

PHP
A Beginner’s Guide

About the Author
Vikram Vaswani is the founder and CEO of
Melonfire (www.melonfire.com/), a consultancy
firm with special expertise in open-source tools and
technologies. He is a passionate proponent of the
open-source movement and frequently contributes
articles and tutorials on open-source technologies—
including Perl, Python, PHP, MySQL, and
Linux—to the community at large. His previous
books include MySQL: The Complete Reference
(www.mysql-tcr.com/), How to Do Everything with

PHP and MySQL (www.everythingphpmysql.com/), and PHP Programming
Solutions (www.php-programming-solutions.com/).

Vikram has over ten years of experience working with PHP and MySQL
as an application developer. He is the author of Zend Technologies’ PHP 101
series for PHP beginners, and he has extensive experience deploying PHP in
a variety of different environments (including corporate intranets, high-traffic
Internet Web sites, and mission-critical thin client applications).

A Felix Scholar at the University of Oxford, England, Vikram combines
his interest in Web application development with various other activities.
When not dreaming up plans for world domination, he amuses himself by
reading crime fiction, watching old movies, playing squash, blogging, and
keeping an eye out for unfriendly Agents. Read more about him and PHP:
A Beginner’s Guide at www.php-beginners-guide.com.

About the Technical Editor
Chris Cornutt has been involved in the PHP community for more than
eight years. Soon after discovering the language, he started up his news site,
PHPDeveloper.org, to share the latest happenings and opinions from other
PHPers around the world. Chris has written for PHP publications such as
php|architect and the International PHP Magazine on topics ranging from
geocoding to trackbacks. He is also a coauthor of PHP String Handling
(Wrox Press, 2003). Chris lives in Dallas, Texas, with his wife and son,
and works for a large natural gas distributor maintaining their Web site and
developing PHP-based applications.

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

PHP
A Beginner’s Guide

Vikram Vaswani

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-154902-1

The material in this eBook also appears in the print version of this title: 0-07-154901-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation
of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071549013

For Gurgle and Tonka, my two babies

This page intentionally left blank

vii

Contents at a Glance

PART I Understanding PHP Basics

 1 Introducing PHP . 3

 2 Using Variables and Operators . 21

 3 Controlling Program Flow . 49

 4 Working with Arrays . 85

 5 Using Functions and Classes . 121

PART II Working with Data from Other Sources

 6 Working with Files and Directories . 159

 7 Working with Databases and SQL . 185

 8 Working with XML . 249

 9 Working with Cookies, Sessions, and Headers . 293

 viii PHP: A Beginner’s Guide

PART III Security and Troubleshooting

 10 Handling Errors . 317

 11 Securing PHP . 349

 12 Extending PHP . 377

PART IV Appendixes

 A Installing and Configuring Required Software . 391

 B Answers to Self Test . 419

 Index . 445

ix

Contents

FOREWORD . xvii
ACKNOWLEDGMENTS . xix
INTRODUCTION . xxi

PART I Understanding PHP Basics

 1 Introducing PHP . 3
History . 4
Unique Features . 5
Basic Development Concepts . 7
Creating Your First PHP Script . 10

Writing and Running the Script . 10
Understanding the Script . 11
Handling Script Errors . 12

Try This 1-1: Mixing PHP with HTML . 13
Escaping Special Characters . 15

Sample Applications . 16
phpMyAdmin . 17
phpBB . 17
Gallery . 17
PoMMo . 17
Smarty . 18

For more information about this title, click here

 x PHP: A Beginner’s Guide

Squirrelmail . 18
eZ Publish . 18
Mantis . 18
Wordpress . 18

Summary . 18

 2 Using Variables and Operators . 21
Storing Data in Variables . 22

Assigning Values to Variables . 23
Destroying Variables . 24
Inspecting Variable Contents . 25

Understanding PHP’s Data Types . 26
Setting and Checking Variable Data Types . 27
Using Constants . 29
Manipulating Variables with Operators . 30

Performing Arithmetic Operations . 30
Concatenating Strings . 31
Comparing Variables . 32
Performing Logical Tests . 33
Other Useful Operators . 34
Understanding Operator Precedence . 36

Try This 2-1: Building a Dollars-to-Euros Converter . 37
Handling Form Input . 39
Try This 2-2: Building an Interactive HTML Color Sampler . 42
Summary . 45

 3 Controlling Program Flow . 49
Writing Simple Conditional Statements . 50

The if Statement . 50
The if-else Statement . 51

Try This 3-1: Testing Odd and Even Numbers . 53
Writing More Complex Conditional Statements . 54

The if-elseif-else Statement . 55
The switch-case Statement . 55

Try This 3-2: Assigning Boy Scouts to Tents . 57
Combining Conditional Statements . 58

Repeating Actions with Loops . 59
The while Loop . 60
The do-while Loop . 60
The for Loop . 61
Combining Loops . 62
Interrupting and Skipping Loops . 63

Try This 3-3: Building a Factorial Calculator . 64

 Contents xi

Working with String and Numeric Functions . 66
Using String Functions . 66
Using Numeric Functions . 73

Try This 3-4: Processing a Member Registration Form . 77
Summary . 82

 4 Working with Arrays . 85
Storing Data in Arrays . 86

Assigning Array Values . 87
Modifying Array Values . 89
Retrieving Array Size . 90
Nesting Arrays . 91

Processing Arrays with Loops and Iterators . 92
The foreach Loop . 93
The Array Iterator . 94

Try This 4-1: Averaging the Grades of a Class . 95
Using Arrays with Forms . 97
Try This 4-2: Selecting Pizza Toppings . 97
Working with Array Functions . 100
Try This 4-3: Checking Prime Numbers . 107
Working with Dates and Times . 110

Generating Dates and Times . 111
Formatting Dates and Times . 112
Useful Date and Time Functions . 113

Try This 4-4: Building an Age Calculator . 116
Summary . 118

 5 Using Functions and Classes . 121
Creating User-Defined Functions . 122

Creating and Invoking Functions . 123
Using Arguments and Return Values . 124
Setting Default Argument Values . 126
Using Dynamic Argument Lists . 127
Understanding Variable Scope . 128
Using Recursive Functions . 129

Try This 5-1: Calculating GCF and LCM . 132
Creating Classes . 135

Introducing Classes and Objects . 135
Defining and Using Classes . 135

Try This 5-2: Encrypting and Decrypting Text . 139
Using Advanced OOP Concepts . 143

Using Constructors and Destructors . 143
Extending Classes . 144
Adjusting Visibility Settings . 147

 xii PHP: A Beginner’s Guide

Try This 5-3: Generating Form Selection Lists . 148
Summary . 154

PART II Working with Data from Other Sources

 6 Working with Files and Directories . 159
Reading Files . 160

Reading Local Files . 160
Reading Remote Files . 161
Reading Specific Segments of a File . 162

Writing Files . 163
Try This 6-1: Reading and Writing Configuration Files . 165
Processing Directories . 169
Performing Other File and Directory Operations . 172
Try This 6-2: Creating a Photo Gallery . 180
Summary . 183

 7 Working with Databases and SQL . 185
Introducing Databases and SQL . 186

Understanding Databases, Records, and Primary Keys . 187
Understanding Relationships and Foreign Keys . 188
Understanding SQL Statements . 189

Try This 7-1: Creating and Populating a Database . 191
Creating the Database . 192
Adding Tables . 192
Adding Records . 193

Using PHP’s MySQLi Extension . 200
Retrieving Data . 201

Adding or Modifying Data . 205
Handling Errors . 209
Try This 7-2: Adding Employees to a Database . 209
Using PHP’s SQLite Extension . 216

Introducing SQLite . 216
Retrieving Data . 220
Adding or Modifying Data . 224
Handling Errors . 225

Try This 7-3: Creating a Personal To-Do List . 226
Using PHP’s PDO Extension . 234

Retrieving Data . 234
Adding and Modifying Data . 237
Handling Errors . 240

Try This 7-4: Building a Login Form . 241
Using a MySQL Database . 241
Switching to a Different Database . 246

Summary . 247

 Contents xiii

 8 Working with XML . 249
Introducing XML . 250

XML Basics . 250
Anatomy of an XML Document . 251
Well-Formed and Valid XML . 253
XML Parsing Methods . 253
XML Technologies . 254

Try This 8-1: Creating an XML Document . 255
Using PHP’s SimpleXML Extension . 257

Working with Elements . 257
Working with Attributes . 259

Try This 8-2: Converting XML to SQL . 260
Altering Element and Attribute Values . 262
Adding New Elements and Attributes . 263
Creating New XML Documents . 264

Try This 8-3: Reading RSS Feeds . 266
Using PHP’s DOM Extension . 270

Working with Elements . 270
Working with Attributes . 275

Try This 8-4: Recursively Processing an XML Document Tree . 276
Altering Element and Attribute Values . 279
Creating New XML Documents . 281
Converting Between DOM and SimpleXML . 283

Try This 8-5: Reading and Writing XML Configuration Files . 284
Summary . 289

 9 Working with Cookies, Sessions, and Headers . 293
Working with Cookies . 294

Cookie Basics . 294
Cookie Attributes . 295
Cookie Headers . 296
Setting Cookies . 297
Reading Cookies . 297
Removing Cookies . 298

Try This 9-1: Saving and Restoring User Preferences . 298
Working with Sessions . 302

Session Basics . 302
Creating Sessions and Session Variables . 302
Removing Sessions and Session Variables . 304

Try This 9-2: Tracking Previous Visits to a Page . 305
Using HTTP Headers . 306
Try This 9-3: Building a Better Login Form . 308
Summary . 313

 xiv PHP: A Beginner’s Guide

PART III Security and Troubleshooting

 10 Handling Errors . 317
Handling Script Errors . 318

Controlling Error Reporting . 321
Using a Custom Error Handler . 322

Try This 10-1: Generating a Clean Error Page . 325
Using Exceptions . 330

Using Custom Exceptions . 334
Try This 10-2: Validating Form Input . 335
Logging Errors . 341
Debugging Errors . 342
Summary . 347

 11 Securing PHP . 349
Sanitizing Input and Output . 350
Securing Data . 353

Securing Configuration Files . 353
Securing Database Access . 354
Securing Sessions . 355

Validating User Input . 356
Working with Required Fields . 356
Working with Numbers . 358
Working with Strings . 361
Working with Dates . 367

Try This 11-1: Validating Form Input . 368
Configuring PHP Security . 373
Summary . 375

 12 Extending PHP . 377
Using PEAR . 378

Installing PEAR Packages . 379
Try This 12-1: Accessing POP3 Mailboxes with PEAR . 380
Using PECL . 384

Installing PECL Extensions . 384
Try This 12-2: Creating Zip Archives with PECL . 386
Summary . 388

PART IV Appendixes

 A Installing and Configuring Required Software . 391
Obtaining the Software . 392
Installing and Configuring the Software . 394

Installing on UNIX . 394
Installing on Windows . 401

 Contents xv

Testing the Software . 412
Testing MySQL . 412
Testing PHP . 413

Performing Post-Installation Steps . 415
Setting the MySQL Super-User Password . 416
Configuring MySQL and Apache to Start Automatically . 416

Summary . 417

 B Answers to Self Test . 419

 Index . 445

This page intentionally left blank

xvii

Foreword

I have been programming computers for a long time. In that time, I have moved between
more languages than I can count. With each new language, I have always said that once

you learn how to program properly, everything else is just syntax. I still believe that’s true
for a lot of languages, but for PHP, that may be an oversimplification.

In PHP, there are usually several ways to accomplish any given task. Some of them
are better than others, but a few of them—mainly, anything that requires the globals
command—are outright wrong. This is always confusing to programmers new to PHP
because if there are several correct ways to accomplish a task, how do you know which
one is the best? “Best Practices” has been a theme in the PHP community for several years
now as an attempt to answer this question.

Whenever a new member of the PHP community asks me where to learn the Best
Practices of programming PHP, I invariably point them to Vikram’s “PHP 101” series,
posted in several places around the Web. His work on that 14-part series has earned him
a name in the community as an authority not only on teaching new users how to program
but teaching them how to program correctly.

I have had the pleasure of working with Vikram for two years now on DevZone. His
articles are without a doubt some of the most popular we have published. I know as you
read this book you will come to understand why.

—Cal Evans
Editor-in-chief, Zend’s DevZone

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

xix

Acknowledgments

This book was written across 2007 and 2008, when PHP 5.3 was still under development.
Writing a book about a piece of software that is still under development is always a

challenging task. Fortunately, I was aided immeasurably in the process by a diverse group
of people, all of whom played an important role in getting this book into your hands.

First and foremost, I’d like to thank my wife, who helped keep me grounded throughout
the process. Beauty and intelligence: I lack both, but fortunately she more than makes up
for my failings. Thanks, babe!

The editorial and marketing team at McGraw-Hill Professional has been a pleasure
to work with (as usual). This is my fourth book with them, and they seem to get better
and better with each one. Acquisitions coordinator Jennifer Housh, technical editor
Chris Cornutt, and executive editor Jane Brownlow all guided this book through the
development process and played no small part in turning it from concept into reality. I’d
like to thank them for their expertise, dedication, and efforts on my behalf.

Finally, for making the entire book-writing process more enjoyable than it usually is,
thanks to: Patrick Quinlan, Ian Fleming, Bryan Adams, the Stones, Peter O’Donnell, MAD
Magazine, Scott Adams, FHM, Gary Larson, VH1, George Michael, Kylie Minogue,
Buffy, Farah Malegam, Adam and Anna, Stephen King, Shakira, Anahita Marker, Park
End, John le Carre, Barry White, Gwen Stefani, Robert Crais, Robert B. Parker, Baz
Luhrmann, Stefy, Anna Kournikova, John Connolly, Wasabi, Omega, Pidgin, Cal Evans,

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 xx PHP: A Beginner’s Guide

Ling’s Pavilion, Tonka and his evil twin Bonka, Din Tai Fung, HBO, Mark Twain, Tim
Burton, Harish Kamath, Madonna, John Sandford, Iron Man, the Tube, Dido, Google.com,
The Matrix, Lee Child, Michael Connelly, Quentin Tarantino, Alfred Hitchcock, Woody
Allen, Percy Jackson, the St. Hugh’s College bops, Booty Luv, Mambo’s and Tito’s,
Easyjet, Humphrey Bogart, Thai Pavilion, Brix, Wikipedia, 24, Amazon.com, U2, The
Three Stooges, Pacha, Oscar Wilde, Hugh Grant, Punch, Kelly Clarkson, Scott Turow,
Slackware Linux, Calvin and Hobbes, Blizzard Entertainment, Alfred Kropp, Otto, Pablo
Picasso, Popeye and Olive Oyl, Dennis Lehane, Trattoria, Dire Straits, Bruce Springsteen,
David Mitchell, The West Wing, Santana, Rod Stewart, and all my friends, at home and
elsewhere.

xxi

Introduction

No matter which way you cut it, PHP is pretty amazing: a language strung together
by volunteer programmers that today has the enviable distinction of being in

use on more than a third of the planet’s Web servers. Flexible, scalable, extensible,
stable, open—PHP is all of these and more, which is why it’s one of the most popular
programming toolkits in the world.

Ask me why I like PHP, though, and my reason has nothing to do with any of the
preceding buzzwords and everything to do with how friendly and nonthreatening the
language is. There’s no tortuous syntax or obfuscated code in the average PHP script:
instead, it’s clear, understandable, and easy to read, and this makes both programming and
debugging with it a pleasure. This is no small achievement: a shorter learning curve makes
it easier for novice programmers to quickly begin “doing something useful” with the
language, and increases both user interest and adoption levels. This isn’t just good design:
it’s smart marketing as well!

As an open-source project, PHP is completely free, and supported by a worldwide
community of volunteers. This open-source, community-driven approach has produced
a platform that is significantly more robust and error-free than many commercial
alternatives. So using PHP is also good economics for organizations: it allows them to
save on licensing fees and expensive server hardware, while simultaneously producing
higher-quality products in shorter time frames.

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 xxii PHP: A Beginner’s Guide

If all these sound like good reasons to begin looking into PHP, well, you’re in the
right place. This book will guide you through the world of PHP, teaching you to write
basic PHP programs and then enhance them with more advanced features such as database
queries, XML input, and third-party extensions. In short, it has everything necessary to
turn you into a PHP expert . . . and it might even make you crack a smile on occasion!

So come on in, and let’s get started.

Who Should Read This Book
As you might have guessed from the title, PHP: A Beginner’s Guide is intended for
users who are new to the PHP programming language. Unlike many other books, PHP:
A Beginner’s Guide doesn’t assume prior knowledge of Web programming or database
fundamentals. Rather, it teaches by example, using in-chapter projects and examples to
explain basic concepts and, thus, gradually increase the reader’s familiarity with PHP
concepts and programming tools. Therefore, it is most suitable for novice programmers
who are familiar with HTML and CSS, and are interested in widening their skill set to also
build dynamic, data-driven sites using PHP.

What This Book Covers
PHP: A Beginner’s Guide contains information on the PHP 5.2 and 5.3-alpha programming
toolkit and its most commonly used features: MySQL and SQLite database integration, XML
processing capabilities, and third-party extensions. It provides one-stop coverage of software
installation, language syntax and data structures, flow control routines, built-in functions,
and best practices. Each chapter also includes numerous practical projects that the reader can
“follow along with” to gain a practical understanding of the material being discussed.

The following outline describes the contents of the book and shows how the book is
broken down into task-focused chapters.

Part I: Understanding PHP Basics
Chapter 1: Introducing PHP introduces the PHP programming language, explains why
it’s so popular for Web application development, and explains how the components of a
typical PHP system interact.

Chapter 2: Using Variables and Operators explains PHP’s data types, variables, and
operators, and discusses one of PHP’s most popular applications, form input processing.

 Introduction xxiii

Chapter 3: Controlling Program Flow demonstrates how to add intelligence to PHP
scripts with conditional statements, automate repetitive tasks with loops, and make use of
built-in functions for working with strings and numbers.

Chapter 4: Working with Arrays introduces PHP’s array data type, explains how it
can be used with loops and Web forms, and demonstrates some of PHP’s built-in functions
to sort, merge, add, modify, and split arrays.

Chapter 5: Using Functions and Classes provides a crash course in two of PHP’s more
complex features, functions and classes. Recursion, variable-length argument lists, visibility,
extensibility, and reflection are just some of the topics covered in this chapter, which focuses
on PHP’s frameworks for turning frequently used code blocks into reusable components.

Part II: Working with Data from Other Sources
Chapter 6: Working with Files and Directories explains PHP’s file system functions,
demonstrating the PHP routines available to read and write files, create and modify
directories, and work with file paths and attributes.

Chapter 7: Working with Databases and SQL explains databases and Structured
Query Language (SQL), and then introduces the two databases most commonly used with
PHP: MySQL and SQLite. It illustrates how PHP can be used to build Web applications
that interact with a database to view, add, and edit data, and also discusses new database
portability features.

Chapter 8: Working with XML explains basic XML concepts and technologies, and
discusses how PHP can be used to process XML data using the SimpleXML extension.

Chapter 9: Working with Cookies, Sessions, and Headers explains PHP’s built-in
functions to create sessions and cookies, and demonstrates how these functions can be
used to make Web applications more user-friendly.

Part III: Security and Troubleshooting
Chapter 10: Handling Errors focuses on PHP’s error-handling framework. It explains
the PHP error and exception model, and shows how to create customized error handling
routines tailored to specific requirements.

Chapter 11: Securing PHP discusses security issues and common attacks, and
suggests ways to increase the security of a PHP application. It discusses key application-
hardening techniques of input validation, output escaping, and PHP security configuration.

Chapter 12: Extending PHP introduces you to two of the largest repositories of
free PHP code on the Internet: PEAR, the PHP Extension and Application Repository,
and PECL, the PHP Extension Community Library. It explains how freely available
components from these repositories can be used to quickly add new capabilities and
features to PHP, making application development faster and more effective.

 xxiv PHP: A Beginner’s Guide

Part IV: Appendixes
The appendixes include reference material for the information presented in the first
three parts.

Appendix A: Installing and Configuring Required Software discusses the process
of obtaining, installing, and configuring Apache, PHP, MySQL, and SQLite.

Appendix B: Answers to Self Test provides answers to the self-test questions that
appear at the end of each chapter in this book.

Chapter Content
● Try This Each chapter contains at least one self-contained, hands-on project that

is relevant to the topic under discussed and that the reader can use to gain a practical
understanding of the material.

● Ask the Expert Each chapter contains one or two Ask the Expert sections that
provide expert guidance and information on questions that might arise about the
material presented in the chapter.

● Self Test Each chapter ends with a Self Test, which is a set of questions that tests
you on the information and skills you learned in that chapter. The answers to the Self
Test are included in Appendix B, at the end of the book.

Part I
Understanding
PHP Basics

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

3

Chapter 1
Introducing PHP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 4 PHP: A Beginner’s Guide

Key Skills & Concepts
● Know PHP’s history

● Learn PHP’s unique capabilities for Web application development

● See how the components of a PHP system interact

● Understand the basic grammar and structure of a PHP script

● Create and run a simple PHP program

● Embed PHP in an HTML page

PHP. Three letters that together constitute the name of one of the world’s most popular
programming languages for Web development, the PHP Hypertext Preprocessor. And

while you might chuckle at the geekiness of the recursive acronym, statistics indicate
that PHP is not be taken lightly: the language is today in use on over twenty million Web
sites and more than a third of the world’s Web servers—no small feat, especially when
you consider that the language has been developed entirely by a worldwide community of
volunteers and is freely available on the Internet at no cost whatsoever!

Over the last few years, PHP has become the de facto choice for the development
of data-driven Web applications, notably on account of its scalability, ease of use, and
widespread support for different databases and data formats. This first chapter will gently
introduce you to the world of PHP, by taking you on a whirlwind tour of PHP’s history
and features, and then guiding you through writing and executing your first PHP program.
So flip the page, and let’s get started!

History
The current version of PHP, PHP 5.3, has been more than fourteen years in the making; its
lineage can be traced back to 1994, when a developer named Rasmus Lerdorf first created
a set of CGI scripts to monitor page views for his online résumé. This early version of PHP,
named PHP/FI, was fairly primitive; although it had support for form input and the mSQL
database, it lacked many of the security features and add-ons found in modern PHP versions.

Lerdorf later improved PHP/F1 1.0 and released it as PHP/FI 2.0, but it was only
in 1997, when the developers Andi Gutmans and Zeev Suraski rewrote the PHP parser

 Chapter 1: Introducing PHP 5

and released it as PHP 3.0, that the PHP movement really began to pick up steam. Not
only was PHP 3.0’s syntax more powerful and consistent, but it also introduced a new,
extensible architecture that encouraged independent developers to create their own
enhancements and extensions to the language. Needless to say, this only encouraged
adoption of the language, and it wasn’t long before PHP 3.0 began appearing on many
thousands of Web servers.

The next iteration of the code tree, PHP 4.0, was released in 2000. It offered a new
engine, better performance and reliability, and built-in support for sessions and object-
oriented features. A Nexen survey in July 2007 revealed that this version of PHP, PHP 4.x,
was still the dominant version in use on the Internet’s Web sites, accounting for almost
80 percent of the PHP-capable servers surveyed. However, in July 2007, the PHP
development team announced that PHP 4.x would no longer be supported after December
2007, paving the way for more widespread adoption of newer versions.

PHP 5.0, released in 2004, was a radical redesign of PHP 4.0, boasting a completely
rewritten engine, a much-improved object model, and various security and performance
improvements. Of particular interest to developers was the new object model, which now
included support for such stalwarts of the OOP paradigm as abstract classes, destructors,
multiple interfaces, and class type hints. PHP 5.0 also introduced various new and
important tools: a common database access layer; Java-style exception handling; and an
integrated database engine.

PHP 5.3, the most recent version (and the version used throughout this book), was
released in January 2008. It improves on the new features first shown in PHP 5.0, and
also attempts to correct some of the shortcomings noted by users of earlier versions.
Some of the most noticeable improvements in this version are: support for namespacs; a
cleaner and more secure environment for managing the variable space; built-in support for
SQLite 3; and a new native driver for MySQL. So far, all these changes have conspired to
make PHP 5.3 the best PHP release in the language’s fourteen-year history, a fact amply
illustrated by the April 2008 Netcraft survey, which shows PHP in use on over thirty
million Web sites.

Unique Features
If you’re familiar with other server-side languages like ASP.NET or JSP, you might be
wondering what makes PHP so special, or so different from these competing alternatives.
Well, here are some reasons:

Performance Scripts written in PHP execute faster than those written in other scripting
languages, with numerous independent benchmarks putting the language ahead of

 6 PHP: A Beginner’s Guide

competing alternatives like JSP, ASP.NET, and Perl. The PHP 5.0 engine was completely
redesigned with an optimized memory manager to improve performance, and is noticeably
faster than previous versions. In addition, third-party accelerators are available to further
improve performance and response time.

Portability PHP is available for UNIX, Microsoft Windows, Mac OS, and OS/2, and
PHP programs are portable between platforms. As a result, a PHP application developed
on, say, Windows will typically run on UNIX without any significant issues. This ability
to easily undertake cross-platform development is a valuable one, especially when
operating in a multiplatform corporate environment or when trying to address multiple
market segments.

Ease of Use “Simplicity is the ultimate sophistication,” said Leonardo da Vinci, and
by that measure, PHP is an extremely sophisticated programming language. Its syntax is
clear and consistent, and it comes with exhaustive documentation for the 5000+ functions
included with the core distributions. This significantly reduces the learning curve for both
novice and experienced programmers, and it’s one of the reasons that PHP is favored as a
rapid prototyping tool for Web-based applications.

Open Source PHP is an open-source project—the language is developed by a worldwide
team of volunteers who make its source code freely available on the Web, and it may be
used without payment of licensing fees or investments in expensive hardware or software.
This reduces software development costs without affecting either flexibility or reliability.
The open-source nature of the code further means that any developer, anywhere, can
inspect the code tree, spot errors, and suggest possible fixes; this produces a stable, robust
product wherein bugs, once discovered, are rapidly resolved—sometimes within a few
hours of discovery!

Community Support One of the nice things about a community-supported language
like PHP is the access it offers to the creativity and imagination of hundreds of developers
across the world. Within the PHP community, the fruits of this creativity may be found
in PEAR, the PHP Extension and Application Repository (http://pear.php.net/), and
PECL, the PHP Extension Community Library (http://pecl.php.net/), which contains
hundreds of ready-made widgets and extensions that developers can use to painlessly add
new functionality to PHP. Using these widgets is often a more time- and cost-efficient
alternative to rolling your own code.

Third-Party Application Support One of PHP’s strengths has historically been its
support for a wide range of different databases, including MySQL, PostgreSQL, Oracle,

 Chapter 1: Introducing PHP 7

and Microsoft SQL Server. PHP 5.3 supports more than fifteen different database engines,
and it includes a common API for database access. XML support makes it easy to read (and
write) XML documents as though they were native PHP data structures, access XML node
collections using XPath, and transform XML into other formats with XSLT style sheets.

It doesn’t just stop there either. PHP’s extensible architecture allows developers to
write custom add-ons to the language, with the result that PHP developers can today
read and write the GIF, JPEG, and PNG image formats; send and receive e-mail using
the SMTP, IMAP, and POP3 protocols; interface with Web services using the SOAP and
REST protocols; validate input using Perl regular expressions; and create and manipulate
PDF documents. Heck, PHP can even access C libraries, Java classes, and COM objects
and take advantage of program code written for these languages!

Q: Do I need to compile PHP programs before executing them, as in Java or C++?

A: No, because PHP is an interpreted language. One advantage of an interpreted language
is that it allows you to make changes to your source code and immediately test these
changes, without first needing to compile your source code into binary form. Skipping the
compilation step makes the development process much faster, and PHP comes with built-in
memory management and caching to negate the effect of the additional run-time load
associated with using an interpreter.

Ask the Expert

Basic Development Concepts
When developing a PHP application for the Web, the typical approach is to embed PHP
code into one or more standard HTML documents using special “tags,” or delimiters.
Here’s an example:

<html>
 <head></head>
 <body>
 <div>
 <?php echo sqrt(49); ?>
 </div>
 </body>
</html>

 Chapter 1: Introducing PHP 9

From the preceding explanation, it should be clear that to get started building PHP
applications, your development environment must contain at least three components:

● A base operating system (OS) and server environment (usually Linux)

● A Web server (usually Apache on Linux or IIS on Windows) to intercept HTTP
requests and either serve them directly or pass them on to the PHP interpreter for
execution

● A PHP interpreter to parse and execute PHP code, and return the results to the
Web server

There’s also often a fourth optional but very useful component:

● A database engine (such as MySQL) that holds application data, accepts connections
from the PHP layer, and modifies or retrieves data from the database

An important corollary of this approach is that the PHP code is executed on the server,
and not on the client browser. This allows Web developers to write program code that
is completely independent of, and thus impervious to, browser quirks—an important
advantage over client-side scripting languages, such as JavaScript, which often require
complex logic to account for browser-specific differences. Further, because the code is
all executed on the server and only the output is sent to the client, it is impossible for
users to see the source code of your PHP program—an important security advantage over
languages like JavaScript.

