and ǫ gives rise to the
monad (T, η, µ).

Example 10.7. Take the free monoid adjunction,

F : Sets >
< Mon : U

The monad on Sets is then T : Sets→ Sets, where for any set X, T (X) =
UF (X) = “strings over X” . The unit η : X → TX is the usual “string of
length one” operation, but what is the multiplication?

µ : T 2X → TX

Here T 2X is the set of strings of strings,

[[x11, . . . , x1n], [x21, . . . , x2n], . . . , [xm1, . . . , xmn]]

And µ of such a string of strings is the string of their elements,

µ([[x11, . . . , x1n], [x21, . . . , x2n], . . . [xm1, . . . , xmn]]) = [x11, . . . , xmn]

Now, what is a T -algebra in this case? By the equations for a T -algebra,
it is a map,

α : TA→ A

from strings over A to elements of A, such that:

α[a] = a

and
α(µ([[. . .], [. . .], . . . , [. . .]])) = α(α[. . .], α[. . .], . . . , α[. . .])

If we start with a monoid, then we can get a T -algebra m : TM → M
by:

m[m1, . . . , mn] = m1 · . . . ·mn

This clearly satisfies the required conditions. Observe that we can even
recover the monoid structure from m by u = m(−) for the unit and x · y =
m(x, y) for the multiplication. Indeed every T -algebra is of this form for a
unique monoid (exercise!).
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We’ve now given constructions back and forth between adjunctions and
monads. And we know that if we start with a monad T : C→ C, and then
take the adjunction,

F T : C >
< CT : UT

then we can get the monad back by T = UT ◦ F T . Thus in particular, every
monoid arises from some adjunction. But are CT , UT , F T unique with this
property?

In general, the answer is no. There may be many different categories D

and adjunctions F ⊣ U : D→ C, all giving the same monad on C. We have
used the Eilenberg-Moore category CT , but there is also something called
the “Kleisli category”, which is in general different from CT , but also has an
adjoint pair to C giving rise to the same monad (see the exercises).

If we start with an adjunction F ⊣ U and construct CT for T = U ◦ F ,
we then get a comparison functor Φ : D→ CT , with

UT ◦ Φ ∼= U

Φ ◦ F = F T

D
Φ

> CT

I@
@

@
@

@
F

@
@

@
@

@

U

R �
�

�
�

�
F T

�

	�
�

�
�

�

UT

C

In fact, Φ is unique with this property. A functor U : D → C is called
monadic if it has a left adjoint F ⊣ U , such that this comparison functor is
an equivalence of categories,

D
Φ
∼=

> CT

for T = UF .
Typical examples of monadic forgetful functors U : C → Sets are those

from the “algebraic” categories arising as models for equational theories, like
monoids, groups, rings, etc. Indeed, one can reasonably take monadicity as
the definition of being “algebraic”.
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An example of a right adjoint that is not monadic is the forgetful functor
from posets,

U : Pos→ Sets

Its left adjoint F is the discrete poset functor. For any set X, therefore,
one has as the unit the identity function X = UF (X). The reader can easily
show that the Eilenberg-Moore category for T = 1Sets is then just Sets itself.

10.4 Comonads and coalgebras

By definition, a comonad on a category C is a monad on Cop. Explicitly,
this consists of an endofunctor G : C→ C and natural transformations,

ǫ : G→ 1 the counit

δ : G→ G2 comultiplication

satisfying the duals of the equations for a monad, namely:

δG ◦ δ = Gδ ◦ δ

ǫG ◦ δ = 1G = Gǫ ◦ δ

We leave it as an exercise in duality for the reader to verify that an
adjoint pair F ⊣ U with U : D→ C and F : C→ D and η : 1C → UF and
ǫ : FU → 1D gives rise to a comonad (G, ǫ, δ) on D, where:

G = F ◦ U : D→ D

ǫ : G→ 1

δ = FηU : G→ G2

The notions of coalgebra for a comonad, and of a comonadic functor, are
of course also precisely dual to the corresponding ones for monads. Why do
we even bother to study these notions separately, rather than just considering
their duals? As in other examples of duality, there are actually two distinct
reasons:

1. We may be interested in a particular category with special properties
not had by its dual. A comonad on SetsC is of course a monad on
(SetsC)

op
, but as we now know, SetsC has many special properties
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that its dual does not have (e.g. it is a topos!). So we can profitably
consider the notion of a comonad on such a category.

A simple example of this kind is the comonad G = ∆ ◦ lim
←−

resulting

from composing the “constant functor” functor ∆ : Sets→ SetsC with
the “limit” functor lim←− : SetsC → Sets. It can be shown in general
that the coalgebras for this comonad again form a topos. In fact, they
are just the constant functors ∆(S) for sets S, and the category Sets

is thus comonadic over SetsC.

