
CS142 Lecture Notes - Server Communication

Controller/server
communication

Mendel Rosenblum

CS142 Lecture Notes - Server Communication

Controller's role in Model, View, Controller
● Controller's job to fetch model for the view

○ May have other server communication needs as well (e.g. authentication services)

● Browser is already talking to a web server, ask it for the model

● Early approach: have the browser do a HTTP request for the model
○ First people at Microsoft liked XML so the DOM extension got called: XMLHttpRequest

● Allowed JavaScript to do a HTTP request without switching page

● Widely used and called AJAX - Asynchronous JavaScript and XML

● Since it is using an HTTP request it can carry XML or anything else
○ More often used with JSON

CS142 Lecture Notes - Server Communication

XMLHttpRequest
Sending a Request

xhr = new XMLHttpRequest();

xhr.onreadystatechange = xhrHandler;

xhr.open("GET", url);

xhr.send();

Any HTTP method (GET, POST, etc.) possible.

Responses/errors come in as events

Event handling

function xhrHandler() {

 if (this.readyState != 4) { // DONE

 return;

 }

 if (this.status != 200) { // OK

 // Handle error ...

 return;

 }

 ...

 var text = this.responseText;

 ...

CS142 Lecture Notes - Server Communication

XMLHttpRequest event processing
● Event handler gets called at various stages in the processing of the request

0 UNSENT open() has not been called yet.
1 OPENED send() has been called.
2 HEADERS_RECEIVED send() has been called, and headers and status are available.
3 LOADING Downloading; responseText holds partial data.
4 DONE The operation is complete.

● Response available as:
 raw text - responseText
 XML document - reponseXML

● Can set request headers and read response headers

CS142 Lecture Notes - Server Communication

Traditional AJAX uses patterns
● Response is HTML

elem.innerHTML = xhr.responseText;

● Response is JavaScript

eval(xhr.responseText);

Neither of the above are the modern JavaScript framework way:

● Response is model data (JSON frequently uses here)

JSON.parse(xhr.responseText);

CS142 Lecture Notes - Server Communication

Fetching models with XMLHttpRequest
● Controller needs to communicate in the request what model is needed

● Can encode model selection information in request in:

URL path: xhr.open("GET","userModel/78237489/fullname");

Query params: xhr.open("GET","userModel?id=78237489&type=fullname");

Request body:
 xhr.open("POST", url);

 xhr.setRequestHeader("Content-type",

"application/x-www-form-urlencoded");

 xhr.send("id=78237489&type=fullname");

CS142 Lecture Notes - Server Communication

REST APIs
● REST - representational state transfer

● Guidelines for web app to server communications

● 2000 PhD dissertation that was highly impactful

○ Trend at the time was complex Remote Procedure Calls (RPCs) system

○ Became a must have thing: Do you have a REST API?

● Some good ideas, some not so good

○ Doesn't work for everything

CS142 Lecture Notes - Server Communication

Some RESTful API attributes
● Server should export resources to clients using unique names (URIs)

○ Example: http://www.example.com/photo/ is a collection
○ Example: http://www.example.com/photo/78237489 is a resource

● Keep servers "stateless"
○ Support easy load balancing across web servers
○ Allow caching of resources

● Server supports a set of HTTP methods mapping to Create, Read, Update,
Delete (CRUD) on resource specified in the URL

○ GET method - Read resource (list on collection)
○ PUT method - Update resource
○ POST method - Create resource
○ DELETE method - Delete resource

CS142 Lecture Notes - Server Communication

REST API design
● Define the resources of the service and give them unique names (URIs)

○ Example: Photos, Users, Comments, ...

● Have clients use a CRUD operations using HTTP methods

● Extend when needed (e.g. transaction across multiple resources)

CS142 Lecture Notes - Server Communication

React accessing RESTful APIs
● React has no opinion. Prefer something higher level than XMLHttpRequest

○ Example: DoHTTPrequest(HTTP_METHOD, body, doneCallback)

● Popular: Axios - Promise based HTTP client for the browser and node.js
○ Wrapper around XMLHttpRequest

● REST Read (GET of URL): result = axios.get(URL);

● REST Create (POST to URL): result = axios.post(URL, object);
○ JSON encoding of object into body of POST request

● Similar patterns for REST Update (PUT) and REST Delete (DELETE)

https://www.npmjs.com/package/axios

CS142 Lecture Notes - Server Communication

Axios handling of HTTP responses
result = axios.get(URL); // Note: no callback specified! It's a Promise

result.then((response) => {
 // response.status - HTTP response status (e.g. 200)
 // response.statusText - HTTP response status text (e.g. OK)

// response.data - Response body object (JSON parsed)

 })

 .catch((err) => {
 // err.response.{status, data, headers) - Non-2xxx status
 // if !err.response - No reply, can look at err.request

 });

CS142 Lecture Notes - Promises

Minor Digression - Promises

CS142 Lecture Notes - Promises

Callbacks have haters
● Pyramid of Doom
fs.ReadFile(fileName, function (error, fileData) {

doSomethingOnData(fileData, function (tempData1) {

doSomethingMoreOnData(tempData1, function (tempData2) {

finalizeData(tempData2, function (result) {

// Called Pyramid of Doom
 doneCallback(result);
 }); }); }); });