Q: How much do the components of a PHP development environment cost?

A: The four components described in the preceding section are all open-source projects and,
as such, can be downloaded off the Internet at no charge. As a general principle, there
are also no fees or charges associated with using these components for either personal or
commercial purposes, or for developing and distributing applications that use them. If
you do intend to write commercial applications, however, it’s a good idea to review the
licensing terms that are associated with each of these components; typically, you will find
these on the component’s Web site as well as in the downloadable archive file.

When all four components—Linux, Apache, MySQL, and PHP—are present, the
development environment is referred to as the “LAMP platform.”

Ask the Expert

 10 PHP: A Beginner’s Guide

Creating Your First PHP Script
Now that you know a little bit about PHP, let’s dive right in and begin writing some code.
By necessity, the scripts you’ll be writing in the following sections will be fairly simple—
but don’t worry, things will get more complicated as you learn more about the language!

If you haven’t already done so, this is a good place to boot up your computer,
download the newest versions of Apache and PHP, and install them to your development
environment. Appendix A of this book has detailed instructions for accomplishing this
procedure, and for testing your development system to ensure that all is working as it
should post-installation, so flip ahead and come back here once you’re ready.

All done? Let’s get started!

Writing and Running the Script
PHP scripts are merely plain-text files containing PHP instructions, sometimes combined
with other odds and ends—JavaScript, HTML, and so on. So, the simplest way to write a
PHP script is to pop open your favorite text editor and create a file containing some PHP
code, as follows:

<?php
// this line of code displays a famous quotation
echo 'A horse! A horse! My kingdom for a horse!';
?>

Save this file to a location under your Web server’s document root, and name it
horse.php. Then, start up your Web browser, and browse to the URL corresponding to
the file location. You should see something like Figure 1-2.

Figure 1-2 The output of the horse.php script

 Chapter 1: Introducing PHP 11

Q: I wrote the following PHP script (omitting the semicolon terminator), and it worked
without generating an error.

<?php
echo 'The Queen is dead. Long live the Queen'
?>

 This contradicts what you said earlier about every PHP statement necessarily ending
with a semicolon. Please explain.

A: Omitting the semi-colon at the end of a PHP statement is one of the most common
mistakes novice PHP programmers make, and it invariably results in an error message.
However, there is one situation—the one you discovered—where you can get away clean
even with this omission. A semicolon is not needed to terminate the last line of a PHP
block, because the closing ?> includes a semicolon. That’s why the script you wrote
works without an error.

Note, however, that while you can get away with this omission, omitting the
semicolon in this manner is not good programming practice. After all, you never know
when you’ll need to add something else to the end of your script!

Ask the Expert

Understanding the Script
What happened here? Well, when you requested the script horse.php, the Apache Web
server received your request, recognized that the file was a PHP script (by means of
the .php file extension), and handed it off to the PHP parser and interpreter for further
processing. This PHP interpreter then read the instructions between the <?php ... ?>
tags, executed them, and passed the results back to the Web server, which in turn sent
them back to your browser. The instructions in this instance consisted of a call to PHP’s
echo statement, which is responsible for displaying output to the user; the output to be
displayed is enclosed in quotation marks.

There is some useful information to be gleaned from even this simple PHP script. It
should be clear, for example, that all PHP code must be enclosed within <?php ... ?>
tags and every PHP statement must end in a semicolon. Blank lines within the PHP tags
are ignored by the parser.

 12 PHP: A Beginner’s Guide

Free-form comments can be incorporated within a PHP script via the same conventions
used in JavaScript. Single-line comments must be preceded by the // characters, while
multiline comments must be enclosed within a /* ... */ comment block. These comments
are excluded from the output of the PHP script. Here are some examples:

<?php
// a single-line comment
?>
<?php
/* a multi-line
 comment
 block */
?>

Handling Script Errors
The PHP parser has a sharp eye. If your code includes an error, it will—depending on the
severity of the error—either display a warning message or stop script execution at the
point of error with a notification of what went wrong. Chapter 10 of this book deals with
errors and error handling in detail, but it’s instructive at this point to see what happens
when the PHP parser encounters an error, so that you have a better understanding of how
to deal with this situation when it happens to you.

To deliberately generate an error, go back to the horse.php script you created earlier and
drop in an extra semicolon after the echo keyword, so that the script now looks like this:

<?php
// this line of code displays a famous quotation
echo ; 'A horse! A horse! My kingdom for a horse!';
?>

Save this file, and browse to it as before. This time, you should see something like
Figure 1-3.

As Figure 1-3 illustrates, the PHP parser is quick to catch errors in your code. The
error message generated by the parser is quite helpful: it tells you what the error was, as
well as the line on which it occurred. This makes it fairly easy—in most cases—to locate
and correct the error.

 Chapter 1: Introducing PHP 13

Try This 1-1 Mixing PHP with HTML
When the PHP parser reads a script, it executes only the code found between PHP tags;
everything outside these tags is ignored by the parser and returned “as is.” This makes
it extremely easy to embed PHP code within an HTML document to create Web pages
that have all the formatting bells and whistles of standard HTML but can additionally
perform complex calculations or read and manipulate data from external sources (such
as databases or Web services).

To see how this works in practice, consider the following code listing:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>HTML Color Table</title>
 <style type="text/css">
 body {
 font-family: Verdana sans-serif;
 }
 td {
 border: solid 5px white;
 }
 </style>
 </head>
 <body>
 <h2>Colors with HTML and PHP</h2>

(continued)

Figure 1-3 The output generated by PHP when it finds a script error

 14 PHP: A Beginner’s Guide

 <table>
 <tr>
 <td>Blue</td>
 <td style="width:40px; background-color:#0000ff"></td>
 </tr>
 <tr>
 <td><?php echo 'Red'; ?></td>
 <td style="width:40px; background-color:<?php echo '#ff0000'; ?>"></td>
 </tr>
<?php
 // this row generated through PHP
 echo "<tr>\n";
 echo " <td>Green</td>\n";
 echo " <td style=\"width:40px; background-color:#00ff00\"></td>\n";
 echo "</tr>\n";
?>
 </table>
 </body>
</html>

Save this script as colors.php, and view it in your Web browser. You should see
an HTML page containing a table with three rows and two columns, with one column
containing a color and the other its corresponding name (Figure 1-4).

Use your browser’s View Source command to inspect the HTML code of the page, and
you’ll see that the PHP parser has interpolated the output of the various echo statements
into the HTML source code to create a complete HTML page. This is a very common

Figure 1-4 A Web page containing colors and color codes, generated by mixing PHP
with HTML

 Chapter 1: Introducing PHP 15

technique used for building Web applications with PHP, and you’ll see it in almost every
example that follows.

Escaping Special Characters
There’s one interesting thing about colors.php that bears explaining: the numerous
backslashes used in the script. Look at the PHP-generated third row of the HTML table,
and then at the corresponding HTML source code of the output page, and you’ll notice
that none of these backslashes make an appearance. Where did they go?

There’s a simple explanation for this. As you’ve already seen, output to be displayed
by PHP is wrapped in quotation marks. But what happens when the output to be displayed
includes quotation marks of its own, as occurs with the HTML code generated in colors.php?
If you simply enclose one set of quotation marks within another, PHP will get confused
about which quotation marks are to be printed literally, and which ones are simply
used to enclose the string value, and will generate a parser error Therefore, to handle
these situations, PHP allows you to escape certain characters by preceding them with a
backslash (\). There so-called escape sequences include

Sequence What It Represents

\n a line feed character

\t a tab

\r a carriage return

\" a double quotation mark

\' a single quotation mark

When the parser encounters one of these escape sequences, it knows to replace it with
the corresponding value before sending it to the output device. Consider, for example, this
line of code:

<?php
echo "You said \"Hello\"";
?>

PHP knows that the quotation marks preceded with a backslash are to be printed “as is,”
and it will not confuse them with the quotation marks that signal the beginning and end of
a string. This is why you see a backslash before every PHP-generated quotation mark and
line feed in colors.php.

 16 PHP: A Beginner’s Guide

Q: Why does the colors.php script use single quotes in some places, and double quotes in
others?

A: Escape sequences, such as those for line feeds (\n), carriage returns (\r), and double
quotation marks (\"), can only be understood by the PHP parser when they are themselves
enclosed in double quotes. If these escape sequences are enclosed in single quotes, they
will be printed “as is.”

Consider the following code snippets and their output, which illustrate the difference:

<?php
// output:
// Welcome
// to
// PHP
echo "Welcome\nto\nPHP";
?>

<?php
// output: Welcome\nto\nPHP
echo 'Welcome\nto\nPHP';
?>

Now, the colors.php script is responsible for dynamically generating the HTML
code for the last row of the HTML table. This row code must be formatted for easy
readability, with <tr> and <td> elements appearing on different lines. Performing this
task requires use of the line feed (\n) escape sequence, which, as explained earlier, is
only recognized when enclosed within double quotes. This is why double quotes are
used at certain places within the colors.php script.

Ask the Expert

Sample Applications
Obviously, there’s a lot more to PHP than just the echo statement, and you’ll get a crash
course in the language’s many different capabilities in subsequent chapters. For the
moment, though, this is a good place to take a well-earned break, grab some coffee, and
reflect on all you’ve just learned. And just to whet your interest for what’s coming up,
here’s a small sample of the many applications that developers just like you have used
PHP for.

 Chapter 1: Introducing PHP 17

phpMyAdmin
The phpMyAdmin (www.phpmyadmin.net/) application is a PHP-based administration
tool for the MySQL RDBMS. One of the most popular projects on the SourceForge
network, it allows table and record creation and modification, index management, ad hoc
SQL query execution, data import and export, and database performance monitoring.

phpBB
The phpBB (www.phpbb.com/) application is a robust, open-source PHP implementation
of an online bulletin board system that is both easy to use and simple to administer. It
provides a simple, user-friendly discussion board for portal members and includes support
for features like message posting and replying, message threading, subject/body search,
themes, private messages, and many others.

Gallery
Gallery (http://gallery.menalto.com/) is a highly configurable digital photo archive written
in PHP. It supports multiple image galleries and multiple keywords per photo, and it
includes features such as automatic thumbnail creation, image captioning and editing,
keyword search, and gallery-level authentication.

Q: I understand how the backslash is used to mark escape sequences. But what happens
if I need to print an actual backslash in my output?

A: The solution to this is fairly simple: use a double backslash!

<?php
echo "This is a backslash: \\";
?>

Ask the Expert

PoMMo
PoMMo (www.pommo.org/) is a mass-mailing application written entirely in PHP. It is
particularly useful for managing and sending e-mail messages to one or more subscriber
mailing lists, and it also supports the use of customized input forms for the collection of
subscriber data. It allows administrators to import and export subscriber data from a MySQL
database, and subscribers to manage their subscriptions through an online control panel.

 18 PHP: A Beginner’s Guide

Smarty
Smarty (www.smarty.net/) is a PHP-based framework for separating the business logic
of a PHP application from its user interface. It achieves this separation through the use
of templates containing output placeholders, which are replaced at run time with actual
content. Smarty supports template caching and nesting, pre- and post-rendering filters,
and built-in functions to simplify common tasks. It has rapidly become one of the most
popular template engines for PHP-based application development.

Squirrelmail
Squirrelmail (www.squirrelmail.org/) is a Web-based mail client written in PHP, with support
for both the SMTP and IMAP protocols. It includes the ability to send and receive attachments,
manage address book collections, and manipulate server-based mailboxes. The application is
highly configurable and can be extended through the use of plug-ins and themes.

eZ Publish
The eZ Publish (www.ez.no/) application is a PHP-based content management system that is
suitable for the development of both small, personal Web pages and large, corporate Web sites.
It includes support for creating and editing content, tracking changes, building customized
publishing workflows, and setting up a “Web shop” with integrated e-commerce functions.

Mantis
Mantis (www.mantisbt.org/) is a Web-based bug-tracking system designed specifically to
track and resolve issues for software and other projects. It supports multiple user access
levels, multiple projects, and multiple priority levels, and it includes a full-featured search
engine and various built-in reports for up-to-date snapshots of a project’s status.

Wordpress
Wordpress (www.wordpress.org/) is a well-known Weblog (aka blog) publishing tool. It
allows users to maintain and publish online diaries of their activities and supports themes,
tags, automatic spell-checking, video and photo upload, and built-in spam protection. It’s
extremely fast, easy to set up, and simple to use—three reasons that have made it popular
with millions of bloggers around the world.

Summary
This chapter provided a gentle introduction to the world of PHP, discussing the history
and evolution of the language and highlighting some of its unique features and advantages
vis-à-vis competing alternatives. It explained the various components of the typical PHP

 Chapter 1: Introducing PHP 19

development environment and illustrated how they interact with each other. Finally, it
got you started writing PHP code, showing you the basic syntactical rules of the language
and explaining how to embed PHP code inside HTML documents using the special
<?php ... ?> PHP tags through an easy project. These basic skills will serve you well
through the next chapter, which gives you a crash course in two of the PHP’s fundamental
building blocks: variables and operators.

If you’d like to learn more about the topics discussed in this chapter, you’ll find the
following links useful:

● The official PHP Web site, at www.php.net

● PHP usage statistics, at www.php.net/usage.php

● A brief history of PHP, at www.php.net/manual/en/history.php

● The community behind PHP, at www.php.net/credits.php

 Chapter 1 Self Test
 1. Which are the four components of the LAMP framework?

 2. Why is PHP superior to client-side languages such as JavaScript?

 3. What does the echo statement do?

 4. What happens when the PHP parser encounters whitespace or blank lines in a PHP
script?

 5. What character must necessarily be used to terminate every PHP statement? Name one
situation where omitting this termination character does not produce an error.

 6. What is an escape sequence? Name three commonly used escape sequences.

 7. What will be the output of the following PHP scripts:

 A

<?php
 echo "Today looks\nbright and sunny"
 ;
?>

 B

<?php
echo "Ours not to question why;";
echo "Ours but to do and die";
?>

✓

 20 PHP: A Beginner’s Guide

 8. Find the error in each of the following PHP scripts:

 A

<?php
/* print a line of output /
echo 'Hello'
?>

 B

<?php
echo '<p align="right">Copyright Me, 2008</p>';
?>

 C

<?php
echo 'Line 1;
?>

21

Chapter 2
Using Variables
and Operators

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 22 PHP: A Beginner’s Guide

Key Skills & Concepts
● Create and use variables and constants

● Understand PHP’s simple data types

● Become familiar with some of PHP’s built-in functions

● Perform arithmetic operations

● Compare and logically test variables

● Handle data submitted through a Web form

The preceding chapter gave you a gentle introduction to PHP, letting you get your hands
dirty with two simple projects. However, as you’ll shortly see, PHP is good for much

more than simply filling in the blanks in an HTML page. In this chapter, you’ll learn about
variables and operators, the two basic building blocks of any PHP program, and you’ll
begin using them to develop more sophisticated programs. You’ll also create your very
first interactive PHP script, one which asks for, and responds to, a user’s input. So without
further ado, let’s jump straight in!

Storing Data in Variables
A variable is simply a container that’s used to store both numeric and non-numeric
information. And just as with any container, you can move it from place to place, add stuff
to it, or empty it out on the floor in a pile and fill it with something completely different.

To stretch the analogy a little further, just as it’s a good idea to label every container,
so too should you give every variable in your program a name. As a general rule, these
names should make sense and should be easy to understand. In the real world, this makes
it easier to find things; in the programming world, it makes your code cleaner and easier
to understand by others. As someone who’s been there, I can tell you that there’s nothing
more frustrating than spending three hours searching a bunch of boxes for Mom’s best
china, only to realize it’s in the one marked “Miscellaneous” together with an old rubber
bone and some crumbly biscuits!

PHP has some simple rules for naming variables. Every variable name must be
preceded with a dollar ($) symbol and must begin with a letter or underscore character,

 Chapter 2: Using Variables and Operators 23

optionally followed by more letters, numbers, or underscore characters. Common
punctuation characters, such as commas, quotation marks, or periods, are not permitted in
variable names; neither are spaces. So, for example, $root, $_num, and $query2 are
all valid variable names, while $58%, $1day, and email are all invalid variable names.

Assigning Values to Variables
Assigning a value to a variable in PHP is quite easy: use the equality (=) symbol, which
also happens to be PHP’s assignment operator. This assigns the value on the right side of
the equation to the variable on the left.

To use a variable in a script, simply call it by name in an expression and PHP will
replace it with its value when the script is executed. Here’s an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head><title /></head>
 <body>
 <?php
 // assign value to variable
 $name = 'Simon';
 ?>
 <h2>Welcome to <?php echo $name; ?>'s Blog!</h2>
 </body>
</html>

In this example, the variable $name is assigned the value 'Simon'. The echo statement
is then used to print the value of this variable to the Web page.

You can also assign a variable the value of another variable, or the result of a calculation.
The following example demonstrates both these situations:

<?php
// assign value to variable
$now = 2008;

// assign variable to another variable
$currentYear = $now;

// perform calculation
$lastYear = $currentYear - 1;

// output: '2007 has ended. Welcome to 2008!'
echo "$lastYear has ended. Welcome to $currentYear!";
?>

 24 PHP: A Beginner’s Guide

Q: Is it possible for a variable’s name itself to be a variable?

A: In rare situations, you might find it useful to set a variable’s name dynamically, at run
time. PHP allows you to do this, by enclosing the dynamic part of the variable name
in curly braces. The following example illustrates:

<?php
// set a variable
$attribute = 'price';

// create a new variable
// its name comes dynamically
// from the value of $attribute
${$attribute} = 678;

// output: 678
echo $price;
?>

Destroying Variables
To destroy a variable, pass the variable to PHP’s aptly named unset() function, as in the
following example:

<?php
// assign value to variable
$car = 'Porsche';

// print variable value
// output: 'Before unset(), my car is a Porsche'
echo "Before unset(), my car is a $car";

// destroy variable
unset($car);

// print variable value
// this will generate an 'undefined variable' error
// output: 'After unset(), my car is a '
echo "After unset(), my car is a $car";
?>

Ask the Expert

 Chapter 2: Using Variables and Operators 25

NOTE
Trying to access or use a variable that’s been unset(), as in the preceding script,
will result in a PHP “undefined variable” error message. This message may or may
not be visible in the output page, depending on how your PHP error reporting level
is configured. Refer to Chapter 10 for more information on how PHP errors work.

Alternatively, empty a variable of its contents by assigning PHP’s special NULL value
to it. You can read more about PHP’s NULL data type in the next section, but here’s a quick
revision of the preceding example to illustrate how it works:

<?php
// assign value to variable
$car = 'Porsche';

// print variable value
// output: 'Before unset(), my car is a Porsche'
echo "Before unset(), my car is a $car";

// assign empty value to variable
$car = null;

// print variable value
// output: 'After unset(), my car is a '
echo "After unset(), my car is a $car";
?>

CAUTION
Variable names in PHP are case-sensitive. As a result, $help refers to a different
variable than does $HELP or $Help. Forgetting this simple rule is a common cause
of frustration among developers new to PHP programming.

Inspecting Variable Contents
PHP offers the var_dump() function, which accepts a variable and X-rays it for you.
Here’s an example:

<?php
// define variables
$name = 'Fiona';
$age = 28;

// display variable contents
var_dump($name);
var_dump($age);
?>

 26 PHP: A Beginner’s Guide

TIP
There’s also a print_r() function that performs the same function as var_dump(),
although it returns less information.

Understanding PHP’s Data Types
The values assigned to a PHP variable may be of different data types, ranging from simple
string and numeric types to more complex arrays and objects. You’ve already seen two of
these, strings and numbers, in action in previous examples. Here’s a full-fledged example,
which introduces three more data types:

<?php
// Boolean
$validUser = true;

// integer
$size = 15;

// floating point
$temp = 98.6;

// string
$cat = 'Siamese';

// null
$here = null;
?>

● Booleans are the simplest of all PHP data types. Like a switch that has only two states,
on and off, it consists of a single value that may be set to either 1 (true) or 0 (false).
In this listing, $validUser is a Boolean variable set to true.

● PHP also supports two numeric data types: integers and floating-point values. Floating-
point values (also known as floats or doubles) are decimal or fractional numbers, while
integers are round numbers. Both may be less than, greater than, or equal to zero. In
this listing, $size holds an integer value, while $temp holds a floating-point value.

● For non-numeric data, PHP offers the string data type, which can hold letters, numbers,
and special characters. String values must be enclosed in either single quotes or double
quotes. In the previous listing, $cat is a string variable containing the value 'Siamese'.

● You may also encounter the NULL data type, which is a “special” data type first
introduced in PHP 4. NULLs are used to represent “empty” variables in PHP; a variable
of type NULL is a variable without any data. In the preceding listing, $here is NULL.

 Chapter 2: Using Variables and Operators 27

Q: Does PHP support numbers written in hexadecimal, octal, or scientific notation?

A: Yes, yes, and yes. Here are some examples:

<?php
// 8, specified as octal value
$a = 010;

// 1500, specified as hexadecimal value
$b = 0x5dc;

// 690, in scientific notation
$c = 6.9E+2;
?>

CAUTION
Many novice PHP developers mistakenly believe that assigning the empty string '' to a
variable automatically renders it empty. This is untrue, as PHP does not consider a NULL
value equivalent to an empty string. To definitely remove a variable’s contents, always
set it to NULL.

Setting and Checking Variable Data Types
Unlike other programming languages, where a variable’s data type must be explicitly
defined by the programmer, PHP automatically determines a variable’s data type from the
content it holds. And if the variable’s content changes over the duration of a script, the
language will automatically set the variable to the appropriate new data type.

Here’s an example which illustrates this type juggling:

<?php
// define string variable
$whoami = 'Sarah';

// output: 'string'
echo gettype($whoami);

// assign new integer value to variable
$whoami = 99.8;

Ask the Expert

 28 PHP: A Beginner’s Guide

// output: 'double'
echo gettype($whoami);

// destroy variable
unset($whoami);

// output: 'NULL'
echo gettype($whoami);
?>

This example introduces PHP’s gettype() operator, which is a handy little tool
for finding out the type of a particular variable. As the script output demonstrates, the
variable $whoami begins life as a string, assigned the value 'Sarah'. It’s then assigned
the number 99.8, which automatically converts it to a floating-point variable. Following
this, the variable is de-initialized with the unset() method, which removes its value and
turns it into a NULL. PHP has been the invisible hand behind each of these conversions,
internally resetting the data type of $whoami from string to floating-point to null.

This doesn’t mean that you’re entirely at PHP’s mercy, however; it’s possible to
explicitly set the type of a PHP variable by casting a variable to a specific type before
using it. Casting is a technique commonly used by Java programmers; to use it, simply
specify the desired data type in parentheses on the right side of the assignment equation.
Consider the following example, which illustrates turning a floating-point value into an
integer value:

<?php
// define floating-point variable
$speed = 501.789;

// cast to integer
$newSpeed = (integer) $speed;

// output: 501
echo $newSpeed;
?>

In addition to the gettype() function, PHP includes a number of more specialized
functions, to test if a variable is of a specific type. Table 2-1 has a list.

TIP
Remember that var_dump() function you met in a previous section? If you look closely
at its output, you’ll see that in addition to telling you what a variable contains, it also
shows you the variable’s data type.

 Chapter 2: Using Variables and Operators 29

Using Constants
So far, this chapter has focused mainly on variables, which are good for storing and changing
values over the lifetime of a PHP script. But what if you need to store a fixed value, one that
remains static over the course of a script? Well, that’s when you reach for a constant.

As the name suggests, constants are PHP containers for values that remain constant
and never change. They’re mostly used for data that is known well in advance and that
is used, unchanged, in multiple places within your application. Good candidates for
constants are debug and log levels, version numbers, configuration flags, and formulae.

Constants are defined using PHP’s define() function, which accepts two arguments:
the name of the constant, and its value. Constant names must follow the same rules as
variable names, with one exception: the $ prefix is not required for constant names.

Here’s an example of defining and using a constant in a script:

<?php
// define constants
define ('PROGRAM', 'The Matrix');
define ('VERSION', 11.7);

// use constants
// output: 'Welcome to The Matrix (version 11.7)'
echo 'Welcome to ' . PROGRAM . ' (version ' . VERSION . ')';
?>

NOTE
By convention, constant names are usually entirely uppercased; this is to enable their
easy identification and differentiation from “regular” variables in a script.

Table 2-1 PHP Functions to Test Variable Data Types

Function Purpose
is_bool() Tests if a variable holds a Boolean value

is_numeric() Tests if a variable holds a numeric value

is_int() Tests if a variable holds an integer

is_float() Tests if a variable holds a floating-point value

is_string() Tests if a variable holds a string value

is_null() Tests if a variable holds a NULL value

is_array() Tests if a variable is an array

is_object() Tests if a variable is an object

 30 PHP: A Beginner’s Guide

Manipulating Variables with Operators
By themselves, variables are simply containers for information. In order to do anything
useful with them, you need operators. Operators are symbols that tell the PHP processor
to perform certain actions. For example, the addition (+) symbol is an operator that tells
PHP to add two variables or values, while the greater-than (>) symbol is an operator that
tells PHP to compare two values.

PHP supports more than 50 such operators, ranging from operators for arithmetical
operations to operators for logical comparison and bitwise calculations. This section
discusses the most commonly used operators.

Q: When should I use a variable, and when should I use a constant?

A: Variables are temporary storage; use them for values which are likely to change over
the course of the script. Constants are a little more permanent; use them for values
that are likely to remain fixed and are referenced multiple times in your script. Unlike
variables, constants cannot be unset, nor can their names be generated dynamically.

Performing Arithmetic Operations
PHP supports all standard arithmetic operations, as illustrated by the list of operators
in Table 2-2.

Ask the Expert

Table 2-2 Common Arithmetic Operators

Operator Description
+ Add

- Subtract

* Multiply

/ Divide and return quotient

% Divide and return modulus

 Chapter 2: Using Variables and Operators 31

And here’s an example illustrating these operators in action:

<?php
// define variables
$x = 10;
$y = 5;
$z = 3;

// add
$sum = $x + $y;
echo "$x + $y = $sum\n";

// subtract
$diff = $x - $y;
echo "$x - $y = $diff\n";

// multiply
$product = $x * $y;
echo "$x * $y = $product\n";

// divide and get quotient
$quotient = $x / $y;
echo "$x / $y = $quotient\n";

// divide and get modulus
$modulus = $x % $y;
echo "$x % $y = $modulus\n";
?>

Q: Is there any limit on how large a PHP integer value can be?

A: Yes there is, but it’s pretty high: 2147483647. This limit is defined by PHP in its
PHP_INT_MAX constant, so you can check it yourself at any time.

Ask the Expert

Concatenating Strings
To combine strings, use PHP’s concatenation operator, which happens to be a period (.).
The following example illustrates:

<?php
// define variables
$country = 'England';
$city = 'London';

 32 PHP: A Beginner’s Guide

// combine into single string
// output: 'Welcome to London, the coolest city in all of England'
echo 'Welcome to ' . $city . ', the coolest city in all of ' . $country;
?>

Comparing Variables
PHP lets you compare one variable or value with another via its wide range of comparison
operators, listed in Table 2-3.

And here’s an example illustrating these operators in action:

<?php
// define variables
$p = 10;
$q = 11;
$r = 11.3;
$s = 11;

// test if $q is greater than $p
// returns true
echo ($q > $p);

// test if $q is less than $p
// returns false
echo ($q < $p);

// test if $q is greater than or equal to $s
// returns true
echo ($q >= $s);

// test if $r is less than or equal to $s
// returns false
echo ($r <= $s);

Table 2-3 Common Comparison Operators

Operator Description
== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

=== Equal to and of the same type

 Chapter 2: Using Variables and Operators 33

// test if $q is equal to $s
// returns true
echo ($q == $s);

// test if $q is equal to $r
// returns false
echo ($q == $r);
?>

It’s worth making special mention here of the === operator, which is excluded from
the preceding example. This operator allows for stricter comparison between variables: it
only returns true if the two variables or values being compared hold the same information
and are of the same data type. Thus, in the next example, a comparison between $bool
and $num would return true when compared with the == operator, but false when
compared with the === operator:

<?php
// define variables of two types
// but with the same value
$bool = (boolean) 1;
$int = (integer) 1;

// returns true
echo ($bool == $int);

// returns false
echo ($bool === $int);
?>

Performing Logical Tests
When building complex conditional expressions—a topic that will be discussed in detail
in Chapter 3—you will often come across situations where it’s necessary to combine
one or more logical tests. PHP’s three most commonly used logical operators, listed in
Table 2-4, are intended specifically for this situation.

Table 2-4 Common Logical Operators

Operator Description
&& AND

|| OR

! NOT

 34 PHP: A Beginner’s Guide

Logical operators really come into their own when combined with conditional tests,
so the following example is illustrative only; you’ll find something much meatier to chew
on in Chapter 3.