2. It may happen that both structures — monad and comonad — occur
together, and interact. Taking the opposite category will not alter this
situation! This happens for instance when a system of three adjoint
functors are composed:

L ⊣ U ⊣ R C

R
>

<
U

L
>

D

resulting in a monad T = U ◦ L and a comonad G = U ◦ R, both on
C. In such a case, T and U are then of course also adjoint T ⊣ G.

This arises, for instance, in the foregoing example with R = lim←−, U =
∆, and L = lim

−→
the “colimit” functor. It also occurs in propositional

modal logic, with T = 3 “possibility” and G = � “necessity”, where
the adjointness 3 ⊣ � is equivalent to the law known to modal logicians
as “S5”.

A related example is given by the open and closed subsets of a topolog-
ical space: the topological interior operation on arbitrary subsets is a
comonad, and closure is a monad. We leave the details as an exercise.

10.5 Algebras for endofunctors

Some very basic kinds of algebraic structure have a more simple description
than as algebras for a monad, and this description generalizes to structures
that are not algebras for any monad, but still have some algebra-like prop-
erties.
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As a familiar example, consider first the underlying structure of the notion
of a group. We have a set G equipped with operations as indicated in the
following:

G×G
m

> G <
i

G

1

u

∧

We don’t assume, however, that these operations satisfy the group equa-
tions of associativity, etc. Observe that this description of what we will call a
“group-structure” can plainly be compressed into a single arrow of the form:

1 +G+G×G
[u, i,m]

> G

Now let us define the functor F : Sets→ Sets by:

F (X) = 1 +X +X ×X

Then a group structure is simply an arrow,

γ : F (G)→ G

Moreover, a homomorphism of group structures in the conventional sense:

h : G→ H

h(uG) = uH

h(i(x)) = i(h(x))

h(m(x, y)) = m(h(x), h(y))

is exactly a function h : G→ H such that the following diagram commutes.

F (G)
F (h)

> F (H)

G

γ

∨

h
>H

ϑ

∨
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where ϑ : F (H) → H is the group structure on H . This observation moti-
vates the following definition.

Definition 10.8. Given an endofunctor P : S → S on any category S, a
P -algebra consists of an object A of S and an arrow,

α : PA→ A.

A homomorphism h : (A, α) → (B, β) of P -algebras is an arrow h : A → B
in S such that h ◦ α = β ◦ P (h), as indicated in the following diagram:

P (A)
P (h)

> P (B)

A

α

∨

h
> B

β

∨

The category of all such P -algebras and their homomorphisms will be de-
noted:

P -Alg(S).

We will usually write more simply P -Alg when S is understood. Also, if
there is a monad present, we will need to be careful to distinguish between
algebras for the monad and algebras for the endofunctor (especially if P is
the functor part of the monad!).

Example 10.9. 1. For the functor P (X) = 1 + X + X × X on Sets we
have already seen that the category GrpStr of group structures is the
same thing as the category of P -algebras:

P -Alg = GrpStr

2. Clearly, for any other algebraic structure of finite “signature”, i.e. con-
sisting of finitely many, finitary operations, there is an analogous de-
scription of the structures of that sort as algebras for an associated end-
ofunctor. For instance, a ring structure, with two nullary, one unary,
and two binary operations is given by the endofunctor,

R(X) = 2 +X + 2×X2
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In general, a functor of the form,

P (X) = C0 + C1 ×X + C2 ×X
2 + . . .+ Cn ×X

n

with natural number coefficients Ck, is called a (finitary) polynomial
functor, for obvious reasons. These functors present exactly the finitary
structures. The same thing holds for finitary structures in any category
S with finite products and coproducts: these can always be represented
as algebras for a suitable endofunctor.

3. In a category such as Sets that is complete and cocomplete, there is an
evident generalization to infinitary signatures by using generalized or
“infinitary” polynomial functors, i.e. ones with infinite sets Ck as coeffi-
cients (representing infinitely many operations of a given arity), infinite
sets Bk as the exponents XBk (representing operations of infinite arity),
or infinitely many terms (representing infinitely many different arities
of operations), or some combination of these. The algebras for such an
endofunctor,

P (X) =
∑

i∈I

Ci ×X
Bi

can then be naturally viewed as generalized ”algebraic structures”. Us-
ing locally cartesian closed categories, one can even present this notion
without needing (co)completeness.