● An alternative to pyramid: Have each callback be an individual function
○ Sequential execution flow jumps from function to function - not ideal

CS142 Lecture Notes - Promises

Same code without pyramid: Control jumps around
fs.ReadFile(fileName, readDone);

function readDone(error, fileData) {

doSomethingOnData(fileData, doSomeDone);

}

function doSomeDone (someData) {

doSomethingMoreOnData(someData, doSomeMoreDone);

}

function doSomeMoreDone (someMoreData) {

finalizeData(someMoreData, doneCallback);

}

CS142 Lecture Notes - Promises

Idea behind promises
● Rather than specifying a done callback

doSomething(args, doneCallback);

● Return a promise that will be filled in when done

var donePromise = doSomething(args);

donePromise will be filled in when operation completes

● Doesn't need to wait until you need the promise to be filled in

CS142 Lecture Notes - Promises

then() - Waiting on a promise
● Get the value of a promise (waiting if need be) with then

donePromise.then(function (value) {

// value is the promised result when successful
 }, function (error) {

// Error case
 });

CS142 Lecture Notes - Promises

Example of Promise usage
● axios.get() returns a promise

axios.get(url).then(function(response) {

 var ok = (response.status === 200);

doneCallback(ok ? response.data : undefined);

 }, function(response) {

 doneCallback(undefined);

 });

CS142 Lecture Notes - Promises

Promises
var myFile = myReadFile(fileName);

var tempData1 = myFile.then(function (fileData) {

return doSomethingOnData(fileData);

});

var finalData = tempData1.then(function (tempData2) {

return finalizeData(tempData2);

});

return finalData;

● Note no Pyramid of Doom
● Every variable is a promise

○ A standard usage: Every variable - If thenable call then() on it otherwise just use the
variable as is.

CS142 Lecture Notes - Promises

Chaining promises
return myReadFile(fileName)

 .then(function (fileData) { return doSomethingOnData(fileData); })

 .then(function (data) { return finalizeData(data); })

 .catch(errorHandlingFunc);

● Add in ES6 JavaScript arrow functions:

 return myReadFile(fileName)

 .then((fileData) => doSomethingOnData(fileData))

 .then((data) => finalizeData(data))

 .catch(errorHandlingFunc);

CS142 Lecture Notes - Promises

Going all in on promises
function doIt(fileName) {

let file = ReadFile(fileName);

let data = doSomethingOnData(file);

let moreData = doSomethingMoreOnData(data);

return finalizeData(moreData);

}

● All reads of variables become "then" calls:

myVar becomes myVar.then(fn -> { ...

CS142 Lecture Notes - Promises

Promises vs Callbacks
● Easy to go from Promise to Callback: Just call .then(callbackFunc)

○ axios.get(url).then(callback)

● Going from Callback to Promise requires creating a Promise
var newPromise = new Promise(function (fulfill, reject) {

// calls fulfill(value) to have promise return value
// calls reject(err) to have promise signal error

});

CS142 Lecture Notes - Promises

Converting callbacks to Promises
function myReadFile(filename) {

 return new Promise(function (fulfill, reject) {

 fs.readFile(filename, function (err, res) {

 if (err)

 reject(err);

 else

 fulfill(res);

 });

 });

}

CS142 Lecture Notes - Promises

End Digression

CS142 Lecture Notes - Server Communication

Other Transports: HTML5 WebSockets
● Rather than running over HTTP, HTML5 brings sockets to the browser

○ TCP connection from JavaScript to backend Web Server

● Event-based interface like XMLHttpRequest:
 var socket = new WebSocket("ws://www.example.com/socketserver");

socket.onopen = function (event) {

 socket.send(JSON.stringify(request));

};

socket.onmessage = function (event) {

 JSON.parse(event.data);

};

CS142 Lecture Notes - Server Communication

Remote Procedure Call (RPC)
● Traditional distributed computation technology supporting calling of a function

on a remote machine.
○ Browser packages function's arguments into a message to the web server.
○ Function is invoked with the arguments on the server.
○ Function's return value is sent back to the browser.

● Allows arbitrary code to be run on server - handles complex, multiple resource
operations

○ Reduces number of round trip messages and makes failure handling easier.

● Can result in more complex to use interface compared to REST
○ Need to document the API (i.e. functions and calling sequence)

● RPC can be done over HTTP (e.g. POST) or WebSockets

CS142 Lecture Notes - Server Communication

Trending approach: GraphQL
● Standard protocol for backends from Facebook

○ Like REST, server exports resources that can be fetched by the web app
○ Unlike REST

■ Server exports a "schema" describing the resources and supported queries.
■ Client specifies what properties of the resource it is interested in retrieving.
■ Can fetch from many different resources in the same request (i.e. entire model in one

query).

● Update operations specified in the exported schema
○ Allows an RPC-like interface

● Gaining in popularity particularly compared to REST
○ Gives a program accessible backend - Application Programming Interface (API)