<?php
// define variables
$price = 100;
$size = 18;

// logical AND test
// returns true if both comparisons are true
// returns true here
echo ($price > 50 && $size < 25);

// logical OR test
// returns true if any of the comparisons are true
// returns false here
echo ($price > 150 || $size > 75);

// logical NOT test
// reverses the logical test
// returns false here
echo !($size > 10);
?>

Other Useful Operators
There are a few other operators that tend to come in handy during PHP development. First,
the addition-assignment operator, represented by the symbol +=, lets you simultaneously
add and assign a new value to a variable. The following example illustrates:

<?php
// define variable
$count = 7;

// add 2 and re-assign new value to variable
$count += 2;

// output: 9
echo $count;
?>

Here, the expression $count +=7 is equivalent to the expression $count =
$count + 2—an addition operation followed by an assignment of the result back to the
same variable. In a similar vein, there exist operators for other mathematical and string
assignments. Table 2-5 has a list.

 Chapter 2: Using Variables and Operators 35

Here are examples of these in action:

<?php
// define variables
$count = 7;
$age = 60;
$greeting = 'We';

// subtract 2 and re-assign new value to variable
// equivalent to $count = $count - 2
// output: 5
$count -= 2;
echo $count;

// divide by 5 and re-assign new value to variable
// equivalent to $age = $age / 5
// output: 12
$age /= 5;
echo $age;

// add new string and re-assign new value to variable
// equivalent to $greeting = $greeting . 'lcome!'
// output: 'Welcome!'
$greeting .= 'lcome!';
echo $greeting;
?>

As you proceed through this book, you’ll also comes across the auto-increment
and auto-decrement operators, represented by the ++ and -- symbols respectively.

Operator Description
+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign quotient

%= Divide and assign modulus

.= Concatenate and assign (strings only)

Table 2-5 Common Assignment Operators

 36 PHP: A Beginner’s Guide

The operators automatically add 1 to, or subtract 1 from, the variable they are applied to.
Here’s an example:

<?php
// define variable
$count = 19;

// increment
$count++;

// output: 20
echo $count;

// now decrement
$count--;

// output: 19
echo $count;
?>

These operators are commonly found in loop counters, another topic that will be
discussed in detail in Chapter 3.

Understanding Operator Precedence
Back in math class, you probably learned about BODMAS, a mnemonic that specifies
the order in which a calculator or a computer performs a sequence of mathematical
operations: Brackets, Order, Division, Multiplication, Addition, and Subtraction. Well,
PHP follows a similar set of rules when determining which operators have precedence
over others—and learning these rules can save you countless frustrating hours debugging
a calculation that looks right, yet somehow always returns the wrong result!

The following list (a short version of a much longer list in the PHP manual)
illustrates PHP’s most important precedence rules. Operators at the same level have
equal precedence.

● ++ --

● !

● * / %

● + - .

● < <= > >=

 Chapter 2: Using Variables and Operators 37

Try This 2-1

● == != === !==

● &&

● ||

● = += -= *= /= .= %= &= |= ^=

Q: PHP’s precedence rules are tough to remember. Is there an easier way to tell
PHP the order in which I’d like a calculation performed?

A: Yes. Parentheses always have the highest precedence, so wrapping an expression in
these will force PHP to evaluate it first. When using multiple sets of parentheses,
remember that evaluation begins from the innermost set of parentheses and proceeds
outward (rather like peeling an onion from the inside). As an example, consider the
expression (((4 * 8) - 2) / 10), which evaluates to 3 with parentheses and
31.8 without.

Ask the Expert

 Building a Dollars-to-Euros Converter
Let’s now take a quick break from all this theory and try applying some of it to a practical,
real-world project: a currency converter for dollars into euros. This project will apply some
of what you’ve learned in previous sections about variables, constants, and arithmetic
operators; it’ll also come in handy the next time you jet off to Europe on vacation!

Here’s the code (convert.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 2-1: USD/EUR Currency Conversion</title>
 </head>
 <body>
 <h2>Project 2-1: USD/EUR Currency Conversion</h2>
 <?php
 // define exchange rate

(continued)

 38 PHP: A Beginner’s Guide

 // 1.00 USD = 0.70 EUR
 define ('EXCHANGE_RATE', 0.70);

 // define number of dollars
 $dollars = 150;

 // perform conversion and print result
 $euros = $dollars * EXCHANGE_RATE;
 echo "$dollars USD is equivalent to: $euros EUR";
 ?>
 </body>
</html>

If you’ve been following along, this script should be fairly easy to understand. It
begins by defining a constant named EXCHANGE_RATE which—surprise, surprise—stores
the dollar-to-euro exchange rate (assumed here at 1.00 U.S. dollar to 0.70 euro). Next, it
defines a variable named $dollars to hold the number of dollars to be converted, and
then it performs an arithmetic operation using the * operator, the $dollars variable, and
the EXCHANGE_RATE constant to return the equivalent number of euros. This result is then
stored in a new variable named $euros, and printed to the Web page.

Figure 2-1 illustrates what the output looks like.
To convert a different quantity of dollars, simply change the $dollars variable. Go

on, give it a whirl and see for yourself!

Figure 2-1 The output of the dollars-to-euros converter

 Chapter 2: Using Variables and Operators 39

Handling Form Input
So far, all the examples you’ve seen have had their variables neatly defined at the top
of the script listing. However, as your PHP scripts become more complex, this happy
situation will change, and you’ll need to learn how to interact with user-supplied input.
The most common source of this information is a Web form, and PHP comes with a
simple mechanism to retrieve information submitted through such forms.

To illustrate, consider the following simple Web form (choose.html), which asks you
to select a brand of automobile and enter your desired color:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head><title /></head>
 <body>
 <h2>Select Your Car</h2>
 <form method="post" action="car.php">
 Type:

 <select name="selType">
 <option value="Porsche 911">Porsche 911</option>
 <option value="Volkswagen Beetle">Volkswagen Beetle</option>
 <option value="Ford Taurus">Ford Taurus</option>
 </select><p />
 Color:

 <input type="text" name="txtColor" /> <p />
 <input type="submit" />
 </form>
 </body>
</html>

As forms go, this is a fairly simple one: it has a selection list and an input box.
Figure 2-2 illustrates what it looks like.

Notice the 'action' attribute of this Web form: it references a PHP script named
car.php. This is the script that receives the data entered into the form once the form is
submitted. Notice also the form’s 'method' attribute, which specifies that the submission
of data will occur through the POST method.

With these two facts firmly in mind, let’s take a look at car.php next:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head><title /></head>
 <body>
 <h2>Success!</h2>

 40 PHP: A Beginner’s Guide

 <?php
 // get form input
 $type = $_POST['selType'];
 $color = $_POST['txtColor'];

 // use form input
 echo "Your $color $type is ready. Safe driving!";
 ?>
 </body>
</html>

What’s going on here? Well, whenever a form is submitted to a PHP script through the
POST method, the form’s input variables and their values automatically become available
to the PHP script through a special container variable named $_POST. Accessing the value
entered into a particular form field then becomes as simple as referencing $_POST with
the corresponding field’s name, as in the preceding script.

Consider, for example, the task of accessing the color entered by the user in the Web
form. From the form code, it can be seen that the text input field designated for this data
in the form is named 'txtColor'. Therefore, within the PHP script, the value entered
into this text input field can be accessed using the syntax $_POST['txtColor'].

Figure 2-2 A simple form

 Chapter 2: Using Variables and Operators 41

This value can then be used in the normal fashion: it may be printed to the Web page,
assigned to another variable, or manipulated using one of the many operators discussed
in preceding sections.

Figure 2-3 illustrates the result of submitting the form.
In case your Web form submits data using the GET method instead of the POST

method, PHP has you covered there as well: form input submitted using the GET method
finds a home in the $_GET container variable and may be accessed by referencing $_GET
instead of $_POST.

Q: I understood the previous sections about variables and how they work, but
$_GET and $_POST don’t seem to follow those rules. What’s going on here?

A: The $_GET and $_POST variables are different from the simple string and numeric
variable types you’ve seen so far in this chapter. They’re a more complex type of
variable known as an array, which can hold more than one value at a time and which
also follows different rules for storing and accessing the values within it. Arrays will
be discussed extensively in Chapter 4, at which point everything you’ve just read
about $_GET and $_POST will fall into place.

Ask the Expert

Figure 2-3 The result of submitting the form

 42 PHP: A Beginner’s Guide

Try This 2-2 Building an Interactive HTML
Color Sampler

Now that you’ve understood how to access form input through a PHP script, let’s put
together an application that demonstrates this feature in a more practical way. In this
project, you’ll build an HTML color sampler, a tool that will let you enter RGB color
values and will display a swatch of the corresponding color in your Web browser. The
RGB color values will be entered into a form and processed with PHP, thus providing a
real-world usage example of what you’ve learned in the preceding section.

First up, the Web form (color.html):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 2-2: An Interactive HTML Color Sampler</title>
 </head>
 <body>
 <h2>Project 2-2: An Interactive HTML Color Sampler</h2>
 <form method="get" action="display.php">
 R: <input type="text" name="r" size="3" /> <p />
 G: <input type="text" name="g" size="3" /> <p />
 B: <input type="text" name="b" size="3" /> <p />
 <input type="submit" value="Show me" />
 </form>
 </body>
</html>

Pretty standard fare here—a Web form with three input fields, one each for the red,
green, and blue color components. Notice that this form submits its data to a PHP script
named display.php, and it uses the GET method (for variety).

Figure 2-4 illustrates what the form looks like.
Next up, the PHP script that accepts the input and uses it to display a color swatch

(display.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 2-2: An Interactive HTML Color Sampler</title>
 </head>
 <body>
 <h2>Project 2-2: An Interactive HTML Color Sampler</h2>
 <?php

 Chapter 2: Using Variables and Operators 43

 // get input values
 $r = $_GET['r'];
 $g = $_GET['g'];
 $b = $_GET['b'];

 // generate RGB string from input
 $rgb = $r . ',' . $g . ',' . $b;
 ?>
 R: <?php echo $r; ?>
 G: <?php echo $g; ?>
 B: <?php echo $b; ?>
 <p />
 <div style="width:150px; height: 150px;
 background-color: rgb(<?php echo $rgb; ?>)" />
 </body>
</html>

The data entered into the form becomes accessible through the $_GET array (notice
that it’s $_GET because the GET method was used to submit the form). This data is then
swept into three variables by this script: $r, $g, and $b. These are then concatenated into
a single string using PHP’s concatenation operator (remember him?). This RGB string
is then used to set the background color for a <div> element a little further down in the
HTML document.

Figure 2-4 A Web form with fields for RGB color values

(continued)

 44 PHP: A Beginner’s Guide

The result? When the browser renders the page, you’ll see a 150×150 block solid-
filled with the color corresponding to the selected RGB values. And if you go back to
the Web form and enter a new set of RGB codes, the color will change appropriately . . .
hence the “interactive” in “interactive color sampler”!

Figure 2-5 illustrates what happens when you enter the codes 153,153,153 (a light
shade of gray, because this page is in black and white).

Table 2-6 has some more RGB color combinations for you to try.

Figure 2-5 The color sample resulting from form submission

Table 2-6 Sample RGB Color Combinations

Color R G B
Pink 250 75 200

Orange 255 105 0

Yellow 255 255 0

Green 75 200 60

Brown 100 75 25

 Chapter 2: Using Variables and Operators 45

Summary
This chapter probably took you a little longer to get through than the preceding one, but at
the end of it, your knowledge of PHP’s basic constructs should have noticeably increased.
The chapter began by introducing you to PHP variables and constants, explaining how
to name them, assign values to them, use them in a script, and destroy them when done.
It gave you a quick introduction to PHP’s simple data types and then took you on a
whirlwind tour of PHP’s arithmetic, string, comparison, and logical operators, using
commented examples to explain how each of these operators could be used to manipulate
and modify variable contents.

With these basics out of the way, the chapter proceeded to an explanation of how to
process form input with PHP, a common task that you’ll perform over and over again
through the course of this book and, indeed, throughout your career as a PHP developer.
Finally, two projects—one demonstrating the use of operators to perform calculations on
variables and the other illustrating how easy it is to create an interactive PHP application
using form input—showed how this learning can be put to practical use.

The next chapter will build on everything you’ve learned so far, explaining how you
can add intelligence to your PHP scripts through the use of conditional tests, and showing
you how PHP’s loop constructs can help in performing repetitive actions. Until then,
though, spend some time looking at these PHP manual links, which offer more detailed
information on the topics discussed in this chapter:

● PHP data types, at www.php.net/manual/en/language.types.php

● Type juggling and typecasting in PHP, at
www.php.net/manual/en/language.types.type-juggling.php

● PHP type comparison tables, at www.php.net/manual/en/types.comparisons.php

● Variable basics, at www.php.net/manual/en/language.variables.php

● PHP operators and operator precedence, at
www.php.net/manual/en/language.operators.php

● Accessing form data with PHP, at
www.php.net/manual/en/language.variables.external.php

 Chapter 2 Self Test
 1. The PHP function to detect the type of a variable is: _____________

 2. Identify which of the following variable names are invalid: $24, $IAMHERE, $_error,
$^b, ${$var}, $yA_K

✓

 46 PHP: A Beginner’s Guide

 3. Write a PHP statement to create a constant value holding the name of your favorite
ice-cream flavor.

 4. Write a PHP script to initialize a variable and then increment its value by 3.

 5. Mark the following statements as true or false:

 A The unset() function de-initializes a variable and removes it from the program’s
variable space.

 B The PHP expressions $c = '' and $c = null are equivalent.

 C The result of the calculation (56 - 1 * 36 % 7) is 6.

 D The == operator tests two variables for both value and type equality.

 E The OR logical operator has higher precedence than the AND logical operator.

 F The is_numeric() function returns true if passed a floating-point value.

 G Casting a floating-point number to an integer always results in the number being
rounded down.

 H Form elements of type 'hidden' are excluded from $_POST and $_GET.

 6. What are the values of $x and ABC at the end of the following PHP script?

<?php
$x = 89;
define ('ABC', $x+1);
$x += ABC;
?>

 7. What is the likely output of the following PHP script?

<?php
$boolean = (integer) true;
$number = 1;
echo (integer) ($boolean === $number);
?>

 8. What is the likely output of the following PHP script?

<?php
define ('NUM', '7');
$a = NUM;
echo gettype($a);
?>

 9. Rewrite the code from Try This 2-1 such that both the exchange rate and the amount to
be converted are supplied by the user through a Web form.

 Chapter 2: Using Variables and Operators 47

 10. Write a PHP script that accepts a temperature value in Celsius (C) through a Web
form and converts it to the Fahrenheit (F) scale. The conversion formula to use is:
F = (9/5) * C + 32.

 11. Write a PHP script to display the values entered into a Web form that contains:

● One text input field

● One text area

● One hidden field

● One password field

● One selection list

● Two radio buttons

● Two checkboxes

This page intentionally left blank

49

Chapter 3
Controlling
Program Flow

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 50 PHP: A Beginner’s Guide

Key Skills & Concepts
● Learn to use conditional statements like if-else and switch-case

● Automate repetitive tasks with the while, do-while, and for loops

● Gain experience with PHP’s built-in string and numeric functions

The PHP programs you saw in the preceding chapter were fairly straightforward: they
accepted one or more input values, performed calculations or comparisons with

them, and returned a result. In reality, though, PHP programs are never so simple: most
programs will need to make complex decisions and execute different operations at run
time in accordance with programmer-specified conditions.

In this chapter, you’ll learn how to create PHP programs that are more “intelligent”
and can perform different actions based on the results of a logical or comparative test.
You’ll also learn how to automate repetitive actions using loops, and find out more about
PHP’s built-in functions for working with strings and numbers. To ensure that you’re able
to apply this learning in the real world, this chapter also lets you test your newly acquired
knowledge against four practical projects.

Writing Simple Conditional Statements
In addition to storing and retrieving values in variables, PHP also lets programmers
evaluate different conditions during the course of a program and take decisions based
on whether these conditions evaluate to true or false. These conditions, and the actions
associated with them, are expressed by means of a programming construct called a
conditional statement. PHP supports different types of conditional statements, each one
intended for a particular use.

The if Statement
The simplest of PHP’s conditional statements is the if statement. This works much like
the English-language statement, “if X happens, do Y.” Here’s a simple example, which
contains a conditional statement that checks if the value of the $number variable is less
than 0 and prints a notification message if so.

 Chapter 3: Controlling Program Flow 51

<?php
// if number is less than zero
// print message
$number = -88;
if ($number < 0) {
 echo 'That number is negative';
}
?>

The key to the if statement is thus the condition to be evaluated, which is always
enclosed in parentheses. If the condition evaluates to true, the code within the curly braces
is executed; if it evaluates to false, the code within the curly braces is skipped. This true/
false test is performed using PHP’s comparison operators, which you learned about in the
preceding chapter; Table 3-1 quickly recaps them.

The if-else Statement
The if statement is quite basic: it only lets you define what happens when the condition
specified evaluates to true. But PHP also offers the if-else statement, an improved
version of the if construct that allows you to define an alternative set of actions that the
program should take when the condition specified evaluates to false. Using this statement
often results in more compact and readable code, because it lets you combine two actions
into a single, unified code block. In English, this statement would read, “if X happens,
do Y; otherwise, do Z.”

Operator Description

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

=== Equal to and of the same type

Table 3-1 Common Comparison Operators

 52 PHP: A Beginner’s Guide

To illustrate, consider this revision of the previous listing:

<?php
// change message depending on whether
// number is less than zero or not
$number = -88;
if ($number < 0) {
 echo 'That number is negative';
} else {
 echo 'That number is either positive or zero';
}
?>

Here, an if-else statement is used to account for two possible outcomes: a number
less than zero, and all other numbers. To see it in action, try running this script once as is,
and then again after changing the value of the $number variable to a positive value.

Q: Is there a more compact way to write an if-else statement?

A: Yes, there is. It involves a little thingamajig called the ternary operator. This operator,
represented by the question mark (?) symbol, lets you represent an if-else conditional
statement in a single, compact line of code. To see it in action, consider the following two
equivalent scripts:

The Standard if-else Block
The Equivalent Block Using the
Ternary Operator

<?php
if ($x < 10) {
 echo 'X is less than 10';
} else {
 echo 'X is more than 10';
}
?>

<?php
echo ($x < 10) ? 'X is less than 10' :
 'X is more than 10';
?>

Here, the ternary operator selects the code on the left of the colon if the condition
evaluates to true, and the code on the right if the condition evaluates to false.

Ask the Expert

 Chapter 3: Controlling Program Flow 53

Try This 3-1 Testing Odd and Even Numbers
Now that you know the basics of conditional statements, let’s look at an example of how
they can be used. The following program will ask the user to enter a number into a Web
form, test it to see whether it is odd or even, and return a corresponding message.

Here’s the code (oddeven.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 3-1: Odd/Even Number Tester</title>
 </head>
 <body>
 <h2>Project 3-1: Odd/Even Number Tester</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="oddeven.php">
 Enter value:

 <input type="text" name="num" size="3" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // retrieve number from POST submission
 $num = $_POST['num'];

 // test value for even-ness
 // display appropriate message
 if (($num % 2) == 0) {
 echo 'You entered ' . $num . ', which is an even number.';
 } else {
 echo 'You entered ' . $num . ', which is an odd number.';
 }
 }
?>
 </body>
</html>

(continued)

 54 PHP: A Beginner’s Guide

This program consists of two sections: the first half generates a Web form for the user
to enter a value, while the second half checks whether the value is odd or even and prints
an appropriate message. In most cases, these two sections would be in separate files;
they’ve been combined into a single PHP script by the magic of a conditional statement.

How does it work? Well, when the Web form is submitted, the $_POST variable will
contain an entry for the <input type='submit'...> element. A conditional test then
checks for the presence or absence of this variable: if absent, the program “knows” that
the Web form has not been submitted yet and so prints the form’s HTML code; if present,
the program “knows” that the Web form has been submitted and it then proceeds to test the
input value.

Testing the input value for evenness is handled by a second if-else conditional
statement. Here, the conditional expression consists of dividing the input value by 2
and testing if the remainder is zero. If this test returns true, one message is printed; else,
another message is printed.

Figure 3-1 illustrates what the output of the script looks like.

Writing More Complex Conditional Statements
The if-else statement lets you define actions for two eventualities: a true condition
and a false condition. In reality, however, your program may have more than just these
two simple outcomes to contend with. For these situations, PHP offers two constructs

Figure 3-1 Testing odd and even numbers with PHP

 Chapter 3: Controlling Program Flow 55

that allow the programmer to account for multiple possibilities: the if-elseif-else
statement and the switch-case statement.

The if-elseif-else Statement
The if-elseif-else statement lets you chain together multiple if-else statements,
thus allowing the programmer to define actions for more than just two possible outcomes.
Consider the following example, which illustrates its use:

<?php
// handle multiple possibilities
// define a different message for each day
$today = 'Tuesday';
if ($today == 'Monday') {
 echo 'Monday\'s child is fair of face.';
} elseif ($today == 'Tuesday') {
 echo 'Tuesday\'s child is full of grace.';
} elseif ($today == 'Wednesday') {
 echo 'Wednesday\'s child is full of woe.';
} elseif ($today == 'Thursday') {
 echo 'Thursday\'s child has far to go.';
} elseif ($today == 'Friday') {
 echo 'Friday\'s child is loving and giving.';
} elseif ($today == 'Saturday') {
 echo 'Saturday\'s child works hard for a living.';
} else {
 echo 'No information available for that day';
}
?>

Here, the program will output a different message for each day of the week (as set
in the $today variable). Notice also the final else branch: this is a “catch-all” branch,
which will be triggered if none of the previous conditional statements evaluate to true, and
it’s a handy way to account for situations that you can’t foresee.

There’s one important thing to remember about the if-elseif-else construct:
as soon as one of the conditional statements evaluates to true, PHP will execute the
corresponding code, skip the remaining conditional tests, and jump straight to the lines
following the entire if-elseif-else block. So, even if more than one of the conditional
tests evaluates to true, PHP will only execute the code corresponding to the first true test.

The switch-case Statement
An alternative to the if-elseif-else statement is the switch-case statement, which
does almost the same thing: it tests a variable against a series of values until it finds a

 56 PHP: A Beginner’s Guide

match, and then executes the code corresponding to that match. Consider the following
code listing, which is equivalent to the preceding one:

<?php
// handle multiple possibilities
// define a different message for each day
$today = 'Tuesday';
switch ($today) {
 case 'Monday':
 echo 'Monday\'s child is fair of face.';
 break;
 case 'Tuesday':
 echo 'Tuesday\'s child is full of grace.';
 break;
 case 'Wednesday':
 echo 'Wednesday\'s child is full of woe.';
 break;
 case 'Thursday':
 echo 'Thursday\'s child has far to go.';
 break;
 case 'Friday':
 echo 'Friday\'s child is loving and giving.';
 break;
 case 'Saturday':
 echo 'Saturday\'s child works hard for a living.';
 break;
 default:
 echo 'No information available for that day';
 break;
}
?>

The switch-case construct differs from the if-elseif-else construct in one
important way. Once PHP finds a case statement that evaluates to true, it executes not
only the code corresponding to that case statement, but also the code for all subsequent
case statements. If this is not what you want, add a break statement to the end of each
case block (as is done in the previous listing) to tell PHP to break out of the switch-
case statement block once it executes the code corresponding to the first true case.

Notice also the 'default' case: as the name suggests, this specifies the default set
of actions PHP should take if none of the other cases evaluate to true. This default case,
like the else branch of the if-elseif-else block, is very useful as a “catch-all”
handler for unforeseen situations.

 Chapter 3: Controlling Program Flow 57

Try This 3-2 Assigning Boy Scouts to Tents
Let’s now use the if-elseif-else statement to create a small application for
Scoutmasters everywhere: a Web tool that can automatically assign Scouts to the correct
tent during camping expeditions, on the basis of their age. This application presents Scouts
with a Web form into which they can enter their age; it then assigns them to one of four
tents—Red, Green, Blue, and Black—with other Scouts of approximately the same age.

Here’s the code (tent.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 3-2: Tent Assignment</title>
 </head>
 <body>
 <h2>Project 3-2: Tent Assignment</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="tent.php">
 Enter your age:

 <input type="text" name="age" size="3" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // retrieve age from POST submission
 $age = $_POST['age'];

 // assign to one of four tents
 // based on which age "bin" it falls into
 if ($age <= 9) {
 echo "You're in the Red tent.";
 } elseif ($age > 9 && $age <= 11) {
 echo "You're in the Blue tent.";
 } elseif ($age > 11 && $age <= 14) {
 echo "You're in the Green tent.";

(continued)

 58 PHP: A Beginner’s Guide

 } elseif ($age > 14 && $age <= 17) {
 echo "You're in the Black tent.";
 } else {
 echo "You'd better get in touch with the Scoutmaster.";
 }
 }
?>
 </body>
</html>

Like the previous project in this chapter, this one too combines the Web form and its
result page into a single script, separated by an if-else conditional statement. Once the
Scout enters his age into the Web form and submits it, an if-elseif-else block takes care
of defining four age ranges (one for each tent), testing the input age against these ranges, and
figuring out which tent is most appropriate for the Scout. The age ranges are: 0–9 (Red tent);
10–11 (Blue tent); 12–14 (Green tent); and 14–17 (Black tent). Scouts over the age of 17 see
a message asking them to contact the Scoutmaster to arrange their accommodation.

Figure 3-2 shows the result page of a form submission.

Combining Conditional Statements
PHP allows one conditional statement to be nested within another, to allow for more
complex decision-making. To illustrate this, consider the following listing:

<?php
// for employees with annual comp <= $15000

Figure 3-2 The result page, which assigns the user to a tent

 Chapter 3: Controlling Program Flow 59

// those with a rating >= 3 get a $5000 bonus
// everyone else gets a $3000 bonus
if ($rating >= 3) {
 if ($salary < 15000) {
 $bonus = 5000;
 }
} else {
 if ($salary < 15000) {
 $bonus = 3000;
 }
}
?>

You can also combine conditional statements by using logical operators, such as the
&& or || operator. You learned about logical operators in the preceding chapter; Table 3-2
quickly recaps the list.

Here’s an example of how these logical operators can be used with a conditional
statement:

<?php
$year = 2008;
// leap years are divisible by 400
// or by 4 but not 100
if (($year % 400 == 0) || (($year % 100 != 0) && ($year % 4 == 0))) {
 echo "$year is a leap year.";
} else {
 echo "$year is not a leap year.";
}
?>

Repeating Actions with Loops
Like any good programming language, PHP also supports loops—essentially, the ability to
repeat a series of actions until a prespecified condition is fulfilled. Loops are an important
tool that help in automating repetitive tasks within a program. PHP supports four different

Operator Description

&& AND

|| OR

! NOT

Table 3-2 Common Logical Operators

 60 PHP: A Beginner’s Guide

types of loops, three of which are discussed in the following section (the fourth type is
explained in the next chapter).

The while Loop
The easiest type of loop to understand is the while loop, which repeats continuously
while a prespecified condition is true. Here’s an example, which uses a loop to repeatedly
print an 'x' to the output page.

<?php
// repeat continuously until counter becomes 10
// output: 'xxxxxxxxx'
$counter = 1;
while ($counter < 10) {
 echo 'x';
 $counter++;
}
?>

Notice the condition enclosed in parentheses; so long as this condition evaluates to
true, the code within the curly braces is executed. As soon as the condition becomes false,
the loop stops repeating, and the lines following the loop are executed in the usual fashion.

The do-while Loop
With a while loop, the condition to be evaluated is tested at the beginning of each loop
iteration. There’s also a variant of this loop, the do-while loop, which evaluates the
condition at the end of each loop iteration. Here’s a revision of the preceding example that
illustrates it in action:

<?php
// repeat continuously until counter becomes 10
// output: 'xxxxxxxxx'
$counter = 1;
do {
 echo 'x';
 $counter++;
} while ($counter < 10);
?>

The difference in structure should also be apparent: with a do-while loop, the
condition to be evaluated now appears at the bottom of the loop block, rather than the
beginning.

 Chapter 3: Controlling Program Flow 61

NOTE
The difference in behavior between a while loop and a do-while loop has one
important implication: with a while loop, if the conditional expression evaluates to
false on the first pass itself, the loop will never be executed. With a do-while loop,
on the other hand, the loop will always be executed once, even if the conditional
expression is false, because the condition is evaluated at the end of the loop iteration
rather than the beginning.

The for Loop
The while and do-while loops are fairly simple: they repeat for so long as the specified
condition remains true. But PHP also supports a more sophisticated type of loop, the for
loop, which is useful when you need to execute a set of statements a specific number of
times.

The best way to understand a for loop is by looking at some code. Here’s a simple
example, which lists the numbers between 1 and 10:

<?php
// repeat continuously until counter becomes 10
// output:
for ($x=1; $x<10; $x++) {
 echo "$x ";
}
?>

In this listing, the loop begins by initializing the counter variable $x to 1; it then
executes the statements that make up the loop. Once it reaches the end of the first loop
iteration, it updates the loop counter by adding 1 to it, checks the conditional expression to
ensure that the counter hasn’t yet reached 10, and executes the loop once more. This process
continues until the counter reaches 10 and the conditional expression becomes false.