4. One can of course also consider algebras for an endofunctor P : S → S
that is not polynomial at all, such as the covariant powerset functor
P : Sets→ Sets. This leads to a proper generalization of the notion of
an “algebra”, which however still shares some of the formal properties
of conventional algebras, as shall be seen below.

Let P : Sets→ Sets be a polynomial functor, say:

P (X) = 1 +X2

(what structure is this?). Then the notion of an initial P -algebra gives rise to
a recursion property analogous to that of the natural numbers. Specifically,
let

[o,m] : 1 + I2 → I
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be an initial P -algebra, i.e. an initial object in the category of P algebras.
Then, explicitly, we have the structure:

o ∈ I, m : I × I → I

and for any set X with a distinguished element and a binary operation,

a ∈ X, ∗ : X ×X → X

there is a unique function u : I → X such that the following diagram com-
mutes:

1 + I2 P (u)
> 1 +X2

I

[o,m]

∨

u
>X

[a, ∗]

∨

This of course says that, for all i, j ∈ I:

u(o) = a

u(m(i, j)) = u(i) ∗ u(j)

which is exactly a definition by recursion of the function u : I → X. Indeed,
the usual recursion property of the natural numbers N with zero 0 ∈ N and
successor s : N→ N says precisely that (N, 0, s) is the initial algebra for the
endofunctor,

P (X) = 1 +X : Sets→ Sets

as the reader should check.
We next begin to investigate the question: When does an endofunctor

have an initial algebra? The existence is constrained by the fact that initial
algebras, when they exist, must have the following noteworthy property.

Lemma 10.10 (Lambek). Given any endofunctor P : S → S on an arbitrary
category S, if i : P (I)→ I is an initial P -algebra, then i is an isomorphism:

P (I) ∼= I
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We leave the proof as an easy exercise.

In this sense, the initial algebra for an endofunctor P : S → S is a
“least fixed point” for P . Suc algebras are often used computer science to
model “recursive datatypes” determined by so-called “fixed point equations”
X = P (X).

Example 10.11. 1. For the polynomial functor,

P (X) = 1 +X2

(monoid structure!), let us “unwind” the initial algebra,

[∗,@] : 1 + I × I ∼= I

Given any element x ∈ I, it is thus either of the form ∗ or of the form
x1@x2 for some elements x1, x2 ∈ I. Each of these xi, in turn, is either
of the form ∗ or of the form xi1@xi2, and so on. Continuing in this way,
we have a representation of x as a finite, binary tree. For instance, an
element of the form x = ∗@(∗@∗) looks like:

x

	�
�

�
�

� @
@

@
@

@R

∗ ∗@∗

	�
�

�
�

� @
@

@
@

@R

∗ ∗

We can present the monoid structure explicitly by letting:

I = {t | t is a finite, binary tree}
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with:

∗ = “the empty tree”

@(t1, t2) = t1@t2

=

t1@t2

	�
�

�
�

� @
@

@
@

@R

t1 t2

The isomorphism,

[∗,@] : 1 + I × I → I

is here plain to see.

2. Similarly, for any other polynomoial functor,

P (X) = C0 + C1 ×X + C2 ×X
2 + . . .+ Cn ×X

n

we can describe the initial algebra (in Sets),

P (I) ∼= I

as a set of trees with branching types and labels determined by P .

For another example, consider the polynomial:

P (X) = 1 + A×X

for some set A. What is the initial algebra? Since,

[∗,@] : 1 + A× I ∼= I

we can unwind an element x as:

x = ∗ or a1@x1

x1 = ∗ or a2@x2

. . .
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Thus we essentially have x = a1@a2@ . . .@an. So I can be represented
as the set A-List of (finite) lists of elements a1, a2, . . . of A, with the
structure:

∗ = “the empty list”

@(a, ℓ) = a@ℓ

The usual procedure of “recursive definition” follows from initiality. For
example, the length function for lists length : A-List → N is usually
defined by:

length(∗) = 0 (10.6)

length(a@ℓ) = 1 + length(ℓ) (10.7)

We can do this by equipping N with a suitable P (X) = 1 + A × X
structure, namely:

[0, m] : 1 + A×N→ N

where m(a, n) = 1 + n for all n ∈ N. Then by the UMP of the ini-
tial algebra we get a unique function length : A-List → N making a
commutative square:

1 + A×A-List
1 + A× length

> 1 + A× N

A-List

[∗,@]

∨

length
> N

[0, m]

∨

But this commutativity is, of course, precisely equivalent to the equa-
tions (10.6) and (10.7) above.

In virtue of Lambek’s lemma, we at least know that not all endofunctors
can have initial algebras. For consider the covariant powerset functor P :
Sets → Sets. An initial algebra for this would give us a set I with the
property that P(I) ∼= I, which is impossible by the well-known theorem of
Cantor!