As this listing illustrates, there are thus three expressions involved in the typical for
loop, separated by semicolons and enclosed in parentheses:

● The first of these is an assignment expression, which initializes the loop counter to a
specific value—in this case, assigning the value 1 to the variable $x.

● The second is a conditional expression, which must evaluate to either true or false;
the loop will continue to execute so long as this condition remains true. Once the
condition becomes false, the loop will stop executing.

● The third is again an assignment expression, which is executed at the end of each loop
iteration, and which updates the loop counter with a new value—in this case, adding 1
to the value of $x.

 62 PHP: A Beginner’s Guide

Here’s another example, this one demonstrating how to use a for loop to generate an
ordered HTML list:

<?php
// generate ordered list of 6 items
echo "";
for ($x=1; $x<7; $x++) {
 echo "Item $x";
}
echo "";
?>

Figure 3-3 illustrates what the output looks like.

Combining Loops
Just as with conditional statements, it’s also possible to nest one loop inside another.
To illustrate, consider the next example, which nests one for loop inside another to
dynamically generate an HTML table.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title></title>
 </head>
 <body>
<?php
// generate an HTML table
// 3 rows, 4 columns
echo "<table border=\"1\">";

Figure 3-3 A dynamically generated list

 Chapter 3: Controlling Program Flow 63

for ($row=1; $row<4; $row++) {
 echo "<tr>";
 for ($col=1; $col<5; $col++) {
 echo "<td>Row $row, Column $col</td>";
 }
 echo "</tr>";
}
echo "</table>";
?>
 </body>
</html>

This script utilizes two for loops. The outer loop is responsible for generating the
table rows, and it runs three times. On each iteration of this outer loop, an inner loop is
also triggered; this loop is responsible for generating the cells within each row, and it runs
four times. The end result is a table with three rows, each containing four cells. Figure 3-4
displays this result.

Interrupting and Skipping Loops
While on the topic of loops, it’s interesting to discuss two PHP statements that allow you
to either interrupt a loop or skip a particular iteration of a loop. PHP’s break statement
is aptly named: it allows you to break out of a loop at any point. To illustrate, consider
the following loop, which would normally iterate five times but stops after the second
iteration due to the break statement:

<?php
$count = 0;
// loop 5 times

Figure 3-4 A dynamically generated table

 64 PHP: A Beginner’s Guide

Try This 3-3

while ($count <= 4) {
 $count++;
 // when the counter hits 3
 // break out of the loop
 if ($count == 3) {
 break;
 }
 echo "This is iteration #$count
";
}
?>

Unlike break, continue doesn’t halt processing of the loop; it simply “jumps one”
iteration. To see how this works, consider the following loop, which iterates five times but
skips the third iteration due to the intervention of the continue statement:

<?php
$count = 0;
// loop 5 times
while ($count <= 4) {
 $count++;
 // when the counter hits 3
 // skip to the next iteration
 if ($count == 3) {
 continue;
 }
 echo "This is iteration #$count
";
}
?>

 Building a Factorial Calculator
A simple real-world application that you can try for yourself to better understand how
loops work, is a factorial calculator. In case you were snoozing in math class the day they
discussed factorials, the factorial of a number n is simply the product of all the numbers
between n and 1. So, for example, the factorial of 4 is 4 *3 * 2 * 1 = 24.

The factorial calculator you’ll build in this section is interactive: it asks the user to
enter a number into a Web form, and it then calculates the factorial of that number. Here’s
the code (factorial.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 3-3: Factorial Calculator</title>

 Chapter 3: Controlling Program Flow 65

 </head>
 <body>
 <h2>Project 3-3: Factorial Calculator</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="factorial.php">
 Enter a number:

 <input type="text" name="num" size="3" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // retrieve number from form input
 $num = $_POST['num'];

 // check that number is positive
 if ($num <= 0) {
 echo 'ERROR: Please enter a number greater than 0';
 exit();
 }

 // calculate factorial
 // by multiplying the number by all the
 // numbers between itself and 1
 $factorial = 1;
 for ($x=$num; $x>=1; $x--) {
 $factorial *= $x;
 }
 echo "Factorial of $num is: $factorial";
 }
?>
 </body>
</html>

Most of the work here is performed by the for loop. This loop’s counter is initialized
to the number entered by the user, and the loop then runs backward, decrementing the loop
counter by 1 on each iteration. Each time the loop runs, the previously calculated product
is multiplied by the current value of the loop counter. The end result is the factorial of the
input number.

Figure 3-5 shows the result after submitting the form.

 66 PHP: A Beginner’s Guide

Working with String and Numeric Functions
In the preceding chapter, you learned a little bit about PHP’s data types, including its
operators for string and number manipulation. But PHP lets you do a lot more than simply
concatenate strings and add values; the language comes with a full-featured library
of built-in functions that let you do everything from reversing and splitting strings to
calculating logarithmic values. This section will introduce you to some of these functions.

Using String Functions
PHP has over 75 built-in string manipulation functions, supporting operations ranging
from string repetition and reversal to comparison and search-and-replace. Table 3-3 lists
some of these functions.

Checking for Empty Strings
The empty() function returns true if a string variable is “empty.” Empty string variables
are those with the values '', 0, '0', or NULL. The empty() function also returns true
when used with a non-existent variable. Here are some examples:

<?php
// test if string is empty
// output: true
$str = '';
echo (boolean) empty($str);

// output: true
$str = null;
echo (boolean) empty($str);

Figure 3-5 The output page, which displays the factorial of the number

 Chapter 3: Controlling Program Flow 67

Function What It Does

empty() Tests if a string is empty

strlen() Calculates the number of characters in a string

strrev() Reverses a string

str_repeat() Repeats a string

substr() Retrieves a section of a string

strcmp() Compares two strings

str_word_count() Calculates the number of words in a string

str_replace() Replaces parts of a string

trim() Removes leading and trailing whitespace from a string

strtolower() Lowercases a string

strtoupper() Uppercases a string

ucfirst() Uppercases the first character of a string

ucwords() Uppercases the first character of every word of a string

addslashes() Escapes special characters in a string with backslashes

stripslashes() Removes backslashes from a string

htmlentities() Encodes HTML within a string

htmlspecialchars() Encodes special HTML characters within a string

nl2br() Replaces line breaks in a string with
 elements

html_entity_decode() Decodes HTML entities within a string

htmlspecialchars_decode() Decodes special HTML characters within a string

strip_tags() Removes PHP and HTML code from a string

Table 3-3 Common PHP String Functions

// output: true
$str = '0';
echo (boolean) empty($str);

// output: true
unset($str);
echo (boolean)empty($str);
?>

 68 PHP: A Beginner’s Guide

Reversing and Repeating Strings
The strlen() function returns the number of characters in a string. Here’s an example
of it in action:

<?php
// calculate length of string
// output: 17
$str = 'Welcome to Xanadu';
echo strlen($str);
?>

Reversing a string is as simple as calling the strrev() function, as in the next
listing:

<?php
// reverse string
// output: 'pets llams enO'
$str = 'One small step';
echo strrev($str);
?>

In case you need to repeat a string, PHP offers the str_repeat() function, which
accepts two arguments—the string to be repeated, and the number of times to repeat it.
Here’s an example:

<?php
// repeat string
// output: 'yoyoyo'
$str = 'yo';
echo str_repeat($str, 3);
?>

Working with Substrings
PHP also allows you to slice a string into smaller parts with the substr() function,
which accepts three arguments: the original string, the position (offset) at which to start
slicing, and the number of characters to return from the starting position. The following
listing illustrates this in action:

<?php
// extract substring
// output: 'come'
$str = 'Welcome to nowhere';
echo substr($str, 3, 4);
?>

 Chapter 3: Controlling Program Flow 69

NOTE
When using the substr() function, the first character of the string is treated as offset 0,
the second character as offset 1, and so on.

To extract a substring from the end of a string (rather than the beginning), pass
substr() a negative offset, as in this revision of the preceding example:

<?php
// extract substring
// output: 'come here'
$str = 'Welcome to nowhere';
echo substr($str, 3, 5) . substr($str, -4, 4);
?>

Q: Can I retrieve a single character of a string? How?

A: There are two ways to retrieve a single character of a string. The longer way involves
using the substr() function, as in the next listing:

<?php
// output: 'r'
$str = 'abracadabra';
echo substr($str,2,1);
?>

The substr() function accepts three arguments: the original string, the offset
at which substring extraction should begin, and the number of characters to extract
starting from the specified offset. Note that offset counting begins at 0, not 1.

However, PHP also supports a shortcut syntax to accomplish the same thing. This
consists of specifying the offset of the character to be retrieved within curly braces,
after the variable name. The following listing illustrates:

<?php
// output: 'r'
$str = 'abracadabra';
echo $str{2};
?>

Ask the Expert

 70 PHP: A Beginner’s Guide

Comparing, Counting, and Replacing Strings
If you need to compare two strings, the strcmp() function performs a case-sensitive
comparison of two strings, returning a negative value if the first is “less” than the second,
a positive value if it’s the other way around, and zero if both strings are “equal.” Here are
some examples of how this works:

<?php
// compare strings
$a = "hello";
$b = "hello";
$c = "hEllo";

// output: 0
echo strcmp($a, $b);

// output: 1
echo strcmp($a, $c);
?>

PHP’s str_word_count() function provides an easy way to count the number of
words in a string. The following listing illustrates its use:

<?php
// count words
// output: 5
$str = "The name's Bond, James Bond";
echo str_word_count($str);
?>

If you need to perform substitution within a string, PHP also has the str_replace()
function, designed specifically to perform find-and-replace operations. This function
accepts three arguments: the search term, the replacement term, and the string in which to
perform the replacement. Here’s an example:

<?php
// replace '@' with 'at'
// output: 'john at domain.net'
$str = 'john@domain.net';
echo str_replace('@', ' at ', $str);
?>

Formatting Strings
PHP’s trim() function can be used to remove leading or trailing whitespace from a string;
this is quite useful when processing data entered into a Web form. Here’s an example:

 Chapter 3: Controlling Program Flow 71

<?php
// remove leading and trailing whitespace
// output 'a b c'
$str = ' a b c ';
echo trim($str);
?>

Changing the case of a string is as simple as calling the strtolower() or
strtoupper() function, as illustrated in the next listing:

<?php
// change string case
$str = 'Yabba Dabba Doo';

// output: 'yabba dabba doo'
echo strtolower($str);

// output: 'YABBA DABBA DOO'
echo strtoupper($str);
?>

You can also uppercase the first character of a string with the ucfirst() function,
or format a string in “word case” with the ucwords() function. The following listing
demonstrates both these functions:

<?php
// change string case
$str = 'the yellow brigands';

// output: 'The Yellow Brigands'
echo ucwords($str);

// output: 'The yellow brigands'
echo ucfirst($str);
?>

Working with HTML Strings
PHP also has some functions exclusively for working with HTML strings. First up, the
addslashes() function, which automatically escapes special characters in a string with
backslashes. Here’s an example:

<?php
// escape special characters
// output: 'You\'re awake, aren\'t you?'
$str = "You're awake, aren't you?";
echo addslashes($str);
?>

 72 PHP: A Beginner’s Guide

You can reverse the work done by addslashes() with the aptly named
stripslashes() function, which removes all the backslashes from a string.
Consider the following example, which illustrates:

<?php
// remove slashes
// output: 'John D'Souza says "Catch you later".'
$str = "John D\'Souza says \"Catch you later\".";
echo stripslashes($str);
?>

The htmlentities() and htmlspecialchars() functions automatically convert
special HTML symbols (like < and >) into their corresponding HTML representations (<
and &<hairline #>gt;). Similarly, the nl2br() function automatically replaces newline
characters in a string with the corresponding HTML line break tag
. Here’s an example:

<?php
// replace with HTML entities
// output: '<div width="200">
// This is a div</div>'
$html = '<div width="200">This is a div</div>';
echo htmlentities($html);

// replace line breaks with
s
// output: 'This is a bro

// ken line'
$lines = 'This is a bro
 ken line';
echo nl2br($lines);
?>

You can reverse the effect of the htmlentities() and htmlspecialchars()
functions with the html_entity_decode() and htmlspecialchars_decode()
functions.

Finally, the strip_tags() function searches for all HTML and PHP code within a
string and removes it to generate a “clean” string. Here’s an example:

<?php
// strip HTML tags from string
// output: 'Please log in again'
$html = '<div width="200">Please log in again</div>';
echo strip_tags($html);
?>

 Chapter 3: Controlling Program Flow 73

Using Numeric Functions
Don’t think that PHP’s power is limited to strings only: the language has over 50 built-in
functions for working with numbers, ranging from simple formatting functions to
functions for arithmetic, logarithmic, and trigonometric manipulations. Table 3-4 lists
some of these functions.

Doing Calculus
A common task when working with numbers involves rounding them up and down. PHP offers
the ceil() and floor() functions for this task, and they’re illustrated in the next listing:

<?php
// round number up
// output: 19
$num = 19.7;
echo floor($num);

Function What It Does

ceil() Rounds a number up

floor() Rounds a number down

abs() Finds the absolute value of a number

pow() Raises one number to the power of another

log() Finds the logarithm of a number

exp() Finds the exponent of a number

rand() Generates a random number

bindec() Converts a number from binary to decimal

decbin() Converts a number from decimal to binary

decoct() Converts a number from decimal to octal

dechex() Converts a number from decimal to hexadecimal

hexdec() Converts a number from hexadecimal to decimal

octdec() Converts a number from octal to decimal

number_format() Formats a number with grouped thousands and decimals

printf() Formats a number using a custom specification

Table 3-4 Common PHP Numeric Functions

 74 PHP: A Beginner’s Guide

// round number down
// output: 20
echo ceil($num);
?>

There’s also the abs() function, which returns the absolute value of a number. Here’s
an example:

<?php
// return absolute value of number
// output: 19.7
$num = -19.7;
echo abs($num);
?>

The pow() function returns the value of a number raised to the power of another:

<?php
// calculate 4 ^ 3
// output: 64
echo pow(4,3);
?>

The log() function calculates the natural or base-10 logarithm of a number, while the
exp() function calculates the exponent of a number. Here’s an example of both in action:

<?php
// calculate natural log of 100
// output: 2.30258509299
echo log(10);

// calculate log of 100, base 10
// output: 2
echo log(100,10);

// calculate exponent of 2.30258509299
// output: 9.99999999996
echo exp(2.30258509299);
?>

Generating Random Numbers
Generating random numbers with PHP is pretty simple too: the language’s built-in
rand() function automatically generates a random integer greater than 0. You can
constrain it to a specific number range by providing optional limits as arguments. The
following example illustrates:

<?php
// generate a random number

 Chapter 3: Controlling Program Flow 75

echo rand();

// generate a random number between 10 and 99
echo rand(10,99);
?>

Converting Between Number Bases
PHP comes with built-in functions for converting between binary, decimal, octal, and
hexadecimal bases. Here’s an example which demonstrates the bindec(), decbin(),
decoct(), dechex(), hexdec(), and octdec() functions in action:

<?php
// convert to binary
// output: 1000
echo decbin(8);

// convert to hexadecimal
// output: 8
echo dechex(8);

// convert to octal
// output: 10
echo decoct(8);

// convert from octal
// output: 8
echo octdec(10);

// convert from hexadecimal
// output: 101
echo hexdec(65);

// convert from binary
// output: 8
echo bindec(1000);
?>

Formatting Numbers
When it comes to formatting numbers, PHP offers the number_format() function, which
accepts four arguments: the number to be formatted, the number of decimal places to
display, the character to use instead of a decimal point, and the character to use to separate
grouped thousands (usually a comma). Consider the following example, which illustrates:

<?php
// format number (with defaults)

 76 PHP: A Beginner’s Guide

// output: 1,106,483
$num = 1106482.5843;
echo number_format($num);

// format number (with custom separators)
// output: 1?106?482*584
echo number_format($num,3,'*','?');
?>

For more control over number formatting, PHP offers the printf() and sprintf()
functions. These functions, though very useful, can be intimidating to new users, and
so the best way to understand them is with an example. Consider the next listing, which
shows them in action:

<?php
// format as decimal number
// output: 00065
printf("%05d", 65);

// format as floating-point number
// output: 00239.000
printf("%09.3f", 239);

// format as octal number
// output: 10
printf("%4o", 8);

// format number
// incorporate into string
// output: 'I see 8 apples and 26.00 oranges'
printf("I see %4d apples and %4.2f oranges", 8, 26);
?>

Both functions accept two arguments, a series of format specifiers and the raw string or
number to be formatted. The input is then formatted according to the format specifiers and
the output either displayed with printf() or assigned to a variable with sprintf().

Some common format specifiers are listed in Table 3-5.
You can also combine these format specifiers with a precision specifier, which

indicates the number of digits to display for floating-point values—for example, %1.2f
implies that the number should be formatted as a floating-point value with two digits
displayed after the decimal point. For smaller numbers, it’s also possible to add a padding
specifier, which tells the function to pad the numbers to a specified length using a custom
character. You can see both these types of specifiers in action in the preceding listing.

 Chapter 3: Controlling Program Flow 77

Try This 3-4 Processing a Member Registration Form
Now that you’ve seen some of PHP’s built-in functions, let’s apply some of what you’ve
learned to a practical application: a membership application form for a sports club. This
form will ask the applicant to enter various bits of personal information; it will then
validate this information and, if acceptable, will formulate and send an e-mail with the
applicant’s information to the club administrator.

Here’s the HTML form (register.html):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 3-4: Member Registration</title>
 </head>
 <body>
 <h2>Project 3-4: Member Registration</h2>
 <form method="post" action="register.php">
 Name:

 <input type="text" name="name" size="50" />
 <p>
 Address:

 <textarea name="address" rows="5" cols=40"></textarea>
 <p>
 Age:

 <input type="text" name="age" size="3" />
 <p>
 Profession:

 <input type="text" name="profession" size="50" />

Specifier What It Means

%s String

%d Decimal number

%x Hexadecimal number

%o Octal number

%f Floating-point number

Table 3-5 Format Specifiers for the printf() and sprintf() Functions

(continued)

 78 PHP: A Beginner’s Guide

 <p>
 Residential status:

 <input type="radio" name="resident" value="yes" checked="true" /> Resident
 <input type="radio" name="resident" value="no" /> Non-Resident
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
 </body>
</html>

This form has five input fields, one each for the applicant’s name, address, age,
profession, and residential status. Figure 3-6 has a picture of what the form looks like.

Figure 3-6 A Web-based application form

 Chapter 3: Controlling Program Flow 79

NOTE
In order to successfully send mail with PHP using the mail() function, your php.ini
configuration file must include some information about the mail server or mail agent to
be used. Windows users will need to set the 'SMTP' and 'smtp_port' options, while
*NIX users may need to set the 'sendmail_path' option. More information on these
options can be obtained from the PHP manual page at www.php.net/mail.

Once the form is submitted, the data entered into it by the applicant is passed to the
form processing script (register.php) via the POST method. The next listing shows the
contents of this script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 3-4: Member Registration</title>
 </head>
 <body>
 <h2>Project 3-4: Member Registration</h2>
<?php
 // retrieve details from POST submission
 $name = $_POST['name'];
 $address = $_POST['address'];
 $age = $_POST['age'];
 $profession = $_POST['profession'];
 $resident = $_POST['resident'];

 // validate submitted data
 // check name
 if (empty($name)) {
 die('ERROR: Please provide your name.');
 }

 // check address
 if (empty($address)) {
 die('ERROR: Please provide your address.');
 }

 // check age
 if (empty($age)) {
 die('ERROR: Please provide your age');
 } else if ($age < 18 || $age > 60) {
 die('ERROR: Membership is only open to those between 18 and 60 years.');
 }

 // check profession
 if (empty($profession)) {
 die('ERROR: Please provide your profession.');
 }
 (continued)

 80 PHP: A Beginner’s Guide

 // check residential status
 if (strcmp($resident, 'no') == 0) {
 die('ERROR: Membership is only open to residents.');
 }

 // if we get this far
 // all the input has passed validation
 // formulate and send e-mail message
 $to = 'registration@some.domain.com';
 $from = 'webmaster@some.domain.com';
 $subject = 'Application for membership';
 $body = "Name: $name\r\nAddress: $address\r\n
 Age: $age\r\nProfession: $profession\r\n
 Residential status: $resident\r\n";
 if(mail($to, $subject, $body, "From: $from")) {
 echo 'Thank you for your application.';
 } else {
 die('ERROR: Mail delivery error');
 }
?>
 </body>
</html>

NOTE
Remember to alter the value of the $to variable in the register.php script, to reflect your
e-mail address.

This script begins by retrieving the values submitted by the user from $_POST and
assigning these values to regular PHP variables. Next, the empty() function is used
to test whether they are empty; those which are, generate an error message and cause
the script to terminate immediately. Two extra conditional tests are also present in this
section: the first for the applicant’s age, to filter out applicants younger than 18 or older
than 60; and the second for the applicant’s residential status, to filter out non-residents.

Assuming all the checks are successful, the script proceeds to create an e-mail
message, setting variables for the sender, recipient, message subject, and message body.
These variables are then passed to PHP’s mail() function, which actually does the hard
work of sending the e-mail message. If message transmission is successful, a success
notification appears; if not, an error message is generated.

The mail() function is new to you and so deserves a more detailed examination. The
mail() function is a built-in PHP function to send an e-mail message, and it accepts four
parameters: the recipient e-mail address, the message subject, the message body, and a list
of additional message headers (of which the 'From' header is mandatory). It uses these

 Chapter 3: Controlling Program Flow 81

parameters to construct an e-mail message, connect to the specified mail server, and hand
the message over to delivery. If handover is successful, mail() returns true; otherwise, it
returns false.

CAUTION
It’s important to understand what the return value of the mail() function means. If the
mail() function returns true, it merely means is that the message was successfully handed
over to the mail server for delivery. It does not mean that the message was subsequently
successfully transmitted to, or received by, the intended recipient (because PHP has no
way of tracking the message once it’s been handed over to the mail server). Failing to
understand this distinction is a common error made by programmers new to PHP.

Also new in this script is the die() function: this function provides a convenient way
to immediately terminate script processing, usually if an error occurs. You can also pass
an optional message to die(); this message will be output by PHP at the point of script
termination and thus serves as a useful explanation to the user about what went wrong.

Q: Can I add a custom header to e-mail messages sent through PHP?

A: Yes. The fourth argument to the mail() function is a string containing your custom
header, in header:value format. If you have more than one custom header to add,
separate the headers with \r\n. The following example illustrates:

<?php
// define message
$to = 'bacchus@vsnl.com';
$subject = 'Hello';
$body = "This is a test";
// define custom headers
$headers = "From:webmaster@my.domain.com\r\n
 Organization:MyOrg Inc.\r\nX-Mailer:PHP";
if(mail($to, $subject, $body, $headers)) {
 echo 'Your message was sent.';
} else {
 die('ERROR: Mail delivery error');
}
?>

Ask the Expert

 82 PHP: A Beginner’s Guide

Summary
The goal of this chapter was to move you along the learning curve, from building simple,
linear programs to creating more sophisticated PHP applications. It began by explaining
how you can add intelligence to your PHP scripts through the use of conditional tests, and
offered usage examples for PHP’s if, if-else, if-elseif-else, and switch-case
statements. It then proceeded to a discussion of PHP’s loop constructs, showing you how
easy it is to automate repetitive actions with PHP and introducing you to three common
loop types: the while, do-while, and for loops.

The latter half of the chapter took you on a whirlwind tour of PHP’s built-in
string and numeric functions, using commented examples to explain how to perform
tasks ranging from simple string comparison and extraction to more complex number
conversion and formatting. And as if all that wasn’t enough, this chapter helped you
work your way through four projects, each designed to demonstrate practical usage
of the concepts taught. Conditional statements, loops, and built-in functions all got a
workout in these projects, which ranged the gamut from a simple odd/even number
tester to a full-fledged Web application form that included input validation and e-mail
message transmission functions.

At the close of this chapter, you now know enough about PHP’s basic grammar and
syntax to begin writing your own, reasonably complex PHP scripts. The next chapter will
help expand your bag of PHP tricks, by introducing you to a new type of PHP variable
and also giving you some insight into PHP’s date and time manipulation functions. Until
then, though, spend some time looking at the links that follow, which offer more detailed
information on the topics discussed in this chapter:

● Conditional statements and loops, at
www.php.net/manual/en/language.control-structures.php

● A discussion of PHP string functions, at www.php.net/manual/en/ref.strings.php
and www.melonfire.com/community/columns/trog/article.php?id=88

● PHP math functions, at www.php.net/manual/en/ref.math.php

● Sending e-mail with PHP, at www.php.net/manual/en/ref.mail.php

● PHP’s ternary operator, at www.php.net/manual/en/language.operators.php

 Chapter 3: Controlling Program Flow 83

 Chapter 3 Self Test
 1. What is the difference between an if-else statement and an if-elseif-else

statement?

 2. Write a conditional statement that checks the value of $city and displays a message if
it is equal to 'Minneapolis'.

 3. Explain the difference between a while loop and a do-while loop. Illustrate your
answer with an example.

 4. Using a while loop, write a program that prints a multiplication table for the
number 8.

 5. Rewrite the program from Question 4 using a for loop.

 6. Name the functions you would use to

 A Decode HTML entities

 B Uppercase a string

 C Round a number down

 D Remove whitespace from a string

 E Generate a random number

 F Reverse a string

 G Count words in a string

 H Count characters in a string

 I Terminate script processing with a custom message

 J Compare two strings

 K Calculate the exponent of a number

 L Convert a decimal number to a hexadecimal value

 7. What will be the output of the following line of PHP code:

<?php printf("%09.6f", 7402.4042); ?>

 8. Given the string 'Mark had a nice day', create the new string 'Mark had
icecream'.

✓

This page intentionally left blank

85

Chapter 4
Working with Arrays

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 86 PHP: A Beginner’s Guide

Key Skills & Concepts
● Understand the different array types supported by PHP

● Process array contents with the foreach loop

● Use arrays with Web forms

● Sort, merge, add, modify, and split arrays using PHP’s built-in functions

● Work with dates and times

By now, PHP’s simple data types should be old hat to you—you’ve spent the last few
chapters using them, in different permutations and combinations, to create applications

of varying complexity and usefulness. But there’s a lot more to PHP’s data types than
strings, numbers, and Booleans; PHP also supports arrays, which let you group and
manipulate more than one value at a time.

In this chapter, you’ll learn all about arrays: how to create them, how to add and edit
them, and how to manipulate the values they hold. You’ll also learn about a new loop type
designed specifically for use with arrays, get a crash course in some of PHP’s built-in
array functions, and apply your learning to some practical projects.

Storing Data in Arrays
So far, all the variables you’ve used have held only a single value. Array variables
are “special,” because they can hold more than one value at a time. This makes them
particularly useful for storing related values—for example, a set of fruit names, as in this
example:

<?php
// define array
$fruits = array('apple', 'banana', 'pineapple', 'grape');
?>

Once you’ve got an array like this one, a natural question arises: how do you retrieve a
particular value? It’s quite simple: use index numbers to access the various values stored
inside it, with zero representing the first value. Thus, to access the value 'apple' from

 Chapter 4: Working with Arrays 87

the preceding array, you’d use the notation $fruits[0], while the value 'grape' can
be retrieved using the notation $fruits[3].

PHP also supports a slightly different type of array, in which index numbers are
replaced with user-defined strings, or “keys.” Here’s a revised version of the preceding
example, which uses keys instead of index numbers:

<?php
// define array
$fruits = array(
 'a' => 'apple',
 'b' => 'banana',
 'p' => 'pineapple',
 'g' => 'grape'
);
?>

This type of array is known as an associative array. The keys of the array must be
unique; each key references a single value, and the key-value relationship is expressed
through the => symbol. To access the value 'apple' from the array, you’d use the
notation $fruits['a'], while the value 'banana' can be retrieved using the notation
$fruits['b'].

Assigning Array Values
PHP’s rules for naming array variables are the same as those for regular variables:
variable names must be preceded with a dollar ($) symbol and must begin with a letter
or underscore character, optionally followed by more letters, numbers, or underscore
characters. Punctuation characters and spaces are not allowed within array variable names.

Once you’ve decided a name for your array, there are two ways of assigning values
to it. The first is the method you saw in the preceding section, where the values are all
assigned at once, separated with commas. This method creates a standard, number-
indexed array. Here’s an example:

<?php
// define array
$cars = array(
 'Ferrari',
 'Porsche',
 'Jaguar',
 'Lamborghini',
 'Mercedes'
);
?>

 88 PHP: A Beginner’s Guide

The second way to create such an array is to set values individually using index notation.
Here’s an example, which is equivalent to the preceding one:

<?php
// define array
$cars[0] = 'Ferrari';
$cars[1] = 'Porsche';
$cars[2] = 'Jaguar';
$cars[3] = 'Lamborghini';
$cars[4] = 'Mercedes';
?>

Q: In all these examples, you’ve explicitly specified the array index for each assignment
statement. What if I don’t know what the correct index is? Can I make PHP
automatically assign the next available array index to my value?

A: To automatically assign the next available index to an array value, omit the index number
in your array assignment statement, as you see here:

<?php
// define array
$cars[] = 'Ferrari';
$cars[] = 'Lamborghini';
?>

Ask the Expert

You can also use both these techniques with associative arrays. To assign all the values
of such an array in a single statement, set a key for each value and link the two using
the => connector, remembering to separate each key-value pair with commas. Here’s an
example:

<?php
// define array
$data = array(
 'username' => 'john',
 'password' => 'secret',
 'host' => '192.168.0.1'
);
?>

 Chapter 4: Working with Arrays 89

You can also assign values to keys one by one, as in this next example:

<?php
// define array
$data['username'] = 'john';
$data['password'] = 'secret';
$data['host'] = '192.168.0.1';
?>

To access a value from an array in a script, simply use the array name and index/key
in an expression and PHP will replace it with its value when the script is executed, as with
any normal variable. Here’s a simple example that illustrates how this works:

<?php
// define array
$data = array(
 'username' => 'john',
 'password' => 'secret',
 'host' => '192.168.0.1'
);

// use array value
echo 'The password is: ' . $data['password'];
?>

NOTE
Do you remember the special container variables named $_GET and $_POST that you
first encountered in Chapter 2? Well, they’re arrays too! When a form is submitted,
each element of the form is automatically converted by PHP into a member of either the
$_POST or $_GET array (depending on the method of submission).

Modifying Array Values
Modifying an array value is as simple as modifying any other variable value: simply
assign a new value to the element using either its index or its key. Consider the following
example, which modifies the second element of the $meats array to hold the value
'turkey' instead of 'ham':

<?php
// define array
$meats = array(
 'fish',
 'chicken',
 'ham',
 'lamb'
);

 90 PHP: A Beginner’s Guide

// change 'ham' to 'turkey'
$meats[2] = 'turkey';
?>

To remove an element from an array, use the unset() function on the corresponding
key or index:

<?php
// define array
$meats = array(
 'fish',
 'chicken',
 'ham',
 'lamb'
);

// remove 'fish'
unset($meats[0]);
?>

Q: If I remove an element from the middle of an array, what happens to the values on
either side?

A: If you remove an element from an array with unset(), PHP will set that array element to
NULL but will not automatically re-index the array. If the array is a numerically indexed
array, you can re-index it to remove these “holes” in the indexing sequence, by passing the
array through PHP’s array_multisort() function.

Ask the Expert

You can also remove an element from an array using the array_pop() or array_
push() function; these functions are discussed a little further along in this chapter.

Retrieving Array Size
An important task when using arrays, especially in combination with loops, is finding out
how many values the array contains. This is easily accomplished with PHP’s count()
function, which accepts the array variable as a parameter and returns an integer value
indicating how many elements it contains. Here’s an example:

<?php
// define array
$data = array('Monday', 'Tuesday', 'Wednesday');

 Chapter 4: Working with Arrays 91

// get array size
echo 'The array has ' . count($data) . ' elements';
?>

TIP
Instead of the count() function, you can also use the sizeof() function, which
does the same thing.

Q: Is there an upper limit on how many elements a PHP array can hold?

A: No. The number of elements in an array is limited only by available memory, as defined in
the 'memory_limit' configuration variable in PHP’s configuration file.

Ask the Expert

Nesting Arrays
PHP also allows you to combine arrays, by placing one inside another to an unlimited
depth. This can come in handy when dealing with structured, hierarchically arranged
information. To illustrate, consider the following example:

<?php
// define nested array
$phonebook = array(
 array(
 'name' => 'Raymond Rabbit',
 'tel' => '1234567',
 'email' => 'ray@bunnyplanet.in',
),
 array(
 'name' => 'David Duck',
 'tel' => '8562904',
 'email' => 'dduck@duckpond.corp',
),
 array(
 'name' => 'Harold Horse',
 'tel' => '5942033',
 'email' => 'kingharold@farmersmarket.horsestuff.com',
)
);
?>

 92 PHP: A Beginner’s Guide

In this example, $phonebook is an array nested two levels deep. The first level is
numerically indexed, with each element representing an entry from a phone book. Each of
these elements is itself an associative array, holding specific information on the attributes
of the corresponding phone book entry, such as the contact’s name, phone number, and
e-mail address.

To access a value a few levels deep in a nested array, use the correct hierarchical
sequence of indices/keys to get to the value. Here’s an example, which returns the phone
number of the contact 'David Duck':

<?php
// define nested array
$phonebook = array(
 array(
 'name' => 'Raymond Rabbit',
 'tel' => '1234567',
 'email' => 'ray@bunnyplanet.in',
),
 array(
 'name' => 'David Duck',
 'tel' => '8562904',
 'email' => 'dduck@duckpond.corp',
),
 array(
 'name' => 'Harold Horse',
 'tel' => '5942033',
 'email' => 'kingharold@farmersmarket.horsestuff.com',
)
);

// access nested value
echo "David Duck's number is: " . $phonebook[1]['tel'];
?>

TIP
Want to look inside an array and see what it contains? The var_dump() and
print_r() functions discussed in Chapter 2 work just as well on arrays as on other
variables. Try them out for yourself and see!

Processing Arrays with Loops and Iterators
Often, your PHP program will need to work its way through an array, performing an
operation or calculation on each value it finds. The best way to do this is with a loop,

 Chapter 4: Working with Arrays 93

which you learned about in the preceding chapter. Consider the following example, which
sets up an array and then iterates over it using a for loop:

<?php
// define array
$cities = array('London', 'Paris', 'Madrid', 'Los Angeles', 'Bombay', 'Jakarta');

// iterate over array
// print each value
for ($i=0; $i<count($cities); $i++) {
 echo $cities[$i] . "\r\n";
}
?>

In this listing, a for loop iterates over the $cities array, printing each value found. The
loop runs as many times as there are elements in the array; this information is quickly
ascertained by a call to the count() function.

The foreach Loop
You might remember that the preceding chapter’s discussion of loops was left unfinished,
with one loop type still left to be explained. That loop, the foreach loop, was first
introduced in PHP 4.0 and is the simplest way of iterating over arrays—not surprising, as
that’s what it was specifically designed for!

With a foreach loop, each time the loop runs, the current array element is assigned to
a temporary variable, which can then be processed in any way you please—printed, copied
to another variable, used in a calculation, and so on. Unlike a for loop, a foreach loop
doesn’t use a counter; it automatically “knows” where it is in the array, and it moves forward
continuously until it reaches the end of the array, at which point it automatically halts.

The best way to understand this marvel of automation is with an example. The next
listing shows it in action, rewriting the preceding listing to use a foreach loop instead of
a for loop:

<?php
// define array
$cities = array('London', 'Paris', 'Madrid', 'Los Angeles', 'Bombay', 'Jakarta');

// iterate over array
// print each value
foreach ($cities as $c) {
 echo "$c \r\n";
}
?>

 94 PHP: A Beginner’s Guide

The foreach loop also works with associative arrays, except that for such arrays, it
uses two temporary variables (one each for the key and value). The next listing illustrates
the difference:

<?php
// define array
$cities = array(
 "United Kingdom" => "London",
 "United States" => "Washington",
 "France" => "Paris",
 "India" => "Delhi"
);

// iterate over array
// print each value
foreach ($cities as $key => $value) {
 echo "$value is in $key. \r\n";
}
?>

The Array Iterator
Alternatively, you may prefer to use an ArrayIterator (new in PHP 5.0), which provides a
ready-made, extensible tool to loop over array elements. Here’s a simple example:

<?php
// define array
$cities = array(
 "United Kingdom" => "London",
 "United States" => "Washington",
 "France" => "Paris",
 "India" => "Delhi"
);

// create an ArrayIterator object
$iterator = new ArrayIterator($cities);

// rewind to beginning of array
$iterator->rewind();

// iterate over array
// print each value
while($iterator->valid()) {
 print $iterator->current() . " is in " . $iterator->key() . ". \r\n";
 $iterator->next();
}
?>

In this listing, an ArrayIterator object is initialized with an array variable, and the
object’s rewind() method is used to reset the internal array pointer to the first element

 Chapter 4: Working with Arrays 95

Try This 4-1

of the array. A while loop, which runs so long as a valid() element exists, can then be
used to iterate over the array. Individual array keys are retrieved with the key() method,
and their corresponding values are retrieved with the current() method. The next()
method moves the internal array pointer forward to the next array element.

NOTE
Don’t worry if the syntax used by the ArrayIterator object isn’t completely clear to you.
Objects are dealt with in some depth in Chapter 5, and the preceding listing will make
more sense once you’ve worked your way through that chapter.

 Averaging the Grades of a Class
Now that you’ve understood the basics of working with arrays, let’s try a small application
that demonstrates their practical utility. In this section, you’ll write a small script that
accepts an array of values, representing the numerical grades of individual students in
a class, and then calculates various summary statistics, including the average and the
number of students in the top and bottom 20 percent of the class.

Here’s the code (grades.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 4-1: Grade Averaging</title>
 </head>
 <body>
 <h2>Project 4-1: Grade Averaging</h2>
<?php
// define array of grades
// ranging between 1 and 100
$grades = array(
 25, 64, 23, 87, 56, 38, 78, 57, 98, 95,
 81, 67, 75, 76, 74, 82, 36, 39,
 54, 43, 49, 65, 69, 69, 78, 17, 91
);

// get number of grades
$count = count($grades);

// iterate over grades
// calculate total and top/bottom 20%
$total = $top = $bottom = 0;
foreach ($grades as $g) {
 $total += $g;
 (continued)

 96 PHP: A Beginner’s Guide

 if ($g <= 20) {
 $bottom++;
 }

 if ($g >= 80) {
 $top++;
 }
}

// calculate average
$avg = round($total / $count);

// print statistics
echo "Class average: $avg
";
echo "Number of students in bottom 20%: $bottom
";
echo "Number of students in top 20%: $top
";
?>
 </body>
</html>

This script begins by defining an array, which holds the grades received by each
student in the class. A foreach loop then iterates over the array, generating a cumulative
total; this total is then divided by the number of students, retrieved via the count()
function, to calculate the class average.

Since the grades range between 1 and 100, it’s also not difficult to calculate the
number of students in the top and bottom 20 percent of the class. Within the foreach
loop, each value is checked to see if it is less than 20 or greater than 80, and the
corresponding counter is incremented accordingly. The summary data thus collected is
then printed to the Web page, as shown in Figure 4-1.

Figure 4-1 The summary statistics generated by the grade averaging program

 Chapter 4: Working with Arrays 97

Try This 4-2

Using Arrays with Forms
Arrays are particularly potent when used in combination with form elements that support
more than one value, such as multiple-selection list boxes or grouped checkboxes. To
capture a user’s input in an array, simply add square braces to the form element’s 'name'
to automatically convert it into a PHP array when the form is submitted.

The easiest way to illustrate this is with an example. Consider the following form,
which holds a multiple-selection list of popular music artists:

 <form method="post" action="array-form.php">
 Select your favourite artists:

 <select name="artists[]" multiple="true">
 <option value="Britney Spears">Britney Spears</option>
 <option value="Aerosmith">Aerosmith</option>
 <option value="Black-Eyed Peas">Black-Eyed Peas</option>
 <option value="Diana Ross">Diana Ross</option>
 <option value="Foo Fighters">Foo Fighters</option>
 </select>
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>

Notice the 'name' attribute of the <select> element, which is named artists[].
This tells PHP that, when the form is submitted, all the selected values from the list should be
converted into elements of an array. The name of the array will be $_POST['artists'],
and it will look something like this:

Array
(
 [0] => Britney Spears
 [1] => Black-Eyed Peas
 [2] => Diana Ross
)

 Selecting Pizza Toppings
A practical application will make it easier to understand how PHP interacts with array
variables and forms. This next application presents the user with a form containing various
pizza toppings and asks the user to select, via checkbox, his or her favorite toppings.
Here’s the form (pizza.html):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "DTD/xhtml1-transitional.dtd">

(continued)

 98 PHP: A Beginner’s Guide

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Project 4-2: Pizza Topping Selector</title>

 </head>

 <body>

 <h2>Project 4-2: Pizza Topping Selector</h2>

 <form method="post" action="pizza.php">

 Select your favourite pizza toppings:

 <input type="checkbox" name="toppings[]" value="tomato">Tomato</input>

 <input type="checkbox" name="toppings[]" value="onion">Onion</input>

 <input type="checkbox" name="toppings[]" value="jalapenos">Jalapeno

peppers</input>

 <input type="checkbox" name="toppings[]" value="olives">Olives</input>

 <input type="checkbox" name="toppings[]" value="mint">Mint</input>

 <input type="checkbox" name="toppings[]" value="pineapple">Pineapple</input>

 <input type="checkbox" name="toppings[]" value="bacon">Bacon</input>

 <input type="checkbox" name="toppings[]" value="chicken">Chicken</input>

 <input type="checkbox" name="toppings[]" value="ham">Ham</input>

 <input type="checkbox" name="toppings[]" value="anchovies">Anchovies</input>

 <input type="checkbox" name="toppings[]" value="x-cheese">Extra cheese</input>

 <p>

 <input type="submit" name="submit" value="Submit" />

 </form>

 </body>

</html>

Figure 4-2 illustrates what the form looks like.
And here’s the code for the form submission script (pizza.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 4-2: Pizza Topping Selector</title>
 </head>
 <body>
 <h2>Project 4-2: Pizza Topping Selector</h2>
 You selected the following toppings:

 <?php
 foreach ($_POST['toppings'] as $t) {
 echo "$t \r\n";
 }
 ?>

 </body>
</html>

 Chapter 4: Working with Arrays 99

When the Web form is submitted, PHP automatically places all the checked values
into the $_POST['toppings'] array. This array can then be processed like any other
array—in this case, with a foreach loop that prints the selected toppings in an ordered
list. Figure 4-3 illustrates this output.

Figure 4-2 A Web form to select pizza toppings

Figure 4-3 The result of submitting the form

 100 PHP: A Beginner’s Guide

Working with Array Functions
PHP has numerous built-in array manipulation functions, supporting operations ranging
from array search and comparison to sorting and conversion operations. Table 4-1 lists
some of these functions.

Converting Between Strings and Arrays
PHP lets you convert a string into an array, by splitting the string on a user-defined separator
and assigning the resulting segments to an array. The PHP function to accomplish this task is

Function What It Does
explode() Splits a string into array elements

implode() Joins array elements into a string

range() Generates a number range as an array

min() Finds the smallest value in an array

max() Finds the largest value in an array

shuffle() Randomly rearranges the sequence of elements in an array

array_slice() Extracts a segment of an array

array_shift() Removes an element from the beginning of an array

array_unshift() Adds an element to the beginning of an array

array_pop() Removes an element from the end of an array

array_push() Adds an element to the end of an array

array_unique() Removes duplicate elements from an array

array_reverse() Reverses the sequence of elements in an array

array_merge() Combines two or more arrays

array_intersect() Calculates the common elements between two or more arrays

array_diff() Calculates the difference between two arrays

in_array() Checks if a particular value exists in an array

array_key_exists() Checks if a particular key exists in an array

sort() Sorts an array

asort() Sorts an associative array by value

ksort() Sorts an associative array by key

rsort() Reverse-sorts an array

krsort() Reverse-sorts an associative array by value

arsort() Reverse-sorts an associative array by key

Table 4-1 Common PHP Array Functions

 Chapter 4: Working with Arrays 101

the aptly named explode() function, which accepts two arguments—the separator and the
source string—and returns an array. Here’s an example:

<?php
// define string
$str = 'tinker,tailor,soldier,spy';

// convert string to array
// output: ('tinker', 'tailor', 'soldier, 'spy')
$arr = explode(',', $str);
print_r($arr);
?>

It’s also possible to reverse the process, joining the elements of an array into a single
string using user-supplied “glue.” The PHP function for this is named implode(), and
it’s illustrated in the next listing:

<?php
// define array
$arr = array('one', 'two', 'three', 'four');

// convert array to string
// output: 'one and two and three and four'
$str = implode(' and ', $arr);
print_r($str);
?>

Working with Number Ranges
If you’re trying to fill an array with a range of numbers, the range() function offers a
convenient alternative to manually entering each value. This function accepts two end
points and returns an array containing all the numbers between those end points. Here’s an
example, which generates an array containing all the values between 1 and 1000:

<?php
// define array
$arr = range(1,1000);
print_r($arr);
?>

Alternatively, if you already have an array of numbers and are trying to calculate the
minimum or maximum of the series, PHP’s min() and max() functions will come in

 102 PHP: A Beginner’s Guide

handy—they accept an array of numbers and return the smallest and largest values in the
array respectively. The next listing has an example:

<?php
// define array
$arr = array(7, 36, 5, 48, 28, 90, 91, 3, 67, 42);

// get min and max
// output: 'Minimum is 3 and maximum is 91'
echo 'Minimum is ' . min($arr) . ' and maximum is ' . max($arr);
?>

Extracting Array Segments
PHP allows you to slice an array into smaller parts with the array_slice() function,
which accepts three arguments: the original array, the index position (offset) at which to
start slicing, and the number of elements to return from the starting offset. The following
listing illustrates this in action:

<?php
// define array
$rainbow = array('violet', 'indigo', 'blue', 'green', 'yellow',
 'orange', 'red');

// extract 3 central values
// output: ('blue', 'green', 'yellow')
$arr = array_slice($rainbow, 2, 3);
print_r($arr);
?>

To extract a segment from the end of an array (rather than the beginning), pass
array_slice() a negative offset, as in this revision of the preceding example:

<?php
// define array
$rainbow = array('violet', 'indigo', 'blue', 'green', 'yellow',
 'orange', 'red');

// extract 3 central values
// starting from the end
// output: ('blue', 'green', 'yellow')
$arr = array_slice($rainbow, -5, 3);
print_r($arr);
?>

 Chapter 4: Working with Arrays 103

Adding and Removing Array Elements
PHP comes with four functions that allow you to add or remove elements from the
beginning or end of an array: the array_unshift() function adds an element to the
beginning of an array; the array_shift() function removes the first element of an
array; the array_push() function adds an element to the end of an array; and the
array_pop() function removes the last element of an array. The following listing
illustrates them all in action:

<?php
// define array
$movies = array('The Lion King', 'Cars', 'A Bug\'s Life');

// remove element from beginning of array
array_shift($movies);

// remove element from end of array
array_pop($movies);

// add element to end of array
array_push($movies, 'Ratatouille');

// add element to beginning of array
array_unshift($movies, 'The Incredibles');

// print array
// output: ('The Incredibles', 'Cars', 'Ratatouille')
print_r($movies);
?>

NOTE
The array_unshift(), array_shift(), array_push(), and array_pop()
functions should be used only with numerically indexed arrays and not with associative
arrays. Each of these functions automatically re-indexes the array to account for the
value(s) added or removed during its operation.

Removing Duplicate Array Elements
PHP lets you strip an array of duplicate values with its array_unique() function, which
accepts an array and returns a new array containing only unique values. The next listing
illustrates it in action:

<?php
// define array
$duplicates = array('a', 'b', 'a', 'c', 'e', 'd', 'e');

 104 PHP: A Beginner’s Guide

// remove duplicates
// output: ('a', 'b', 'c', 'e', 'd')
$uniques = array_unique($duplicates);
print_r($uniques);
?>

Randomizing and Reversing Arrays
PHP’s shuffle() function re-arranges the elements of an array in random order, while
its array_reverse() function reverses the order of an array’s elements. The following
listing illustrates:

<?php
// define array
$rainbow = array('violet', 'indigo', 'blue', 'green', 'yellow',
 'orange', 'red');

// randomize array
shuffle($rainbow);
print_r($rainbow);

// reverse array
// output: ('red', 'orange', 'yellow', 'green', 'blue',
// 'indigo', 'violet')
$arr = array_reverse($rainbow);
print_r($arr);
?>

Searching Arrays
The in_array() function looks through an array for a specified value and returns
true if found. Here’s an example, which searches the array $cities for the string
'Barcelona':

<?php
// define array
$cities = array('London', 'Paris', 'Barcelona', 'Lisbon', 'Zurich');

// search array for value
echo in_array('Barcelona', $cities);
?>

If, instead of values, you’d like to search the keys of an associative array, PHP has you
covered there too: the array_key_exists() function looks for a match to the specified
search term among an array’s keys. The following listing illustrates:

 Chapter 4: Working with Arrays 105

<?php
// define array
$cities = array(
 "United Kingdom" => "London",
 "United States" => "Washington",
 "France" => "Paris",
 "India" => "Delhi"
);

// search array for key
echo array_key_exists('India', $cities);
?>

Sorting Arrays
PHP comes with a number of built-in functions designed for sorting array elements in
different ways. The first of these is the sort() function, which lets you sort numerically
indexed arrays alphabetically or numerically, from lowest to highest value. Here’s an
example:

<?php
// define array
$data = array(15,81,14,74,2);

// sort and print array
// output: (2,14,15,74,81)
sort($data);
print_r($data);
?>

If you’re sorting an associative array, though, it’s better to use the asort() function,
which maintains the correlation between keys and values while sorting. The following
listing illustrates this:

<?php
// define array
$profile = array(
 "fname" => "Susan",
 "lname" => "Doe",
 "sex" => "female",
 "sector" => "Asset Management"
);

// sort by value
// output: ('sector' => 'Asset Management',
// 'lname' => 'Doe',

 106 PHP: A Beginner’s Guide

// 'fname' => 'Susan',
// 'sex' => 'female')
asort($profile);
print_r($profile);
?>

Also related to associative arrays is the ksort() function, which uses keys instead of
values when performing the sorting. Here’s an example:

<?php
// define array
$profile = array(
 "fname" => "Susan",
 "lname" => "Doe",
 "sex" => "female",
 "sector" => "Asset Management"
);

// sort by key
// output: ('fname' => 'Susan',
// 'lname' => 'Doe',
// 'sector' => 'Asset Management',
// 'sex' => 'female')
ksort($profile);
print_r($profile);
?>

TIP
To reverse the sorted sequence generated by sort(), asort(), and ksort(), use the
rsort(), arsort(), and krsort() functions respectively.

Merging Arrays
PHP lets you merge one array into another with its array_merge() function, which
accepts one or more array variables. The following listing and output illustrates its use:

<?php
// define arrays
$dark = array('black', 'brown', 'blue');
$light = array('white', 'silver', 'yellow');

// merge arrays
// output: ('black', 'brown', 'blue',
// 'white', 'silver', 'yellow')
$colors = array_merge($dark, $light);
print_r($colors);
?>

 Chapter 4: Working with Arrays 107

Try This 4-3

Comparing Arrays
PHP provides two functions to compare arrays: the array_intersect() function
returns the values common to two arrays, while the array_diff() function returns
the values from the first array that don’t exist in the second. Here’s an example, which
illustrates both these functions in action:

<?php
// define arrays
$orange = array('red', 'yellow');
$green = array('yellow', 'blue');

// find common elements
// output: ('yellow')
$common = array_intersect($orange, $green);
print_r($common);

// find elements in first array but not in second
// output: ('red')
$unique = array_diff($orange, $green);
print_r($unique);
?>

TIP
You can also compare arrays with PHP’s equality (==) operator, in much the same way
as you would compare other variables.

 Checking Prime Numbers
Now that you’ve seen the many ways PHP lets you work with arrays, let’s try a small
practical example that illustrates some of these built-in functions in action. This
application asks the user to enter a series of numbers into a form, and returns a message
indicating which of them are prime numbers.

Here’s the code (primes.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 4-3: Prime Number Tester</title>
 </head>
 <body>
 <h2>Project 4-3: Prime Number Tester</h2>

(continued)

 108 PHP: A Beginner’s Guide

<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="primes.php">
 Enter a list of numbers, separated by commas:

 <input type="text" name="num" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // retrieve number from POST submission
 // convert to array by splitting on comma
 $numStr = $_POST['num'];
 $numArr = explode(',', $_POST['num']);
 $primes = array();
 $primeFlag = 0;

 // iterate over array
 // get absolute values of each number
 foreach ($numArr as $n) {
 $n = trim(abs($n));

 // test each number for prime-ness:
 // check the number by dividing it
 // by all the numbers between 2 and itself
 // if not perfectly divisible by any,
 // number is prime
 for ($i=2; $i<$n; $i++) {
 $primeFlag = 0;
 if (($n%$i) == 0) {
 break;
 }
 $primeFlag = 1;
 }

 // if prime
 // add to output array
 if ($primeFlag == 1) {
 array_push($primes, $n);
 }
 }

 Chapter 4: Working with Arrays 109

 // check if any primes were found
 // if yes, sort and remove duplicates from array
 // print message
 if (count($primes) > 0) {
 $primes = array_unique($primes);
 sort($primes);
 echo 'The following numbers are prime: ' . implode($primes, ' ');
 } else {
 echo 'No prime numbers found';
 }
 }
?>
 </body>
</html>

Using a technique that should now be familiar to you, this application also combines
the Web form and its result page into a single script, separated by an if-else conditional
statement. The Web form allows the user to enter a series of numbers, separated by
commas. Figure 4-4 illustrates what the form looks like.

Once a user enters some numbers into the Web form and submits it, the second half
of the script is triggered. It should be clear that this part of the script uses many of the
array functions discussed in the preceding section. First, the explode() function takes
care of extracting the individual numbers from the user’s submission into an array, using

Figure 4-4 A Web form to enter numbers

(continued)

 110 PHP: A Beginner’s Guide

the comma as separator. Next, a foreach loop iterates over the array, first calculating
the absolute value of each number and then dividing that number by all other numbers
between itself and 2 to determine whether or not it is prime.

Assuming the number is not perfectly divisible by at least one other number, the
number is considered prime, and the array_push() function is used to add it to a new
array named $primes. Once all the numbers submitted by the user are processed in this
manner, the count() function is used to check if any primes were found; if yes, the
$primes array is checked for duplicate values, sorted from lowest to highest value, and
sent to the page as output.

Figure 4-5 shows the output after submitting the sequence.

Working with Dates and Times
In addition to allowing you to store multiple values in an array, PHP also comes with a
full-featured set of functions for working with dates and times. Although the language
does not have a dedicated data type for date and time values, it nevertheless allows
programmers a great deal of flexibility when creating, formatting, and manipulating
such values.

Figure 4-5 The result of the form submission, displaying the prime numbers found

 Chapter 4: Working with Arrays 111

Q: What’s a UNIX timestamp?

A: Very simply, a UNIX timestamp for a particular time point represents the number of
seconds that have elapsed between midnight on January 1, 1970, and that time point. So,
for example, the time point January 5 2008 10:15:00 AM in UNIX timestamp format
would be 1199508300.

PHP can automatically turn a date value into a UNIX timestamp with its mktime()
function, which accepts day, month, year, hour, minute, and second arguments and
returns a UNIX timestamp corresponding to that instant in time.

Generating Dates and Times
Like many other programming languages, PHP represents date/time values in UNIX
timestamp format. Generating a timestamp is usually accomplished with the mktime()
function, which accepts a series of date and time parameters and converts them into
a timestamp. To illustrate, consider the following example, which returns a UNIX
timestamp corresponding to January 5 2008 10:15:00 AM:

<?php
// return timestamp for Jan 5 2008 10:15
// output: 1199508300
echo mktime(10,15,00,1,5,2008);
?>

Calling mktime() without any arguments returns the UNIX timestamp corresponding
to the present time:

<?php
// return timestamp for now
echo mktime();
?>

Another way to get the current date and time is with PHP’s getdate() function,
which returns an associative array containing information about the current date and time.
Here’s an example of what this array looks like:

Array
(
 [seconds] => 33
 [minutes] => 27

Ask the Expert

 112 PHP: A Beginner’s Guide

 [hours] => 19
 [mday] => 12
 [wday] => 1
 [mon] => 11
 [year] => 2007
 [yday] => 315
 [weekday] => Monday
 [month] => November
 [0] => 1194875853
)

And here’s an example of this function in action:

<?php
// get current date and time as array
$now = getdate();

// output: 'It is now 19:26:23 on 12-11-2007'
echo 'It is now ' . $now['hours'] . ':' . $now['minutes'] . ':'
. $now['seconds'] . ' on ' . $now['mday'] . '-' . $now['mon'] . '-'
. $now ['year'];
?>

TIP
Notice that the array returned by getdate() includes a UNIX timestamp representation
of the date, at index position 0.

Formatting Dates and Times
In most cases, generating a timestamp is only half the battle: you also need to find a
way to display it in human-readable form. That’s where PHP’s date() function comes
in: it allows you to massage that long, ugly timestamp into something that’s much more
informative. This function accepts two arguments: a formatting string and a timestamp.
The formatting string is a sequence of characters, each of which has a special meaning;
Table 4-2 has a list of the most commonly used ones.

Using the special characters from Table 4-2, it’s possible to format a UNIX timestamp
with date() to customize the display of a date/time value. Here are some examples:

<?php
// output: "It is now 12:28 pm 20 Mar 2008"
echo 'It is now ' . date("h:i a d M Y", mktime(12,28,13,3,20,2008));

 Chapter 4: Working with Arrays 113

// output: "It is now 8:15 14 Feb 2008"
echo 'It is now ' . date("H:i d F Y", mktime(8,15,0,2,14,2008));

// output: "Today's date is Oct-05-2007"
echo 'Today\'s date is ' . date("M-d-Y", mktime(0,0,0,10,5,2007));
?>

Useful Date and Time Functions
PHP also supports many other date/time manipulation functions, which allow you to check
if a date is valid or convert between time zones. Table 4-3 lists some of these functions.