The following proposition gives a useful sufficient condition for the exis-
tence of an initial algebra.
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Proposition 10.12. If the category S has an initial object 0 and colimits of
diagrams of type ω (call them “ω-colimits”), and the functor,

P : S → S

preserves ω-colimits, then P has an initial algebra.

Proof. Note that this generalizes a very similar result for posets already given
above as proposition 5.35. And even the proof by ”Newton’s method” is
essentially the same! Take the sequence:

0→ P0→ P 20→ . . .

and let I be the colimit:
I = lim
−→
n

P n0

Then since P preserves the colimit, there is an isomorphism:

P (I) = P (lim−→
n

P n0) ∼= lim−→
n

P (P n0) = lim−→
n

P n0 = I

which is seen to be an initial algebra for P by an easy diagram chase.

Since (as the reader should verify) every polynomial functor P : Sets→
Sets preserves ω-colimits, we have:

Corollary 10.13. Every polynomial functor P : Sets→ Sets has an initial
algebra.

Finally, we ask, what is the relationship between algebras for endofunctors
and algebras for monads? The following proposition, which can be found in
a recent research paper by Johnstone et al., gives the answer.

Proposition 10.14. Let the category S have finite coproducts. Given an
endofunctor P : S → S, the following conditions are equivalent:

1. The P -algebras are the algebras for a monad. Precisely, there is a
monad (T : S → S, η, µ), and an equivalence:

P -Alg(S) ≃ ST

between the category of P -algebras and the category ST of algebras for
the monad. Moreover, this equivalence preserves the respective forgetful
functors to S.
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2. The forgetful functor U : P -Alg(S)→ S has a left adjoint,

F ⊢ U.

3. For each object A of S, the endofunctor,

PA(X) = A+ P (X) : S → S

has an initial algebra.

Proof. That (1) implies (2) is clear.
For (2) implies (3), suppose that U has a left adjoint F : S → P -Alg, and

consider the endofunctor PA(X) = A + P (X). An algebra (X, γ) is a map
γ : A + P (X) → X. But there is clearly a unique correspondence between
the following types of things:

γ : A+ P (X)→ X

P (X)

A
α

>X

β

∨

α : A→ U(X, β)

Thus the PA-algebras can be described equivalently as arrows of the form
α : A → U(X, β) for P -algebras (X, β). Moreover, a PA-homomorphism
h : (α, U(X, β)) → (α′, U(X ′, β ′)) is just a P -homomorphism h : (X, β) →
(X ′, β ′) making a commutative triangle with α and α′ : A→ U(X ′, β ′). But
an initial object in this category is given by the unit η : A → UFA of the
adjunction F ⊢ U , which shows (3).

Indeed, given just the forgetful functor U : P -Alg → S, the existence of
initial objects in the respective categories of arrows α : A → U(X, β), for
each A, is exactly what is needed for the existence of a left adjoint F to U .
So (3) also implies (2).

Before concluding the proof, it is illuminating to see how the free functor
F : S → P -Alg results from condition (3). For each object A in S, consider
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the initial PA-algebra α : A+ P (IA)→ IA. In the notation of recursive type
theory,

IA = µX . A + P (X),

meaning it is the (least) solution to the “fixed point equation”

X = A+ P (X).

Since α is a map on the coproduct A+ P (IA), we have α = [α1, α2], and we
can let:

F (A) = (IA, α2 : P (IA)→ IA)

To define the action of F on an arrow f : A → B, let β : B + P (IB) → IB
be the initial PB-algebra and consider the diagram:

A+ P (IA) .....................
A+ P (u)

> A+ P (IB)

B + P (IB)

f + P (IB)

∨

IA

α

∨
.......................................

u
> IB

β

∨

The right-hand vertical composite β ◦ (f + P (IB)) now makes IB into a PA-
algebra. There is thus a unique PA-homomorphism u as indicated, and we
can set:

F (f) = u.

Finally, to conclude, the fact that (2) implies (1) is an easy application of
Beck’s Precise Tripleability Theorem, for which we refer the reader to section
VI.7 of Mac Lane’s “Categories Work”.
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10.6 Exercises

1. Let T be the equational theory with one constant symbol and one unary
function symbol (no axioms). In any category with a terminal object,
a natural numbers object (NNO) is just an initial T-model. Show that
the natural numbers,

(N, 0 ∈ N, n+ 1 : N→ N)

is a NNO in Sets, and that any NNO is uniquely isomorphic to it (as
a T-model).

Finally, show that (N, 0 ∈ N, n+ 1 : N→ N) is uniquely characterized
(up to isomorphism) as the initial algebra for the endofunctor F (X) =
X + 1.