Character What It Means
d Day of the month (numeric)

D Day of the week (string)

l Day of the week (string)

F Month (string)

M Month (string)

m Month (numeric)

Y Year

h Hour (in 12-hour format)

H Hour (in 24-hour format)

a AM or PM

i Minute

s Second

Table 4-2 Formatting Codes for the date() Function

Table 4-3 Common PHP Date Functions

Function What It Does
checkdate() Checks a date for validity

strtotime() Creates timestamps from English-language descriptions

gmdate() Expresses a timestamp in GMT

 114 PHP: A Beginner’s Guide

Checking Date Validity
A useful built-in function is the checkdate() function, which accepts a month, day,
and year combination and returns a true/false value indicating whether the corresponding
date is valid. Consider the following example, which illustrates it by testing the date
30 February 2008:

<?php
// output: 'Date is invalid'
if (checkdate(2,30,2008)) {
 echo 'Date is valid';
} else {
 echo 'Date is invalid';
}
?>

Converting Strings to Timestamps
Another very useful function is PHP’s strtotime() function, which accepts a string
value containing an embedded date or time and converts this into a UNIX timestamp.
Here’s an example:

<?php
// define string containing date value
// convert it to UNIX timestamp
// re-format it using date()
// output: '07 Jul 08'
$str = 'July 7 2008';
echo date('d M y', strtotime($str));
?>

Interestingly, strtotime() also recognizes common time descriptions such as
"now", "3 hours ago", "tomorrow", or "next Friday". The following listing
illustrates this very useful feature:

<?php
// output: '12 Nov 07'
echo date('d M y', strtotime('now'));

// output: '13 Nov 07'
echo date('d M y', strtotime('tomorrow'));

// output: '16 Nov 07'
echo date('d M y', strtotime('next Friday'));

 Chapter 4: Working with Arrays 115

// output: '10 Nov 07'
echo date('d M y', strtotime('48 hours ago'));
?>

Mapping Day and Month Numbers to Names
The date() function discussed in the preceding section isn’t useful only for formatting
timestamps into readable date strings; it can also be used to find the weekday name
corresponding to a particular date. To do this, simply use the 'D' format character with
your timestamp . . . as in the following example, which displays the day that Oct 5 2008
falls on:

<?php
// output: 'Sun'
echo date('D', mktime(0,0,0,10,5,2008));
?>

You can also do this for month names, by using the date() function’s 'F' parameter:

<?php
// display list of month names
// output: 'January, February, ... December'
foreach (range(1,12) as $m) {
 $months[] = date('F', mktime(0,0,0,$m,1,0));
}
echo implode($months, ', ');
?>

Calculating GMT Time
PHP’s gmdate() function works exactly like its date() function, except that it returns
GMT representations of formatted date strings, instead of local time representations. To
see this in action, consider the following examples, which return GMT equivalents for two
local times:

<?php
// returns GMT time relative to 'now'
echo gmdate('H:i:s d-M-Y', mktime());

// returns GMT time relative to '00:01 1-Dec-2007'
// output: '18:31:00 30-Nov-2007'
echo gmdate('H:i:s d-M-Y', mktime(0,1,0,12,1,2007));
?>

 116 PHP: A Beginner’s Guide

Try This 4-4 Building an Age Calculator
Now that you know a little bit about how PHP deals with dates and times, let’s put all this
learning to good use with a practical project: a Web application that lets you enter your
date of birth and calculates how old you are today, in years and months.

Here’s the code (agecalc.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 4-4: Age Calculator</title>
 </head>
 <body>
 <h2>Project 4-4: Age Calculator</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="agecalc.php">
 Enter your date of birth, in mm/dd/yyyy format:

 <input type="text" name="dob" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // split date value into components
 $dateArr = explode('/', $_POST['dob']);

 // calculate timestamp corresponding to date value
 $dateTs = strtotime($_POST['dob']);

 // calculate timestamp corresponding to 'today'
 $now = strtotime('today');

 // check that the value entered is in the correct format
 if (sizeof($dateArr) != 3) {
 die('ERROR: Please enter a valid date of birth');
 }

 // check that the value entered is a valid date
 if (!checkdate($dateArr[0], $dateArr[1], $dateArr[2])) {
 die('ERROR: Please enter a valid date of birth');
 }

 Chapter 4: Working with Arrays 117

 // check that the date entered is earlier than 'today'
 if ($dateTs >= $now) {
 die('ERROR: Please enter a date of birth earlier than today');
 }

 // calculate difference between date of birth and today in days
 // convert to years
 // convert remaining days to months
 // print output
 $ageDays = floor(($now - $dateTs) / 86400);
 $ageYears = floor($ageDays / 365);
 $ageMonths = floor(($ageDays - ($ageYears * 365)) / 30);
 echo "You are approximately $ageYears years and $ageMonths months old.";
 }
?>
 </body>
</html>

Once a user submits his or her date of birth into the Web form (Figure 4-6) in
MM/DD/YYYY format, the second half of the script is triggered. The first bit of this section
of the program is concerned mostly with error checks. First, the date entered into the form
is split into its constituent values of month, day, and year, and the checkdate() function
is used to verify whether or not it is valid. Following this, the strtotime() function is
used to convert the entered date into a UNIX timestamp; this is then compared with “today”
to verify that the date entered is in the past.

Figure 4-6 A Web form for the user to enter his or her date of birth

(continued)

 118 PHP: A Beginner’s Guide

Assuming the date entered into the form passes these error checks, the script proceeds
to the calculation stage. First, “today’s” timestamp is subtracted from the birth timestamp;
as both timestamps are expressed in seconds, the result of this calculation returns the
user’s age, in seconds. This value is then divided by 86400—the number of seconds
in a day—to return the user’s age in days. Dividing the number of days by 365 returns
the user’s age in years. Finally, the fractional part of the age (months) is calculated by
dividing the remaining days by 30.

Figure 4-7 shows the output after a form submission.

Summary
This chapter introduced you to a new type of PHP variable, the array, which allows you to
group multiple related values together and operate on them as a single entity. In addition
to showing you how to create, edit, and process arrays, it also demonstrated some of
PHP’s array manipulation functions, showed you how you can use arrays in the context
of Web forms, and put arrays to practical use through three simple applications. Finally, it
explained how to work with temporal data in PHP, illustrating the most commonly used
date and time functions and using them to build a simple age calculator.

Figure 4-7 The result of the form submission, showing the calculated age

 Chapter 4: Working with Arrays 119

Arrays are an important addition to your PHP toolkit, and as your scripts become more
sophisticated, you’ll begin to appreciate how powerful and flexible they really are. To find
out more about them, consider visiting the following links:

● Arrays, at www.php.net/manual/en/language.types.array.php

● Array operators, at www.php.net/manual/en/language.operators.array.php

● Array manipulation functions, at www.php.net/manual/en/ref.array.php

● The special $_POST and $_GET arrays, at
www.php.net/manual/en/reserved.variables.php#reserved.variables.get

● Date and time functions, at www.php.net/manual/en/ref.datetime.php

 Chapter 4 Self Test
 1. What are the two types of PHP arrays, and how do they differ?

 2. Name the functions you would use to

 A Remove duplicate elements from an array

 B Add an element to the beginning of an array

 C Sort an array in reverse

 D Count the number of elements in an array

 E Search for a value in an array

 F Display the contents of an array

 G Shuffle the contents of an array

 H Combine two arrays into one

 I Find the common elements between two arrays

 J Convert a string to an array

 K Extract a segment of an array

 3. What will be the output of the following line of PHP code:

<?php
sort(array_slice(array_reverse(array_unique(array('b','i','g','f',
'o','o','t'))), 2, 3));
?>

✓

 120 PHP: A Beginner’s Guide

 4. Using only an array and a foreach loop, write a program that prints the days of
the week.

 5. Write a program that reads an array of numbers and returns a list of all those numbers
less than 15.

 6. Write a program that reads an array and returns a message indicating whether the array
contains only unique values.

121

Chapter 5
Using Functions
and Classes

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 122 PHP: A Beginner’s Guide

Key Skills & Concepts
● Learn the benefits of encapsulating code into functions and classes

● Define and use your own functions, arguments, and return values

● Understand local and global variables

● Learn about recursion and variable-length argument lists

● Define and use your own classes, methods, and properties

● Understand OOP concepts of visibility, extensibility, and reflection

As your PHP programs get more complex, you might find yourself repeatedly writing
 code to perform the same task—for example, testing a number for prime-ness or

checking a form field to see if it’s empty or not. In these situations, it usually makes
sense to turn this code into a reusable component, which can be managed independently
and “called upon” as needed from different PHP programs. Not only does this reduce the
amount of duplicate code you have to write, but it also makes your scripts leaner, more
efficient, and easier to maintain.

PHP offers two constructs to help you reduce code duplication in your programs:
user-defined functions are reusable code segments that are created by the programmer to
perform specific tasks, while classes provide a more formal, object-oriented approach to
reusability and encapsulation. This chapter will introduce you to both these constructs,
using practical examples to illustrate their real-world utility.

Creating User-Defined Functions
In previous chapters, you’ve been introduced to many of PHP built-in functions for string,
number, and array manipulation. However, PHP doesn’t only restrict you to its built-in
functions; it also lets you define your own. These user-defined functions are a neat way for
you to create independent, reusable code “packages” that perform specific tasks and can
be maintained independently of the main program.

 Chapter 5: Using Functions and Classes 123

Packaging your code into functions has four important advantages:

● It reduces duplication within a program, by allowing you to extract commonly used
routines into a single component. This has the added benefit of making programs
smaller, more efficient, and easier to read.

● A function is created once but used many times, often from more than one program.
If the function code changes, the changes are implemented in one spot (the
function definition) while the function invocations remain untouched. This fact can
significantly simplify code maintenance and upgrades, especially when contrasted
with the alternative: manually changing every occurrence of the earlier code wherever
it occurs (and possibly introducing new errors in the process).

● Debugging and testing a program becomes easier when the program is subdivided
into functions, as it becomes easier to trace the source of an error and correct it with
minimal impact on the rest of the program.

● Functions encourage abstract thinking, because packaging program code into a
function is nothing more or less than understanding how a specific task may be
encapsulated into a generic component. In this sense, functions encourage the creation
of more robust and extensible software designs.

Creating and Invoking Functions
There are three components to every function:

● Arguments, which serve as inputs to the function

● Return values, which are the outputs returned by the function

● The function body, which contains the processing code to turn inputs into outputs

To begin with, let’s start with a simple example, one that doesn’t use either arguments
or return values. Consider the following PHP script, which contains a user-defined
function to print the current day of the week:

<?php
// function definition
// print today's weekday name
function whatIsToday() {
 echo "Today is " . date('l', mktime());
}

// function invocation
whatIsToday();
?>

 124 PHP: A Beginner’s Guide

Function definitions begin with the function keyword, followed by the function
name and a list of arguments (optional) in parentheses. Curly braces then enclose the
main body of the function, which can contain any legal PHP code, including variable
definitions, conditional tests, loops, and output statements. Function names must begin
with a letter or underscore character, optionally followed by more letters, numbers, or
underscore characters; punctuation characters and spaces are not allowed within function
names. In the preceding listing, the function is named whatIsToday() and its body
contains a single statement, which uses echo and date() to obtain and print the current
weekday name.

Of course, defining a function is only half the battle: the other half is using it. In PHP,
invoking a function is as simple as calling it by name (and passing it optional arguments,
if needed). The main body of the script in the preceding listing does just this: it invokes
the function by name and then stands back to see the results.

Q: Can I invoke a function before it’s been defined?

A: Yes. PHP 4.0 (and better) allow developers to invoke a function even if the corresponding
function definition appears later on in the program. This feature is particularly useful for
developers who prefer to place their function definitions at the bottom of a PHP script,
rather than the top, for easier readability.

Using Arguments and Return Values
A function that always returns the same output is a lot like a radio station that plays the
same song all day—not very useful or interesting at all! What you’d really like is the
ability to change the music the station plays in response to feedback that you, the listener,
provide—in effect, to create an audience request show. In PHP terms, this amounts to
creating functions that can accept input values at run time and use these input values to
affect the output returned by the function.

That’s where arguments come in. Arguments are “placeholder” variables within a
function definition; they’re replaced at run time by values provided to the function from
the main program. The processing code within the function then manipulates these values
to return the desired result. Since the input to the function will differ each time it is
invoked, the output will necessarily differ too.

Ask the Expert

 Chapter 5: Using Functions and Classes 125

To illustrate, consider the following listing, which defines a function accepting two
arguments and uses these arguments to perform a geometric calculation:

<?php
// function definition
// calculate perimeter of rectangle
// p = 2 * (l+w)
function getPerimeter($length, $width) {
 $perimeter = 2 * ($length + $width);
 echo "The perimeter of a rectangle of length $length
 units and width $width units is: $perimeter units";
}

// function invocation
// with arguments
getPerimeter(4,2);
?>

The function in this listing performed a calculation and then printed the result directly
to the output page. But what if you want the function to perform its work and, instead
of printing the result, do something else with it? Well, in PHP, you can have a function
explicitly return a value, like the result of a calculation, to the statement that called it. This
is accomplished by using a return statement inside the function, as in the next example:

<?php
// function definition
// calculate perimeter of rectangle
// p = 2 * (l+w)
function getPerimeter($length, $width) {
 $perimeter = 2 * ($length + $width);
 return $perimeter;
}

// function invocation
// with arguments
echo 'The perimeter of a rectangle of length 4 units
and width 2 units is: ' . getPerimeter(4,2) . ' units';
?>

You can return multiple values from a function, by placing them all in an array and
returning the array. The next example illustrates, by accepting a sentence and returning the
individual words, reversed, to the caller as an array:

<?php
// function definition
// break a string into words

 126 PHP: A Beginner’s Guide

// reverse and return as an array
function reverseMe($sentence) {
 $words = explode(' ', $sentence);
 foreach ($words as $k => $v) {
 $words[$k] = strrev($v);
 }
 return $words;
}

// function invocation
// output: 'evaH a doog yad'
echo implode(' ', reverseMe('Have a good day'));

// function invocation
// output: 'lliW uoy yrram em'
echo implode(' ', reverseMe('Will you marry me'));
?>

NOTE
When PHP encounters a return statement inside a function, it halts processing of the
function and “returns” control to the main body of the program.

Setting Default Argument Values
As you saw earlier, the arguments that a function expects to receive from the main
program are specified in the function’s argument list. For convenience, you can assign
default values to any or all of these arguments; these default values are used in the event
the function invocation is missing some arguments. Here’s an example, which generates
an e-mail address from supplied username and domain arguments; if the domain argument
is missing, a default domain is automatically assigned:

<?php
// function definition
// generate e-mail address from supplied values
function buildAddress($username, $domain = 'mydomain.info') {
 return $username . '@' . $domain;
}

// function invocation
// without optional argument
// output: 'My e-mail address is john@mydomain.info'
echo 'My e-mail address is ' . buildAddress('john');

// function invocation
// with optional argument

 Chapter 5: Using Functions and Classes 127

// output: 'My e-mail address is jane@cooldomain.net'
echo 'My e-mail address is ' . buildAddress('jane', 'cooldomain.net');
?>

Notice that in the first instance, the function has been called with only a single
argument, even though the function definition requires two. However, since a default
value is present for the second argument, the missing argument is automatically replaced
by said default value, and no errors are generated.

TIP
If only some of your function’s arguments have default values assigned to them, place
these arguments at the end of the function’s argument list. This lets PHP correctly
differentiate between missing arguments that don’t have default values, and missing
arguments that do.

Using Dynamic Argument Lists
A PHP function definition normally has a fixed argument list, where the number of
arguments is known in advance. However, PHP also lets you define functions with
so-called variable-length argument lists, where the number of arguments can change
with each invocation of the function. A good example of this is a function that accepts an
arbitrary number of arguments, adds them up, and returns the average . . . as illustrated in
the following listing:

<?php
// function definition
// calculate average of supplied values
function calcAverage() {
 $args = func_get_args();
 $count = func_num_args();
 $sum = array_sum($args);
 $avg = $sum / $count;
 return $avg;
}

// function invocation
// with 3 arguments
// output: 6
echo calcAverage(3,6,9);

// function invocation
// with 8 arguments
// output: 150
echo calcAverage(100,200,100,300,50,150,250,50);
?>

 128 PHP: A Beginner’s Guide

Notice that the calcAverage() function definition in the previous listing does not
include a predefined argument list; rather, the arguments passed to it are retrieved at run
time using the func_num_args() and func_get_args() functions. The func_num_
args() function returns the number of arguments passed to a function, while the func_
get_args() function returns the actual argument values, as an array. As illustrated in
the preceding listing, both functions come in very handy when dealing with functions that
accept an arbitrary number of arguments.

Understanding Variable Scope
A key concept related to user-defined functions in PHP is variable scope: the extent of a
variable’s visibility within the space of a PHP program. By default, variables used within
a function are local—their impact is restricted to the function space alone, and they cannot
be viewed or manipulated from outside the function in which they exist. To illustrate this,
consider the following example:

<?php
// function definition
// change the value of $score
function changeScore() {
 $score = 25;
}

// define a variable in the main program
// print its value
$score = 11;
echo 'Score is: ' . $score; // output: 11

// run the changeScore() function
changeScore();

// print $score again
echo 'Score is: ' . $score; // output: 11
?>

Here, the variable $score is defined in the main program, and the changeScore()
function contains code to change the value of this variable. However, after running this
function, the value of $score remains at its original setting, because the changes made to
$score within the changeScore() function remain “local” to the function and do not
reflect in the main program.

This “bounding” of variables to within a function space is deliberate: it maintains
a degree of separation between the main program and its functions, and it reduces

 Chapter 5: Using Functions and Classes 129

the chances of variables from the main program affecting variables within a function.
However, there are certainly occasions when it may be necessary to “import” a variable
from the main program into a function, or vice versa. For these situations, PHP offers
the global keyword: when applied to a variable inside a function, this keyword
turns the variable into a global variable, making it visible both inside and outside
the function.

The next example illustrates the difference between global and local scope more
clearly:

<?php
// function definition
// change the value of $score
function changeScore() {
 global $score;
 $score = 25;
}

// define a variable in the main program
// print its value
$score = 11;
echo 'Score is: ' . $score; // output: 11

// run the changeScore() function
changeScore();

// print $score again
echo 'Score is: ' . $score; // output: 25
?>

In this revision of the previous listing, the global keyword used with the $score
variable within the changeScore() function changes the scope of the variable,
increasing its scope to encompass the entire program. As a result, changes made to the
variable within the function will reflect in the main program (and vice versa). The output
of the script illustrates this fact clearly.

Using Recursive Functions
Another, slightly more complex idea involving functions is recursion. A recursive function
is a function that calls itself repeatedly until a condition is satisfied. Such a function
is typically used to solve complex, iterative calculations, or to process deeply nested
structures.

 130 PHP: A Beginner’s Guide

To illustrate how a recursive function works, consider the next example, which writes
a recursive function to drill down into a nested array and print all of its contents:

<?php
// recursive function definition
// function to print all the values
// in a nested array
function printValues($arr) {
 global $count;
 global $out;

 // check that input is an array
 if (!is_array($arr)) {
 die('ERROR: Input is not an array');
 }

 // iterate through array
 // increment counter by 1 for each value found
 // if value is itself an array:
 // recursively call function to count
 // number of elements in the child array
 // else:
 // add the value found to the output array
 foreach ($arr as $a) {
 if (is_array($a)) {
 printValues($a);
 } else {
 $out[] = $a;
 $count++;
 }
 }

 // return total count and values found to caller
 // as array
 return array('total' => $count, 'values' => $out);
}

// define nested array
$data = array(
 'o' => array(
 'orange',
 'owl',
 'one'),
 't' => array(

 Chapter 5: Using Functions and Classes 131

 'tea',
 'ten',
 'tag',
 'twentythree' => array(
 array('twenty', 'three'),
 array('vingt', 'trois', array(
 'red' => 'baron',
 'blue' => 'blood'
))
)
)
);

// count and print values in nested array
$ret = printValues($data);
echo $ret['total'] . ' value(s) found: ';
echo implode(', ', $ret['values']);
?>

The output of this example would be

12 value(s) found: orange, owl, one, tea, ten,
tag, twenty, three, vingt, trois, baron, blood

The core of this example is the printValues() function, which accepts an array
as argument. It then loops through this array using a foreach loop, adding each value
it finds to an output array named $out. For each such value found, it also increments
a counter named $count by 1. In the event that any of the values encountered in this
manner is itself an array, printValues() calls itself recursively to process that child
array (and any other child arrays found at deeper nesting levels). This process continues
until no further values are left to be processed.

Because both $out and $count are global variables, they maintain their values
throughout this process. Once the function has completed its work, these two variables are
packaged into a single associative array, which is returned to the caller and printed to the
output page.

TIP
While recursive functions are often the quickest way to solve a complex calculation,
they’re not the only way: in most cases, you can accomplish the same thing, albeit less
elegantly, by using one or more loops.

 132 PHP: A Beginner’s Guide

Try This 5-1 Calculating GCF and LCM
Now that you’ve imbibed a fair amount of knowledge about PHP’s user-defined functions,
let’s put that knowledge to the test with a small practical application. This next example
invites the user to enter two numbers into a Web form, and calculates the greatest common
factor (GCF) and least common multiple (LCM) of the entered numbers.

NOTE
In case you skipped Math class, the GCF of two numbers is the largest factor common to
both, while the LCM of two numbers is the smallest multiple common to both. Thus, for
example, the GCF of 6 and 10 is 2, while the LCM is 30. Read more about GCF and
LCM, including a detailed description of the Euclidean algorithm used in this example,
at http://en.wikipedia.org/wiki/Greatest_common_factor and http://en.wikipedia.org/
wiki/Least_common_multiple.

Here’s the code (gcf_lcm.php):

<?php
// function definition
// get GCF of two numbers
function getGCF($a, $b) {
 if ($b == 0) {
 return $a;
 }
 else {
 return getGCF($b, $a % $b);
 }
}

// function definition
// get LCM of two numbers using GCF
function getLCM($a, $b) {
 return ($a * $b) / getGCF($a, $b);
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 5-1: GCF and LCM</title>
 </head>
 <body>
 <h2>Project 5-1: GCF and LCM</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="gcf_lcm.php">
 Enter two integers:

 Chapter 5: Using Functions and Classes 133

 <input type="text" name="num_1" size="3" />
 <p>
 <input type="text" name="num_2" size="3" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 $num1 = (int)$_POST['num_1'];
 $num2 = (int)$_POST['num_2'];

 // calculate and print GCF and LCM
 echo "You entered: $num1, $num2";
 echo "
";
 echo "The GCF of ($num1, $num2) is: " . getGCF($num1, $num2);
 echo "
";
 echo "The LCM of ($num1, $num2) is: " . getLCM($num1, $num2);
 }
?>
 </body>
</html>

This script generates a form for the user to enter two numbers (Figure 5-1).
Once the form is submitted, the numbers entered by the user are passed as arguments

to the getGCF() and getLCM() functions, which, respectively, calculate and return the
GCF and LCM of the number pair to the caller. Figure 5-2 displays the results of one such
form submission.

Figure 5-1 A Web form to enter two numbers
(continued)

 134 PHP: A Beginner’s Guide

Since this chapter is all about functions, it’s worthwhile spending a few minutes to
dissect the getGCF() and getLCM() functions.

 1. The getGCF() function accepts two arguments and calculates the GCF value using the
Euclidean algorithm. Wikipedia’s description of this algorithm, at http://en.wikipedia
.org/wiki/Euclidean_algorithm, states: “Given two natural numbers a and b, not both
equal to zero: check if b is zero; if yes, a is the GCD. If not, repeat the process using,
respectively, b, and the remainder after dividing a by b.”

 From this description, it should be clear that the Euclidean algorithm can be expressed
as a recursive function that calls itself repeatedly, feeding the remainder of the previous
division into the next one until the remainder becomes zero. If you look at getGCF(),
you’ll see that’s precisely what it does.

 2. Once the GCF has been calculated, the LCM can be easily obtained using the
relationship LCM (A,B) = (A*B)/GCF(A,B). This relationship, and its derivation,
may also be obtained from Wikipedia, at http://en.wikipedia.org/wiki/Least_common_
multiple—and if you look inside the getLCM() function, you’ll see this same
calculation in action. You’ll notice also that getLCM() internally calls getGCF()—a
fine example of inter-function cooperation and an illustration of how functions can be
used to break down large complex tasks into smaller, more focused operations.

Figure 5-2 The results of the form submission, displaying the calculated GCF and LCM

 Chapter 5: Using Functions and Classes 135

Creating Classes
In addition to allowing you to create your own functions, PHP also allows you to group
related functions together using a class. Classes are the fundamental construct behind
object-oriented programming (OOP), a programming paradigm that involves modeling
program behavior into “objects” and then using these objects as the basis for your
applications.

Up until recently, PHP’s support for OOP was limited; however, PHP 5.0 introduced
a new object model that allowed programmers significantly greater flexibility and ease of
use when working with classes and objects. Although OOP is generally considered “too
complex” for beginners to attempt, the widespread prevalence and use of objects under
PHP 5.1 and PHP 5.2 means that no aspiring PHP programmer can afford to be totally
unaware of it.

With this in mind, the following sections will offer a simple introduction to how
classes and objects work under PHP. Interested readers are encouraged to learn more by
referring to the advanced material suggested at the end of the chapter.

Introducing Classes and Objects
Think of a class as a miniature ecosystem: it’s a self-contained, independent collection of
variables and functions, which work together to perform one or more specific (and usually
related) tasks. Variables within a class are called properties; functions are called methods.

Classes serve as templates for objects, which are specific instances of a class. Every
object has properties and methods corresponding to those of its parent class. Every object
instance is completely independent, with its own properties and methods, and can thus be
manipulated independently of other objects of the same class.

To put this in more concrete terms, consider an example: an Automobile class that
contain properties for color and make, and methods for acceleration, braking, and
turning. It’s possible to derive two independent objects from this Automobile class, one
representing a Ford and the other a Honda. Each of these objects would have methods
for acceleration, braking, and turning, as well as specific values for color and make. Each
object instance could also be manipulated independently: for example, you could change
the Honda’s color without affecting the Ford, or call the Ford’s acceleration method
without any impact on the Honda.

Figure 5-3 illustrates the relationship between a class and its object instances visually.

Defining and Using Classes
In PHP, classes are defined much like functions: a class definition begins with the class
keyword, which is followed by the class name and a pair of curly braces. The complete

 136 PHP: A Beginner’s Guide

class definition must be enclosed within these braces; in most cases, this definition
consists of property (variable) definitions followed by method (function) definitions.

To see what a class definition looks like, review the following listing: it contains a
definition for an Automobile class, with two properties named $color and $make and
methods named accelerate(), brake(), and turn():

<?php
// class definition
class Automobile {

 // properties
 public $color;
 public $make;

 // methods
 public function accelerate() {
 echo 'Accelerating...';
 }

 public function brake() {
 echo 'Slowing down...';
 }

 public function turn() {
 echo 'Turning...';
 }
}
?>

Figure 5-3 The relationship between classes and objects

Class

Ford

Honda

Object

Object

Automobile

brake()
accelerate()

turn()

brake()
accelerate()

turn()

brake()
accelerate()

turn()

 Chapter 5: Using Functions and Classes 137

Once a class has been defined, objects can be created from the class with the new
keyword. Class methods and properties can directly be accessed through this object
instance. Here’s an example, which creates an instance of the Automobile class and
assigns it to $car, and then sets the object’s properties and invokes object methods
(note the -> symbol used to connect objects to their properties or methods):

<?php
// instantiate object
$car = new Automobile;

// set object properties
$car->color = 'red';
$car->make = 'Ford Taurus';

// invoke object methods
$car->accelerate();
$car->turn();
?>

To access or change a class method or property from within the class itself, it’s
necessary to prefix the corresponding method or property name with $this, which refers
to “this” class. To see how this works, consider this revision of the preceding example,
which sets a class property named $speed and then modifies this property from within
the accelerate() and brake() functions:

<?php
// class definition
class Automobile {

 // properties
 public $color;
 public $make;
 public $speed = 55;

 // methods
 public function accelerate() {
 $this->speed += 10;
 echo 'Accelerating to ' . $this->speed . '...';
 }

 public function brake() {
 $this->speed -= 10;
 echo 'Slowing down to ' . $this->speed . '...';
 }

 138 PHP: A Beginner’s Guide

 public function turn() {
 $this->brake();
 echo 'Turning...';
 $this->accelerate();
 }
}
?>

And now, when you invoke these functions, you’ll see the effect of changes in
$speed:

<?php
// instantiate object
$car = new Automobile;

// invoke methods
// output: 'Accelerating to 65...'
// 'Slowing down to 55...'
// 'Turning...'
// 'Accelerating to 65...'
$car->accelerate();
$car->turn();
?>

Q: Can I look inside an object or class to see its structure?