2. (“Lambek’s Lemma”) Show that for any endofunctor T : C → C, if
i : TI → I is an initial T -algebra, then i is an isomorphism.

Hint : Consider a diagram of the following form, with suitable arrows.

TI > T 2I > TI

I

i

∨

> TI

T i

∨

> I
∨

Conclude that for any NNO N in any category, there is an isomorphism
N + 1 ∼= N . Also, derive the usual recursion property of the natural
numbers from initiality.

3. Given categories C and D and adjoint functors F : C → D and U :
D→ C with F ⊣ U , unit η : 1C → UF , and counit ǫ : FU → 1D, show
that

T := UF :C→ C

η :1C → T

UǫF :T 2 → T

do indeed determine a monad on C, as stated in the text.
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4. Assume given categories C and D and adjoint functors

F : C ⇄ D : U

with unit η : 1C → UF and counit ǫ : FU → 1D. Show that every D in
D determines a T = UF algebra Uǫ : UFUD → UD, and that there is
a “comparison functor” Φ : D→ CT which, moreover, commutes with
the “forgetful” functors U : D→ C and UT : CT → C.

D
Φ

> CT

A
A
A
A
A
A

U
U ��

�
�
�
�
�

UT

C

5. Show that (P, s,∪) is a monad on Sets, where:

• P : Sets → Sets is the covariant powerset functor, which takes
each function f : X → Y to the image mapping

P (f) = im(f) : P (X)→ P (Y );

• for each set X, the component sX : X → P (X) is the singleton
mapping, with

sX(x) = {x} ⊆ X

for each x ∈ X;

• for each set X, the component ∪X : PP (X)→ P (X) is the union
operation, with

∪X(α) = {x ∈ X | ∃U∈α. x ∈ U} ⊆ X

for each α ⊆ P (X).

6. Consider the free ⊣ forgetful adjunction

F : Sets >
< Mon : U

between sets and monoids, and let (T, ηT , µT ) be the associated monad
on Sets. Show that any T -algebra α : TA→ A for this monad comes
from a monoid structure on A (exhibit the monoid multiplication and
unit element).
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7. (a) Show that an adjoint pair F ⊣ U with U : D→ C and η : UF →
1C and ǫ : 1D → FU also gives rise to a comonad (G, ǫ, δ) in D,
with

G = F ◦ U : D→ D

ǫ : G→ 1 the counit

δ = FηU : G→ G2

satisfying the duals of the equations for a monad.

(b) Define the notion of a coalgebra for a comonad, and show (by
duality) that every comonad (G, ǫ, delta) on a category D “comes
from” a (not necessarily unique) adjunction F ⊣ G such that
G = FU and ǫ is the counit.

(c) Let End be the category of sets equipped with an endomorphism,
e : S → S. Consider the functor G : End→ End defined by:

G(S, e) = {x ∈ S | e(n+1)(x) = e(n)(x) for some n}

equipped with the restriction of e. Show that this is the functor
part of a comonad on End.

8. Verify that the open and closed subsets of a topological space give rise
to comonad and monad, respectively, on the powerset of the underly-
ing point-set. Moreover, the categories of coalgebras and algebras are
isomorphic.

9. * (Kleisli category) Given a monad (T, η, µ) on a category C, in addition
to the Eilenberg-Moore category we can construct another category CT

and an adjunction F ⊣ U , η : 1→ UF , ǫ : FU → 1 with U : CT → C

such that:

T = U ◦ F

η = η (the unit)

µ = UǫF

This category CT is called the Kleisli Category of the adjunction, and
is defined as follows:

• the objects are the same as those of C, but written AT , BT , . . .,
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• an arrows fT : AT → BT is an arrow f : A→ TB in C,

• the identity arrow 1AT
: AT → AT is the arrow ηA : A → TA in

C,

• for composition, given fT : AT → BT and gT : BT → CT , the
composite gT ◦ fT : AT → CT is defined to be:

µC ◦ TgT ◦ fT

as indicated in the following diagram:

A
gT ◦ fT

> TC

TB

fT

∨

TgT
> TTC

µC

∧

Verify that this indeed defines a category, and that there are adjoint
functors F : C → CT and U : CT → C giving rise to the monad as
T = UF , as claimed.

10. The notion of a coalgebra for an endofunctor P : S → S on an arbitrary
category S is exactly dual to that of a P -algebra. Determine the final
coalgebra for the functor:

P (X) = 1 + A×X

for a set A. (Hint: Recall that the initial algebra consisted of finite
lists a1, a2, . . . of elements of A.)
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