A: Since PHP 5.0, PHP has included a full-fledged reflection API, which lets you peer into
any class or object and obtain detailed information on its properties, methods, interfaces,
and constants. To use it, instantiate an object of either ReflectionClass or ReflectionObject
and pass it the class or object to be X-rayed. Here’s an example:

<?php
// reflection for class
Reflection::export(new ReflectionClass('Cat'));

// reflection for object
Reflection::export(new ReflectionObject($myCat));
?>

Read more about reflection in PHP at www.php.net/manual/en/language.oop5
.reflection.php

Ask the Expert

 Chapter 5: Using Functions and Classes 139

Try This 5-2 Encrypting and Decrypting Text
Now that you know the basics of classes and objects, let’s run through a brief practical
example. This next listing defines a class named Jumbler, which allows users to encrypt
(and decrypt) text using a simple encryption algorithm and a user-supplied numeric key.
Take a look at the class definition (jumbler.php):

<?php
// class definition
class Jumbler {

 // properties
 public $key;

 // methods
 // set encryption key
 public function setKey($key) {
 $this->key = $key;
 }

 // get encryption key
 public function getKey() {
 return $this->key;
 }

 // encrypt
 public function encrypt($plain) {
 for ($x=0; $x<strlen($plain); $x++) {
 $cipher[] = ord($plain[$x]) + $this->getKey() + ($x * $this->getKey());
 }
 return implode('/', $cipher);
 }

 // decrypt
 public function decrypt($cipher) {
 $data = explode('/', $cipher);
 $plain = '';
 for ($x=0; $x<count($data); $x++) {
 $plain .= chr($data[$x] - $this->getKey() - ($x * $this->getKey()));
 }
 return $plain;
 }
}
?>

(continued)

 140 PHP: A Beginner’s Guide

This class has a single property and four methods:

● The $key property holds the numeric key entered by the user. This key is used to
perform the encryption.

● The setKey() method accepts an argument and sets the $key property to that value.

● The getKey() method returns the value of the $key property.

● The encrypt() function accepts a plain-text string and “jumbles” it using the key.

● The decrypt() function accepts an encrypted string and restores the original plain-
text string from it using the key.

A quick word about the internals of the encrypt() and decrypt() methods, before
proceeding to a usage example. When encrypt() is invoked with a plain-text string, it
steps through the string and calculates a numeric value for each character. The numeric
value is the sum of

● The character’s ASCII code, as returned by the ord() function

● The numeric key set by the user through the setKey() method

● The product of the numeric key and the character’s position in the string

Each number returned after this calculation is added to an array, and once the entire
string is processed, the elements of the array are joined into a single string, separated by
slashes, with implode().

Table 5-1 has a brief illustration of how the word 'Ant' is converted into the
encrypted string '410/800/1151' using this method.

The decryption routine reverses this process: it first splits the encrypted ciphertext
string into individual numbers using the slashes as delimiters, and adds them to an array.
It then obtains the character corresponding to each number, by subtracting

● The numeric key set by the user through the setKey() method; and

● The product of the numeric key and the character’s position in the string

Character $c Position $p ord($c) Key $key $key * $p Total
'A' 0 65 345 0 410

'n' 1 110 345 345 800

't' 2 116 345 690 1151

Table 5-1 An Example Encryption Run

 Chapter 5: Using Functions and Classes 141

from the number, and then using the chr() function to retrieve the ASCII character
corresponding to the remainder. The characters returned through this process are
concatenated into a single string and returned to the caller.

CAUTION
The encryption routine used by the Jumbler class is illustrative only, and highly
insecure—don’t even think about using it to secure real-world data.

Now that you’ve understood how the class works, let’s look at how it could be used. This
next listing generates a form for the user to enter plaintext or ciphertext, as well as a numeric
key, and then uses a Jumbler object to encrypt or decrypt it. Here’s the code (jumbler.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 5-2: Encrypting Text</title>
 </head>
 <body>
 <h2>Project 5-2: Encrypting Text</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="jumbler.php">
 Enter:
 <input type="radio" name="type" value="P" checked>Plaintext</input>
 <input type="radio" name="type" value="C">Ciphertext </input>

 <textarea name="text" rows="6" cols="40" wrap="soft"></textarea>
 <p>
 Enter numeric key:

 <input type="text" name="key" size="6" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 $type = $_POST['type'];
 $text = $_POST['text'];
 $key = (int)$_POST['key'];

 // perform encryption or decryption
 // print output
 $j = new Jumbler;

(continued)

 142 PHP: A Beginner’s Guide

 $j->setKey($key);
 if ($type == 'C') {
 echo $j->decrypt($text);
 } else {
 echo $j->encrypt($text);
 }
 }
?>
 </body>
</html>

The script is quite simple: it generates a Web form containing text fields for the user to
enter text and a numeric key, and radio buttons to indicate whether the text being entered
is plaintext or ciphertext. On submission, a new instance of the Jumbler class is created,
and the key entered by the user is registered with the instance via the setKey() method.
Depending on the type of text entered, the instance’s encrypt() or decrypt() method
is called, and the output is printed back to the page.

Figure 5-4 shows what the Web form looks like, and Figure 5-5 has an example of the
encrypted text generated after form submission.

Figure 5-4 A Web form to enter plaintext

 Chapter 5: Using Functions and Classes 143

Using Advanced OOP Concepts
PHP’s object model also supports many more advanced features, giving developers a great
deal of power and flexibility in building OOP-driven applications. This section illustrates
three such features: constructors and destructors, extensibility, and visibility.

Using Constructors and Destructors
PHP makes it possible to automatically execute code when a new instance of a class is
created, using a special class method called a constructor. You can also run code when
a class instance ends using a so-called destructor. Constructors and destructors can be
implemented by defining functions named __construct() and __destruct() within
the class, and placing object (de)initialization code within them.

Here’s a simple example illustrating how this works:

<?php
// define class
class Machine {

 // constructor
 function __construct() {
 echo "Starting up...\n";
 }

Figure 5-5 The result after encryption

 144 PHP: A Beginner’s Guide

 // destructor
 function __destruct() {
 echo "Shutting down...\n";
 }
}

// create an object
// output: "Starting up..."
$m = new Machine();

// then destroy it
// output: "Shutting down..."
unset($m);
?>

Extending Classes
For most developers, extensibility is the most powerful reason for using the OOP
paradigm. Put very simply, extensibility implies that a new class can be derived from an
existing one, inheriting all the properties and methods of the parent class and adding its
own new properties and methods as needed. Thus, for example, a Human class could
extend a Mammal class, which is itself an extension of a Vertebrate class, with each new
extension adding its own features as well as inheriting the features of its parent.

In PHP, extending a class is as simple as attaching the extends keyword and the
name of the class being extended to a class definition, as in the following example:

<?php
class Mammal {
 // class definition
}

class Human extends Mammal {
 // class definition
}
?>

With such an extension, all the properties and methods of the parent class become
available to the child class and can be used within the class’ program logic. To illustrate,
consider the following listing:

<?php
// parent class definition
class Mammal {

 Chapter 5: Using Functions and Classes 145

 public $age;

 function __construct() {
 echo 'Creating a new ' . get_class($this) . '...';
 }

 function setAge($age) {
 $this->age = $age;
 }

 function getAge() {
 return $this->age;
 }

 function grow() {
 $this->age += 4;
 }
}

// child class definition
class Human extends Mammal {

 public $name;

 function __construct() {
 parent::__construct();
 }

 function setName($name) {
 $this->name = $name;
 }

 function getName() {
 return $this->name;
 }

 function grow() {
 $this->age += 1;
 echo 'Growing...';
 }
}
?>

This listing contains two class definitions:

 1. Mammal, the parent class, which contains the $age property and the methods
setAge(), getAge(), and grow();

 146 PHP: A Beginner’s Guide

 2. Human, which extends Mammal and inherits all of Mammal’s properties and
methods. Human contains the additional $name property and the additional methods
setName() and getName(); its grow() method overrides the method of the same
name in the parent class. Notice also that Human’s __construct() method internally
calls Mammal’s __construct() method; the special keyword parent provides an
easy shortcut to refer to the current class’ parent.

Here’s an example of how you’d use the extended class:

<?php
$baby = new Human;
$baby->setAge(1);
$baby->setName('Tonka');
echo $baby->getName() . ' is now ' . $baby->getAge() . ' year(s) old...';
$baby->grow();
$baby->grow();
echo $baby->getName() . ' is now ' . $baby->getAge() . ' year(s) old.';
?>

Figure 5-6 shows the output of this listing.
From the output, it should be clear that even though the class definition for Human

doesn’t explicitly contain getAge() and setAge() methods, nor the $age property,

Figure 5-6 Using inherited methods of a class

 Chapter 5: Using Functions and Classes 147

instances of the Human class can still use these methods, as they are inherited from the
parent Mammal class.

Once you begin working with inheritance and extensibility, it’s easy to quickly
become overwhelmed with long and complex class trees. For this reason, PHP provides an
instanceof operator, to test if an object is an instance of a particular class. This operator
returns true if the object instance has the named class anywhere in its parent tree. Here’s
an example of it in action:

<?php
// class tree
class Vertebrate {
}
class Mammal extends Vertebrate {
}
class Human extends Mammal {
}

$baby = new Human;
// output: true
echo ($baby instanceof Vertebrate) ? 'true' : 'false';
?>

TIP
There’s also the get_class() function, which returns the name of the class from which
an object was instantiated, and the get_parent_class() function, which returns the
name of its parent.

Adjusting Visibility Settings
In the first part of this chapter, you learned the difference between “local” and “global”
scope, and you saw how variables used inside a function are invisible to the main
program. When working with classes, PHP allows you to exert even greater control over
the visibility of object properties and methods. Three levels of visibility exist, ranging
from most visible to least visible; these correspond to the public, protected, and
private keywords.

You’ll have noticed that all the property and method definitions in earlier examples
are prefixed with the keyword public; this sets the corresponding class methods and
properties to be “public” and allows a caller to manipulate them directly from the main
body of the program. This “public” visibility is the default level of visibility for any class
member (method or property) under PHP.

 148 PHP: A Beginner’s Guide

Try This 5-3

If you don’t like the thought of this intrusion, you can explicitly mark a particular
property or method as private or protected, depending on how much control you
want to cede over the object’s internals. “Private” methods and properties are only visible
within the class that defines them, while “protected” methods and properties are visible
to both their defining class and any child (inherited) classes. Attempts to access these
properties or methods outside their visible area typically produces a fatal error that stops
script execution.

To see how this works in practice, consider the following example:

<?php
// class tree
class Mammal {
 public $name;
 protected $age;
 private $species;
}
class Human extends Mammal {
}

$mammal = new Mammal;
$mammal->name = 'William'; // ok
$mammal->age = 3; // fatal error
$mammal->species = 'Whale'; // fatal error

$human = new Human;
$human->name = 'Barry'; // ok
$human->age = 1; // fatal error
$human->species = 'Boy'; // undefined
?>

 Generating Form Selection Lists
Let’s now turn to another example to illustrate some of the more advanced concepts
taught in the preceding section. Here, you’ll create objects to mimic the <select> and
<option> elements used in a Web form, writing methods that allow you to define such
a selection list programmatically from your application. There are three primary objects
you’ll encounter in the next example: a base Element object and two derived objects
named Select and Option.

Let’s start with the base Element object, which represents a generic form element:

<?php
// class definition
class Element {
 private $name;
 private $value;
 private $label;

 Chapter 5: Using Functions and Classes 149

 // constructor
 public function __construct() {
 }

 // method: set element 'name'
 public function setName($name) {
 $this->name = $name;
 }

 // method: get element 'name'
 public function getName() {
 return $this->name;
 }

 // method: set element value
 public function setValue($value) {
 $this->value = $value;
 }

 // method: get element value
 public function getValue() {
 return $this->value;
 }

 // method: set English-language element label
 public function setLabel($label) {
 $this->label = $label;
 }

 // method: get element label
 public function getLabel() {
 return $this->label;
 }
}
?>

We assume here that every form element has three properties: a name, a value, and a
text label. The preceding class definition defines just these properties and also provides
“getter” and “setter” methods to change and retrieve these properties.

This Element object serves as the base for other, more focused form elements—such
as the Option object, which represents an <option> element. Here’s the definition:

<?php
// child class definition
class Option extends Element {

 // constructor
 public function __construct($value='', $label='') {
 parent::__construct();

(continued)

 150 PHP: A Beginner’s Guide

 $this->setValue($value);
 $this->setLabel($label);
 }

 // method: output HTML for <option> elements
 public function render() {
 echo "<option value=\"" . $this->getValue() . "\">" . $this->getLabel() .
"</option>\n";
 }
}
?>

The constructor for an Option accepts two arguments: a value and a label. These
two arguments are then used to set the Option’s $value and $label properties, via its
setValue() and setLabel() methods. Note that these methods are not explicitly
defined in the class but actually belong to the Element class; however, due to extensibility,
the methods of the parent class are automatically available to its children.

The Option class also adds a new method, render(), which outputs the HTML
code necessary to create an <option> element. Notice that this method internally calls
getValue() and getLabel(), also methods of its parent, to correctly generate the
necessary HTML code.

All that’s left now is to define the Select class:

<?php
// child class definition
class Select extends Element {

 protected $options;

 // constructor
 public function __construct() {
 parent::__construct();
 $this->options = array();
 }

 // method: add an option to the list
 public function setOption($option) {
 $this->options[] = $option;
 }

 // method: return all options for the list as array
 private function getOptions() {
 return (array)$this->options;
 }

 // method: output HTML code for <select> element
 public function render() {

 Chapter 5: Using Functions and Classes 151

 echo $this->getLabel() . ":
\n";
 echo "<select name=\"" . $this->getName() . "\">\n";
 foreach ($this->getOptions() as $opt) {
 echo $opt->render();
 }
 echo "</select>";
 }
}
?>

This class defines a single protected property, $options, as an array. The class also
offers the setOption() method, which accepts an Option object and adds it to the
$options array; and the render() method, which iterates over the $options array
and outputs the HTML code needed for the <select> element. Both the preceding
methods are public; however, there’s also a getOptions() method, which is a private
method only used internally to return the $options array to the caller.

How would you use these objects? Here’s an example:

<?php
 // generate selection list
 $fruits = new Select();
 $fruits->setLabel('Fruits');
 $fruits->setName('fruit_sel');
 $fruits->setOption(new Option('Oranges', 'Oranges'));
 $fruits->setOption(new Option('Strawberries', 'Strawberries'));
 $fruits->setOption(new Option('Pineapples', 'Pineapples'));
 $fruits->setOption(new Option('Bananas', 'Bananas'));
 $fruits->render();
?>

The first step is to initialize an instance of the Select class and assign the element
a label and name via the setLabel() and setName() methods—remember that
these methods have been inherited from the parent Element class. Next, the Select
object’s setOption() method is used to assign options to the selection list—each
setOption() call is passed an Option object holding the option’s label and value. Once
all the options have been assigned, the Select object’s render() method takes care of
actually writing the HTML to the page:

Here’s what the HTML output generated by render() looks like:

Fruits:

<select name="fruit_sel">
<option value="Oranges">Oranges</option>
<option value="Strawberries">Strawberries</option>
<option value="Pineapples">Pineapples</option>
<option value="Bananas">Bananas</option>
</select>

(continued)

 152 PHP: A Beginner’s Guide

Why stop with just one selection list? The nice thing about OOP, after all, is
reusability—and so, it’s easy to generate multiple selection lists, just by reusing the
three classes described previously. Here’s an example illustrating this (select.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 5-3: Generating Form Selection Lists</title>
 </head>
 <body>
 <h2>Project 5-3: Generating Form Selection Lists</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="select.php">
 <?php
 // generate selection list #1
 $fruits = new Select();
 $fruits->setLabel('Fruits');
 $fruits->setName('fruit_sel');
 $fruits->setOption(new Option('Oranges', 'Oranges'));
 $fruits->setOption(new Option('Strawberries', 'Strawberries'));
 $fruits->setOption(new Option('Pineapples', 'Pineapples'));
 $fruits->setOption(new Option('Bananas', 'Bananas'));
 $fruits->render();
 ?>

 <p />

 <?php
 // generate selection list #2
 $metals = new Select();
 $metals->setLabel('Metals');
 $metals->setName('metal_sel');
 $metals->setOption(new Option('Iron', 'Iron'));
 $metals->setOption(new Option('Silver', 'Silver'));
 $metals->setOption(new Option('Gold', 'Gold'));
 $metals->setOption(new Option('Platinum', 'Platinum'));
 $metals->render();
 ?>

 <p />

 <?php
 // generate selection list #3
 $animals = new Select();
 $animals->setLabel('Animals');

 Chapter 5: Using Functions and Classes 153

 $animals->setName('animal_sel');
 $animals->setOption(new Option('Lion', 'Lion'));
 $animals->setOption(new Option('Hyena', 'Hyena'));
 $animals->setOption(new Option('Fox', 'Fox'));
 $animals->render();
 ?>
 <p />
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 var_dump($_POST);
 }
?>
 </body>
</html>

Figure 5-7 illustrates the output of this listing.

Figure 5-7 A form containing three dynamically generated selection lists

 154 PHP: A Beginner’s Guide

Summary
This chapter introduced you to two fairly advanced constructs: user-defined functions,
which allow you to package your PHP code into reusable blocks; and classes, which
allow you to group related functions into independent, extensible units. It also gave you
a crash course in important software design concepts, such as recursion, encapsulation,
inheritance, visibility, and reflection. All of these concepts and techniques were reinforced
through the development of three practical examples; you probably found these somewhat
more challenging than those in previous chapters, but working through them will almost
certainly have moved your PHP skills up a notch.

At the close of this chapter (and this section), you know enough about the basic
grammar and syntax of object-oriented programming to recognize and understand its use
in third-party code, and also to begin writing modular, OOP-driven scripts of your own.
These skills will stand you in good stead as you move into the next section of this book,
which focuses on integrating your PHP application with data from other external sources.
Until then, though, spend some time looking at the links that follow, which offer more
detailed information on the topics discussed in this chapter.

● User-defined functions, at www.php.net/manual/en/language.functions.php

● Classes, at www.php.net/manual/en/language.oop5.php

● Class visibility, at www.php.net/manual/en/language.oop5.visibility.php

 Chapter 5 Self Test
 1. State one advantage of using functions.

 2. What is the difference between an argument and a return value?

 3. Using the relationship DISTANCE = SPEED * TIME, write a function that calculates
distance given the speed and time. Use this function to find the distance traveled by an
aircraft departing from London, England, at 9:30 P.M. and arriving in Bombay, India,
at 11 A.M. the next day. Assume the aircraft flies at 910 km/hr and the time difference
between London and Bombay is 4.5 hours.

 4. Using the property LCM (P,Q,R,S) = LCM(LCM(LCM(P,Q),R),S), extend the
LCM/GCF example in this chapter such that it accepts an arbitrary number of values
and returns the LCM of the series.

 5. What is a constructor?

✓

 Chapter 5: Using Functions and Classes 155

 6. What happens if you attempt to access a private method of a parent class from its child
class?

 7. What would be the output of the following code?

<?php
class Daddy {
 public function talk() {
 echo get_class($this);
 }
}
class Baby extends Daddy {
 public function play() {
 parent::talk();
 }
}

$a = new Baby;
$a->play();
?>

 8. Using the Select class defined earlier in this chapter, create a new DateSelect class
containing three selection lists, one each for day, month, and year. Demonstrate usage
of this class in a Web form.

 9. What would be the output of the following PHP code:

<?php
echo date("l d F Y H:i a", mktime(12,15,22,11,17,2008));
?>

This page intentionally left blank

Part II
Working with Data from
Other Sources

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

159

Chapter 6
Working with Files
and Directories

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 160 PHP: A Beginner’s Guide

Key Skills & Concepts
● Learn to read and write disk files

● Process directories recursively

● Copy, move, rename, and delete files and directories

● Work with file paths and attributes

John Donne famously said, “No man is an island,” and this maxim holds true for PHP
scripts as well. So far, all the examples you’ve seen have been self-contained, with their

source data arriving either from user input or from variables hard-wired into the program
body. In reality, though, your PHP script will need to work with data retrieved from disk
files, SQL resultsets, XML documents, and many other data sources.

PHP comes with numerous built-in functions to access these data sources and this
chapter will get you started on the road to discovering them, by focusing specifically on
PHP’s file system functions. With 70+ functions available, there’s an abundance of options;
this chapter will give you a crash course in the most important ones, with both examples
and practical projects of reading, writing, and manipulating disk files and directories.

Reading Files
PHP’s file manipulation API is extremely flexible: it lets you read files into a string or into
an array, from the local file system or a remote URL, by lines, bytes, or characters. The
following sections explain all these variants in greater detail.

Reading Local Files
The easiest way to read the contents of a disk file in PHP is with the file_get_
contents() function. This function accepts the name and path to a disk file, and reads
the entire file into a string variable in one fell swoop. Here’s an example:

<?php
// read file into string
$str = file_get_contents('example.txt') or die('ERROR: Cannot find file');
echo $str;
?>

 Chapter 6: Working with Files and Directories 161

An alternative method of reading data from a file is PHP’s file() function, which
accepts the name and path to a file and reads the entire file into an array, with each
element of the array representing one line of the file. To process the file, all you need do is
iterate over the array using a foreach loop. Here’s an example, which reads a file into an
array and then displays it using such a loop:

<?php
// read file into array
$arr = file('example.txt') or die('ERROR: Cannot find file');
foreach ($arr as $line) {
 echo $line;
}
?>

Reading Remote Files
Both file_get_contents() and file() also support reading data from URLs, using
either the HTTP or FTP protocol. Here’s an example, which reads an HTML file off the
Web into an array:

<?php
// read file into array
$arr = file('http://www.google.com') or die('ERROR: Cannot find file');
foreach ($arr as $line) {
 echo $line;
}
?>

In case of slow network links, it’s sometimes more efficient to read a remote file in
“chunks,” to maximize the efficiency of available network bandwidth. To do this, use the
fgets() function to read a specific number of bytes from a file, as in the next example:

<?php
// read file into array (chunks)
$str = '';$fp = fopen('http://www.google.com', 'r') or die('ERROR:
Cannot open file');
while (!feof($fp)) {
 $str .= fgets($fp,512);
}
fclose($fp);
echo $str;
?>

 162 PHP: A Beginner’s Guide

This listing introduces four new functions, so let’s take a closer look at it. First, the
fopen() function: it accepts the name of the source file and an argument indicating
whether the file is to be opened in read ('r'), write ('w'), or append ('a') mode,
and then creates a pointer to the file. Next, a while loop calls the fgets() function
continuously in a loop to read a specific number of bytes from the file and append these
bytes to a string variable; this loop continues until the feof() function returns true,
indicating that the end of the file has been reached. Once the loop has completed, the
fclose() function destroys the file pointer.

NOTE
In order to read remote URLs, the PHP configuration variable 'allow_url_fopen'
must be set to true in the PHP configuration file php.ini. If this variable is set to false, all
attempts to read remote files will fail.

Reading Specific Segments of a File
A final twist involves reading only a specific block of lines from a line—something that
can be accomplished with a combination of PHP’s fseek() and fgets() functions.
Consider the next example, which sets up a user-defined function named readBlock()
and accepts three arguments: the filename, the starting line number, and the number of
lines to return from the starting point:

<?php
// function definition
// read a block of lines from a file
function readBlock($file, $start=1, $lines=null) {
 // open file
 $fp = fopen($file, 'r') or die('ERROR: Cannot find file');

 // initialize counters
 $linesScanned = 1;
 $linesRead = 0;
 $out = '';

 // loop until end of file
 while (!feof($fp)) {
 // get each line
 $line = fgets($fp);
 // if start position is reached
 // append line to output variable
 if ($linesScanned >= $start) {
 $out .= $line;
 $linesRead++;
 // if max number of lines is defined and reached

 Chapter 6: Working with Files and Directories 163

 // break out of loop
 if (!is_null($linesRead) && $linesRead == ($lines)) {
 break;
 }
 }
 $linesScanned++;
 }
 return $out;
}

echo readBlock('example.txt', 3, 4);
?>

Within readBlock(), a loop iterates through the file line by line, until the starting
line number is reached (a line counter named $linesScanned keeps track of the current
line number, incrementing by 1 on each iteration of the loop). Once the starting line is
reached, it (and all subsequent lines) are read into a string variable until the specified
maximum number of lines are processed or until the end of the file is reached.

Writing Files
The flip side of reading data from files is writing data to them. And PHP comes with a
couple of different ways to do this as well. The first is the file_put_contents()
function, a close cousin of the file_get_contents() function you read about in the
preceding section: this function accepts a filename and path, together with the data to be
written to the file, and then writes the latter to the former. Here’s an example:

<?php
// write string to file
$data = "A fish \n out of \n water\n";
file_put_contents('output.txt', $data)
 or die('ERROR: Cannot write file');
echo 'Data written to file';
?>

If the file specified in the call to file_put_contents() already exists on disk,
file_put_contents() will overwrite it by default. If, instead, you’d prefer to preserve
the file’s contents and simply append new data to it, add the special FILE_APPEND flag to
your file_put_contents() function call as a third argument. Here’s an example:

<?php
// write string to file
$data = "A fish \n out of \n water\n";
file_put_contents('output.txt', $data, FILE_APPEND)

 164 PHP: A Beginner’s Guide

 or die('ERROR: Cannot write file');
echo 'Data written to file';
?>

An alternative way to write data to a file is to create a file pointer with fopen(), and
then write data to the pointer using PHP’s fwrite() function. Here’s an example of this
technique:

<?php
// open and lock file
// write string to file
// unlock and close file
$data = "A fish \n out of \n water\n";
$fp = fopen('output.txt', 'w') or die('ERROR: Cannot open file');
flock($fp, LOCK_EX) or die ('ERROR: Cannot lock file');
fwrite($fp, $data) or die ('ERROR: Cannot write file');
flock($fp, LOCK_UN) or die ('ERROR: Cannot unlock file');
fclose($fp);
echo 'Data written to file';
?>

Notice the flock() function from the preceding listing: this function “locks” a file
before reading or writing it, so that it cannot be accessed by another process. Doing this
reduces the possibility of data corruption that might occur if two processes attempt to
write different data to the same file at the same instant. The second parameter to flock()
specifies the type of lock: LOCK_EX creates an exclusive lock for writing, LOCK_SH
creates a non-exclusive lock for reading, and LOCK_UN destroys the lock.

Q: Can I read and write binary files with PHP?

A: Yes. The file_get_contents(), file_put_contents(), and file() functions
all read and write data in binary format by default; this lets you use PHP with binary files
without worrying that your data will get corrupted.

NOTE
The directory into which you’re trying to save the file must already exist, or else PHP
will generate a fatal error. You can test if a directory exists with the file_exists()
function, discussed later in this chapter.

Ask the Expert

 Chapter 6: Working with Files and Directories 165

Try This 6-1 Reading and Writing Configuration Files
Now that you know how to read and write files, let’s try creating an application that
uses the functions described in the preceding section. Assume for a second that you’re
developing a Weblog application, and you’d like your users to be able to configure certain
aspects of this application’s behavior—for example, how many posts appear on the index
page or the e-mail address that comments are sent to. In this case, you’d probably need
to build a Web-based form that allows users to input these configuration values and saves
them to a file that your application can read as needed.

This next listing generates just such a Web form, allowing users to enter values for
different configuration values and then saving this information to a disk file. When users
revisit the form, the data previously saved to the file is read and used to prefill the form’s
fields.

Here’s the code (configure.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 6-1: Reading And Writing Configuration Files</title>
 </head>
 <body>
 <h2>Project 6-1: Reading And Writing Configuration Files</h2>
<?php
 // define configuration filename and path
 $configFile = 'config.ini';

 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {

 // set up array with default parameters
 $data = array();
 $data['AdminEmailAddress'] = null;
 $data['DefAuthor'] = null;
 $data['NumPosts'] = null;
 $data['NumComments'] = null;
 $data['NotifyURL'] = null;

 // read current configuration values
 // use them to pre-fill the form
 if (file_exists($configFile)) {
 $lines = file($configFile);
 foreach ($lines as $line) {
 $arr = explode('=', $line);
 $i = count($arr) - 1;

(continued)

 166 PHP: A Beginner’s Guide

 $data[$arr[0]] = $arr[$i];
 }
 }
?>
 <form method="post" action="configure.php">
 Administrator email address:

 <input type="text" size="50" name="data[AdminEmailAddress]" value="<?php
echo $data['AdminEmailAddress']; ?>"/>
 <p>
 Default author name:

 <input type="text" name="data[DefAuthor]" value="<?php echo
$data['DefAuthor']; ?>"/>
 <p>
 Number of posts on index page:

 <input type="text" size="4" name="data[NumPosts]" value="<?php echo
$data['NumPosts']; ?>"/>
 <p>
 Number of anonymous comments:

 <input type="text" size="4" name="data[NumComments]" value="<?php echo
$data['NumComments']; ?>"/>
 <p>
 URL for automatic notification of new posts:

 <input type="text" size="50" name="data[NotifyURL]" value="<?php echo
$data['NotifyURL']; ?>"/>
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // read submitted data
 $config = $_POST['data'];

 // validate submitted data as necessary
 if ((trim($config['NumPosts']) != '' && (int)$config['NumPosts'] <= 0) ||
(trim($config['NumComments']) != '' && (int)$config['NumComments'] <= 0)) {
 die('ERROR: Please enter a valid number');
 }

 // open and lock configuration file for writing
 $fp = fopen($configFile, 'w+') or die('ERROR: Cannot open configuration
file for writing');
 flock($fp, LOCK_EX) or die('ERROR: Cannot lock configuration file for
writing');

 // write each configuration value to the file
 foreach ($config as $key => $value) {
 if (trim($value) != '') {
 fwrite($fp, "$key=$value\n") or die('ERROR: Cannot write [$key] to
configuration file');
 }
 }

 Chapter 6: Working with Files and Directories 167

 // close and save file
 flock($fp, LOCK_UN) or die ('ERROR: Cannot unlock file');
 fclose($fp);
 echo 'Configuration data successfully written to file.';
 }
?>
 </body>
</html>

This example illustrates a common, and practical, use of PHP’s file functions: to read
and write configuration files in the context of a Web application. Figure 6-1 illustrates the
Web form generated by this script.

Once the form is submitted, the data entered into it arrives in the form of an associative
array, whose keys correspond to the configuration variables in use. This data is then validated
and a file pointer is opened to the configuration file, config.ini. A foreach loop then iterates
over the array, writing the keys and values to the file pointer in key=value format, with each
key-value pair on a separate line. The file pointer is then closed, saving the data to disk.

Figure 6-1 A Web form to enter configuration data

(continued)

 168 PHP: A Beginner’s Guide

Here’s an example of what config.ini would look like after submitting the form in
Figure 6-1:

AdminEmailAddress=admin@abc.com
DefAuthor=Charles W
NumPosts=8
NumComments=4

If a user revisits the Web form, the script first checks if a configuration file named
config.ini exists in the current directory. If it does, the lines of the file are read into an
array with PHP’s file() function; a foreach loop then processes this array, splitting
each line on the equality (=) symbol and turning the resulting key-value pairs into an
associative array. This array is then used to prefill the form fields, by assigning a value to
each input field’s 'value' attribute.

Figure 6-2 illustrates one such Web form, prefilled with data read from the
configuration file.

Users are, of course, free to resubmit the form with new data; as explained previously,
this submission will then be used to rewrite the configuration file with new values.

Figure 6-2 A Web form prefilled with data from a configuration file

 Chapter 6: Working with Files and Directories 169

Processing Directories
PHP also allows developers to work with directories on the file system, iterating through
directory contents or moving forward and backward through directory trees. Iterating through
a directory is a simple matter of calling PHP’s DirectoryIterator object, as in the following
example, which uses the DirectoryIterator to read a directory and list each file within it:

<?php
// initialize iterator with name of
// directory to process
$dit = new DirectoryIterator('.');

// loop over directory
// print names of files found
while($dit->valid()) {
 if (!$dit->isDot()) {
 echo $dit->getFilename() . "\n";
 }
 $dit->next();
}

unset($dit);
?>

Here, a DirectoryIterator object is initialized with a directory name, and the object’s
rewind() method is used to reset the internal pointer to the first entry in the directory. A
while loop, which runs so long as a valid() entry exists, can then be used to iterate over
the directory. Individual filenames are retrieved with the getFilename() method, while
the isDot() method can be used to filter out the entries for the current (.) and parent (..)
directories. The next() method moves the internal pointer forward to the next entry.

You can also accomplish the same task with a while loop and some of PHP’s
directory manipulation functions . . . as in the following listing:

<?php
// create directory pointer
$dp = opendir('.') or die ('ERROR: Cannot open directory');

// read directory contents
// print filenames found
while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 echo "$file \n";
 }
}

// destroy directory pointer
closedir($dp);
?>

 170 PHP: A Beginner’s Guide

Here, the opendir() function returns a pointer to the directory named in the function
call. This pointer is then used by the readdir() function to iterate over the directory,
returning a single entry each time it is invoked. It’s then easy to filter out the . and ..
directories, and print the names of the remaining entries. Once done, the closedir()
function closes the file pointer.

TIP
Also consider PHP’s scandir() function, which accepts a directory name and returns
an array containing a list of the files within that directory together with their sizes. It’s
then easy to process this array with a foreach loop.

In some cases, you might need to process not just the first-level directory, but also
its subdirectories and sub-subdirectories. A recursive function, which you learned about
in Chapter 5, is usually the best tool for this purpose: consider the next listing, which
illustrates one such function in action:

<?php
// function definition
// print names of files in a directory
// and its child directories
function printDir($dir, $depthStr='+') {
 if (file_exists($dir)) {
 // create directory pointer
 $dp = opendir($dir) or die ('ERROR: Cannot open directory');

 // read directory contents
 // print names of files found
 // call itself recursively if directories found
 while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 echo "$depthStr $dir/$file \n";
 if (is_dir("$dir/$file")) {
 printDir("$dir/$file", $depthStr.'+');
 }
 }
 }

 // close directory pointer
 closedir($dp);
 }
}

// print contents of directory
// and all children
if (file_exists('.')) {
 echo '<pre>';
 printDir('.');
 echo '<pre>';
}
?>

 Chapter 6: Working with Files and Directories 171

The printDir() function in this listing might appear complex, but it’s actually quite
simple. It accepts two arguments: the name of the top-level directory to use, and a “depth
string,” which indicates, via indentation, the position of a particular file or directory in the
hierarchy. Using this input, the function opens a pointer to the named directory and begins
processing it with readdir(), printing the name of each directory or file found. In the
event that a directory is found, the depth string is incremented by an additional character
and the printDir() function is itself recursively called to process that subdirectory. This
process continues until no further files or directories remain to be processed.

Figure 6-3 has an example of the output of this listing.

Figure 6-3 An indented directory listing

 172 PHP: A Beginner’s Guide

Performing Other File and Directory Operations
In addition to the tools you’ve seen in previous sections, PHP comes with a whole range
of file and directory manipulation functions, which allow you to check file attributes;
copy, move, and delete files; and work with file paths and extensions. Table 6-1 lists some
of the important functions in this category.

Checking if a File or Directory Exists
If you try reading or appending to a file that doesn’t exist, PHP will typically generate a
fatal error. Ditto for attempts to access or read/write from/to a directory that doesn’t exist.
To avoid these error messages, always check that the file or directory you’re attempting to
access already exists, with PHP’s file_exists() function. The next listing illustrates it
in action:

Function What It Does
file_exists() Tests if a file or directory exists

filesize() Returns the size of a file in bytes

realpath() Returns the absolute path of a file

pathinfo() Returns an array of information about a file and its path

stat() Provides information on file attributes and permissions

is_readable() Tests if a file is readable

is_writable() Tests if a file is writable

is_executable() Tests if a file is executable

is_dir() Tests if a directory entry is a directory

is_file() Tests if a directory entry is a file

copy() Copies a file

rename() Renames a file

unlink() Deletes a file

mkdir() Creates a new directory

rmdir() Removes a directory

include() / require() Reads an external file into the current PHP script

Table 6-1 Common PHP File and Directory Functions

 Chapter 6: Working with Files and Directories 173

<?php
// check file
if (file_exists('somefile.txt')) {
 $str = file_get_contents('somefile.txt');
} else {
 echo 'Named file does not exist. ';
}

// check directory
if (file_exists('somedir')) {
 $files = scandir('somedir');
} else {
 echo 'Named directory does not exist.';
}
?>

Calculating File Size
To calculate the size of a file in bytes, call the filesize() function with the filename
as argument:

<?php
// get file size
// output: 'File is 1327 bytes.'
if (file_exists('example.txt')) {
 echo 'File is ' . filesize('example.txt') . ' bytes.';
} else {
 echo 'Named file does not exist. ';
}
?>

Finding the Absolute File Path
To retrieve the absolute file system path to a file, use the realpath() function, as in the
next listing:

<?php
// get file path
// output: 'File path: /usr/local/apache/htdocs/
// /php-book/ch06/listings/example.txt'
if (file_exists('example.txt')) {
 echo 'File path: ' . realpath('example.txt');
} else {
 echo 'Named file does not exist. ';
}
?>

 174 PHP: A Beginner’s Guide

Q: Are PHP’s file functions case-sensitive with respect to filenames?

A: It depends on the underlying file system. Windows is case-insensitive with respect
to filenames, so PHP’s file functions are case-insensitive too. However, filenames
on *NIX systems are case-sensitive, and so PHP’s file functions are case-sensitive
too on these systems. Thus, given the file eXAMple.txt, the statement <?php file_
exists('example.txt'); ?> might return false on a *NIX system but true on a
Windows system.

You can also use the pathinfo() function, which returns an array containing the
file’s path, name, and extension. Here’s an example:

<?php
// get file path info as array
if (file_exists('example.txt')) {
 print_r(pathinfo('example.txt'));
} else {
 echo 'Named file does not exist. ';
}
?>

Retrieving File Attributes
You can obtain detailed information on a particular file, including its ownership,
permissions, and modification and access times, with PHP’s stat() function, which
returns this information as an associative array. Here’s an example:

<?php
// get file information
if (file_exists('example.txt')) {
 print_r(stat('example.txt'));
} else {
 echo 'Named file does not exist. ';
}
?>

You can check if a file is readable, writable or executable with the is_readable(),
is_writable(), and is_executable() functions. The following example illustrates
their usage:

<?php
// get file information

Ask the Expert

 Chapter 6: Working with Files and Directories 175

// output: 'File is: readable writable'
if (file_exists('example.txt')) {
 echo 'File is: ';
 // check for readable bit
 if (is_readable('example.txt')) {
 echo ' readable ';
 }
 // check for writable bit
 if (is_writable('example.txt')) {
 echo ' writable ';
 }
 // check for executable bit
 if (is_executable('example.txt')) {
 echo ' executable ';
 }
} else {
 echo 'Named file does not exist. ';
}
?>

The is_dir() function returns true if the argument passed to it is a directory, while
the is_file() function returns true if the argument passed to it is a file. Here’s an
example:

<?php
// test if file or directory
if (file_exists('example.txt')) {
 if (is_file('example.txt')) {
 echo 'It\'s a file.';
 }
 if (is_dir('example.txt')) {
 echo 'It\'s a directory.';
 }
} else {
 echo 'ERROR: File does not exist.';
}
?>

Creating Directories
To create a new, empty directory, call the mkdir() function with the path and name of the
directory to be created:

<?php
if (!file_exists('mydir')) {
 if (mkdir('mydir')) {
 echo 'Directory successfully created.';

 176 PHP: A Beginner’s Guide

 } else {
 echo 'ERROR: Directory could not be created.';
 }
} else {
 echo 'ERROR: Directory already exists.';
}
?>

Copying Files
You can copy a file from one location to another by calling PHP’s copy() function with
the file’s source and destination paths as arguments. Here’s an example:

<?php
// copy file
if (file_exists('example.txt')) {
 if (copy('example.txt', 'example.new.txt')) {
 echo 'File successfully copied.';
 } else {
 echo 'ERROR: File could not be copied.';
 }
} else {
 echo 'ERROR: File does not exist.';
}
?>

It’s important to note that if the destination file already exists, the copy() function
will overwrite it.

Renaming Files or Directories
To rename or move a file (or directory), call PHP’s rename() function with the old and
new path names as arguments. Here’s an example that renames a file and a directory,
moving the file to a different location in the process:

<?php
// rename/move file
if (file_exists('example.txt')) {
 if (rename('example.txt', '../example.new.txt')) {
 echo 'File successfully renamed.';
 } else {
 echo 'ERROR: File could not be renamed.';
 }
} else {
 echo 'ERROR: File does not exist.';
}

 Chapter 6: Working with Files and Directories 177

// rename directory
if (file_exists('mydir')) {
 if (rename('mydir', 'myotherdir')) {
 echo 'Directory successfully renamed.';
 } else {
 echo 'ERROR: Directory could not be renamed.';
 }
} else {
 echo 'ERROR: Directory does not exist.';
}
?>

As with copy(), if the destination file already exists, the rename() function will
overwrite it.

CAUTION
PHP will only allow you to copy, delete, rename, create, and otherwise manipulate a file
or directory if the user "owning" the PHP script has the privileges necessary to perform
the task.

Removing Files or Directories
To remove a file, pass the filename and path to PHP’s unlink() function, as in the
following example:

<?php
// delete file
if (file_exists('dummy.txt')) {
 if (unlink('dummy.txt')) {
 echo 'File successfully removed.';
 } else {
 echo 'ERROR: File could not be removed.';
 }
} else {
 echo 'ERROR: File does not exist.';
}
?>

To remove an empty directory, PHP offers the rmdir() function, which does the
reverse of the mkdir() function. If the directory isn’t empty, though, it’s necessary to
first remove all its contents (including all subdirectories) and only then call the rmdir()
function to remove the directory. You can do this manually, but a recursive function is

 178 PHP: A Beginner’s Guide

usually more efficient—here’s an example, which demonstrates how to remove a directory
and all its children:

<?php
// function definition
// remove all files in a directory
function removeDir($dir) {
 if (file_exists($dir)) {
 // create directory pointer
 $dp = opendir($dir) or die ('ERROR: Cannot open directory');

 // read directory contents
 // delete files found
 // call itself recursively if directories found
 while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 if (is_file("$dir/$file")) {
 unlink("$dir/$file");
 } else if (is_dir("$dir/$file")) {
 removeDir("$dir/$file");
 }
 }
 }

 // close directory pointer
 // remove now-empty directory
 closedir($dp);
 if (rmdir($dir)) {
 return true;
 } else {
 return false;
 }
 }
}

// delete directory and all children
if (file_exists('mydir')) {
 if (removeDir('mydir')) {
 echo 'Directory successfully removed.';
 } else {
 echo 'ERROR: Directory could not be removed.';
 }
} else {
 echo 'ERROR: Directory does not exist.';
}
?>

Here, the removeDir() function is a recursive function that accepts one input
argument: the name of the top-level directory to remove. The function begins by creating

 Chapter 6: Working with Files and Directories 179

a pointer to the directory with opendir() and then iterating over the directory’s contents
with a while loop—you’ve seen this technique in a previous section of this chapter.
For each directory entry found, the is_file() and is_dir() methods are used to
determine if the entry is a file or a sub-directory; if the former, the unlink() function is
used to delete the file and if the latter, the removeDir() function is called recursively
to again process the subdirectory’s contents. This process continues until no files or
subdirectories are left; at this point, the top-level directory is empty and can be removed
with a quick rmdir().

Reading and Evaluating External Files
To read and evaluate external files from within your PHP script, use PHP’s include()
or require() function. A very common application of these functions is to include a
standard header, footer, or copyright notice across all the pages of a Web site. Here’s an
example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title></title>
 </head>
 <body>
 <?php require('header.php'); ?>
 <p/>
 This is the page body.
 <p/>
 <?php include('footer.php'); ?>
 </body>
</html>

Here, the script reads two external files, header.php and footer.php, and places
the contents of these files at the location of the include() or require() call. It’s
important to note that any PHP code to be evaluated within the files included in this
manner must be enclosed within <?php ... ?> tags.

Q: What is the difference between include() and require()?

A: Fairly simple: a missing include() will generate a warning but allow script execution
to continue, whereas a missing require() will generate a fatal error that halts script
execution.

Ask the Expert

 180 PHP: A Beginner’s Guide

Try This 6-2 Creating a Photo Gallery
Let’s now try another practical example, this one using what you’ve learned about
manipulating directories and using different file functions. This next listing scans a
specified directory for digital photographs and dynamically generates a Web page to
display these images—a digital photo gallery, if you will. Here’s the code (gallery.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 6-2: Creating An Image Gallery</title>
 </head>
 <style type="text/css">
 ul {
 list-style-type: none;
 }

 li {
 float: left;
 padding: 10px;
 margin: 10px;
 font: bold 10px Verdana, sans-serif;
 }

 img {
 display: block;
 border: 1px solid #333300;
 margin-bottom: 5px;
 }
 </style>
 <body>
 <h2>Project 6-2: Creating An Image Gallery</h2>

<?php
 // define location of photo images
 // this must be a location accessible by the script owner
 $photosDir = './photos';

 // define which file extensions are images
 $photosExt = array('gif', 'jpg', 'jpeg', 'tif', 'tiff', 'bmp', 'png');

 // initialize array to hold filenames of images found
 $photosList = array();

 Chapter 6: Working with Files and Directories 181

 // read directory contents
 // build photo list
 if (file_exists($photosDir)) {
 $dp = opendir($photosDir) or die ('ERROR: Cannot open directory');
 while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 $fileData = pathinfo($file);
 if (in_array($fileData['extension'], $photosExt)) {
 $photosList[] = "$photosDir/$file";
 }
 }
 }
 closedir($dp);
 } else {
 die ('ERROR: Directory does not exist.');
 }

 // iterate over photo list
 // display each image and filename
 if (count($photosList) > 0) {
 for ($x=0; $x<count($photosList); $x++) {
?>

 <img height="150" width="200"
 src="<?php echo $photosList[$x]; ?>" />
 <?php echo basename($photosList[$x]); ?>

 <?php echo round(filesize($photosList[$x])/1024) . ' KB'; ?>

<?php
 }
 } else {
 die('ERROR: No images found in directory');
 }
?>

 </body>
</html>

This listing begins by defining the path to the directory containing your digital images;
you’ll need to modify this to reflect your local system in order for the listing to work. It
also sets up an array named $photosExt containing common file extensions for digital
photographs; this information is useful when searching for image files in the named
directory.

Having set up these two variables, the listing uses PHP’s opendir() and readdir()
functions to iterate over the specified directory and process each entry in it. If an entry’s
file extension is found to match an element from $photosExt, the file and path are added

(continued)

 182 PHP: A Beginner’s Guide

to a separate $photosList array. This process continues until all the entries in the named
directory are processed.

Assuming at least one image has been found, the next (and final) step is to generate
the HTML code to display the images on a Web page. This is accomplished by iterating
over $photosList with a foreach loop and generating an tag for each
file found in it, together with the image’s filename and file size in kilobytes. The image
references thus created are formatted as elements of a horizontal HTML list, such that
they appear neatly arranged on the final output page.

Figure 6-4 illustrates the output of this listing. As the listing illustrates, it’s quite easy
to use PHP’s directory and file functions to iterate through a directory and process the files
found within it.

Figure 6-4 A dynamically generated Web photo gallery

 Chapter 6: Working with Files and Directories 183

Summary
Reading and writing files are basic tasks that any PHP developer should know how
to accomplish; this chapter covered both these tasks, and many more. It began with a
demonstration of how to read local and remote files, as well as how to create new files
or append data to existing ones. It then moved on to directory manipulation under PHP
and explained many of PHP’s file and directory functions, illustrating each with a brief
example. Two projects—reading and writing a configuration file, and creating a Web-
based photo gallery—assisted in applying this learning in a practical context.

To read more about the topics discussed in this chapter, consider visiting the following
links:

● Working with files and directories, at www.melonfire.com/community/columns/
trog/article.php?id=208 and www.melonfire.com/community/columns/trog/
article.php?id=211

● File system functions, at www.php.net/manual/en/ref.filesystem.php

● Directory functions, at www.php.net/manual/en/ref.dir.php

 Chapter 6 Self Test
 1. Name the functions you would use to

✓

 A Obtain the absolute path to a file

 B Delete a file

 C Retrieve the size of a file

 D Read the contents of a file into an
array

 E Check if a file is writable

 F Check if a directory exists

 G Read the contents of a directory
into an array

 H Write a string to a file

 I Create a new directory

 J Delete a directory

 K Create a pointer to a directory

 L Check if a directory entry is a file

 2. Why would you use the flock() function?

 3. Write a PHP script to count the number of lines in a file.

 4. Write a PHP script to read a file, reverse its contents, and write the result back to a
new file.

 184 PHP: A Beginner’s Guide

 5. Write a PHP script to look through the current directory and rename all the files with
extension .txt to extension .xtx.

 6. Using the removeDir() recursive function in this chapter as model, write a recursive
function to copy the contents of one directory to another.

 7. Write a PHP script to read the current directory and return a file list sorted by last
modification time. (Hint: The PHP function to return the last modification time of a file
is filemtime()).

185

Chapter 7
Working with
Databases and SQL

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 186 PHP: A Beginner’s Guide

Key Skills & Concepts
● Learn database concepts and Structured Query Language

● Add, edit, delete, and view records using MySQL and SQLite databases

● Retrieve database records with PHP

● Validate and save user input to a database with PHP

● Write portable database-driven programs

One of the reasons for PHP’s popularity as a Web scripting language is its support
for a wide range of relational database systems. This support makes it easy for Web

developers to create data-driven Web sites and to prototype new Web applications quickly
and efficiently, with minimal fuss and muss.

PHP supports more than fifteen different database engines, including Microsoft SQL
Server, IBM DB2, PostgreSQL, MySQL, and Oracle. Until PHP 5, this support was
offered through native database extensions, each with its own functions and features;
however, this made it hard for developers to change from one database engine to another.
PHP 5 rectified this situation by introducing a common API for database access: the
PHP Data Objects (PDO) extension, which provides a unified interface to working with
databases and helps developers manipulate different databases in a consistent manner.

In PHP 5.3, the PDO extension has been further improved, with support for new
database engines and further optimizations for security and performance. For backward
compatibility, the native database extensions also continue to be supported. Because you’ll
often find yourself having to choose between a native extension (which may be faster or
offer more features) or PDO (which offers portability and consistency across database
engines), this chapter covers both options: it introduces you to PDO and also discusses
two of PHP’s most popular native extensions, the MySQL Improved extension and the
SQLite extension.

Introducing Databases and SQL
In the Internet age, information is no longer represented in filing cabinets; instead, it’s
stored as digital ones and zeros in electronic databases, which are data storage “containers”
that impose a certain structure on information. Not only do these electronic databases take

 Chapter 7: Working with Databases and SQL 187

up less physical space than their wood-and-metal counterparts, but they also come packed
with tools to help users quickly filter and retrieve information using different criteria. In
particular, most electronic databases today are relational databases, which allow users to
define relationships between different database tables for more effective search and analysis.

There are a large number of database management systems currently available, some
commercial and some free. You’ve probably already heard of some of them: Oracle,
Microsoft Access, MySQL, and PostgreSQL. These database systems are powerful,
feature-rich software applications, capable of organizing and searching millions of records
at very high speeds; as such, they’re widely used by businesses and government offices,
often for mission-critical purposes.

Before getting into the nitty-gritty of manipulating database records with PHP, it’s
essential to first have a clear understanding of basic database concepts. If you’re new to
databases, the following sections provide a grounding in the basics and also let you get your
hands dirty with a practical exercise in Structured Query Language (SQL). This information
will be helpful to understand the more advanced material in subsequent sections.

Understanding Databases, Records, and Primary Keys
Every database is composed of one or more tables. These tables, which structure data into
rows and columns, impose organization on the data. Figure 7-1 illustrates a typical table.

This table contains sales figures for various locations, with each row, or record, holding
information for a different location and year. Each record is itself subdivided into columns,
or fields, with each field holding a different fragment of information. This tabular structure
makes it easy to search the table for records matching particular criteria: for example, all
locations with sales greater than $10,000, or sales for all locations in the year 2008.

The records in a table are not arranged in any particular order—they can be sorted
alphabetically, by year, by sales total, by location, or by any other criteria you choose
to specify. To make it easy to identify a specific record, therefore, it becomes necessary

ID Year Location Sales ($)
1
2
3
4
5
6
7
8
9

10
11
12

2007
2007
2007
2007
2007
2007
2008
2008
2008
2008
2008
2008

Dallas
Chicago
Washington
New York
Los Angeles
Boston
Dallas
Chicago
Washington
New York
Los Angeles
Boston

9495
8574

12929
13636
8748
3478

15249
19433
3738

12373
16162
4745

Figure 7-1 An example table

 188 PHP: A Beginner’s Guide

to add a unique identifying attribute to each record, such as a serial number or sequence
code. In the preceding example, each record is identified by a unique “record ID” field;
this field is referred to as the primary key for that table.

TIP
An easy way to understand these concepts is with an analogy. Think of a database as a
library, and each table as a bookshelf within this library. A record is thus the electronic
representation of a book on a shelf, with the title of the book serving as the record’s
primary key. In the absence of this title, it would be impossible to easily distinguish one
book from another. (The only way to do so would be to open each book and investigate
its contents—a time-consuming process, which the primary key helps you avoid!)

Once you’ve got information into a table, you typically want to use it to answer specific
questions—for example, how many locations had sales greater than $5000 in 2008? These
questions are known as queries, and the results returned by the database in response to these
queries are known as result sets. Queries are performed using the Structured Query Language.

Understanding Relationships and Foreign Keys
You already know that a single database can hold multiple tables. In a relational database
system, these tables can be linked to each other by one or more common fields, called
foreign keys. These foreign keys make it possible to create one-to-one or one-to-many
relationships between different tables, and combine data from multiple tables to create
more comprehensive result sets.

To illustrate, consider Figure 7-2, which shows three linked tables.

Figure 7-2 Table relationships

GenreID

BookID BookName GenreID AuthorID

GenreName
1
2
3

1
2
3
4
5
6
7
8

1
2
1
1
3
3
1
3

1
3
1
4
2
2
4
5

The Shining
Shutter Island
Pet Sematary
The Overlook
Sisters
Safe Harbour
Trunk Music
Blood Brothers

Horror
Crime
Romance

AuthorID AuthorName
1
2
3

Stephen King
Danielle Steele
Dennis Lehane

4 Michael Connelly
5 Nora Roberts

 Chapter 7: Working with Databases and SQL 189

Figure 7-2 shows three tables, containing information on authors (Table A), genres
(Table G), and books (Table B) respectively. Tables G and B are fairly straightforward:
they contain a list of genre and author names respectively, with each record identified by a
unique primary key. Table B is a little more complex: each book in the table is linked to a
specific genre by means of the genre’s primary key (from Table G) and to a specific author
via the author’s primary key (from Table A).

By following these keys to their respective source tables, it’s easy to identify the author
and genre for a specific book. For example, it can be seen that the title “The Shining” is
written by “Stephen King” and belongs to the genre “Horror.” Similarly, starting from the
other end, it can be seen that the author “Michael Connelly” has written two books, “The
Overlook” and “Trunk Music.”

Relationships such as the ones seen in Figure 7-2 form the foundations of a relational
database system. Linking tables using foreign keys is also more efficient than the
alternative: while creating a single everything-but-the-kitchen-sink table to hold all your
information might appear convenient at first glance, updating such a table is always a
manual (and error-prone) process of finding every occurrence of a particular value and
replacing it with a new value. Breaking information up into independent tables and linking
these tables with foreign keys ensures that a particular piece of information appears
once, and only once, in your database; this eliminates redundancies, simplifies changes
(by localizing them to a single location), and makes the database more compact and
manageable.

The process of streamlining a database by defining and implementing one-to-one
and one-to-many relationships between its component tables is known as database
normalization, and it’s a key task faced by any database engineer when creating a new
database. In the normalization process, the database engineer also identifies cross-
relationships and incorrect dependencies between tables, and optimizes data organization
so that SQL queries perform at their maximum efficiency. A number of normal forms
are available to help you test the extent to which your database is normalized; these
normal forms provide useful guidelines to help ensure that your database design is both
structurally consistent and efficient.

Understanding SQL Statements
Structured Query Language, or SQL, is the standard language used to communicate with
a database, add or change records and user privileges, and perform queries. The language,
which became an ANSI standard in 1989, is currently used by almost all of today’s
commercial RDBMSs.

 190 PHP: A Beginner’s Guide

SQL statements fall into one of three categories:

● Data Definition Language (DDL) DDL consists of statements that define the
structure and relationships of a database and its tables. Typically, these statements are
used to create, delete, and modify databases and tables; specify field names and types;
and set indexes.

● Data Manipulation Language (DML) DML statements are related to altering
and extracting data from a database. These statements are used to add records to, and
delete records from, a database; perform queries; retrieve table records matching one
or more user-specified criteria; and join tables together using their common fields.

● Data Control Language (DCL) DCL statements are used to define access levels
and security privileges for a database. You would use these statements to grant or deny
user privileges; assign roles; change passwords; view permissions; and create rulesets
to protect access to data.

SQL commands resemble spoken English, which makes the language easy to learn.
The syntax is quite intuitive as well: every SQL statement begins with an “action word,”
like DELETE, INSERT, ALTER, or DESCRIBE, and ends with a semicolon. Whitespace,
tabs, and carriage returns are ignored. Here are a few examples of valid SQL statements:

CREATE DATABASE library;
SELECT movie FROM movies WHERE rating > 4;
DELETE FROM cars WHERE year_of_manufacture < 1980;

Table 7-1 lists the syntax for some common SQL statements, with explanations.

SQL Statement What It Does
CREATE DATABASE database-name Creates a new database

CREATE TABLE table-name (field1, field2, ...) Creates a new table

INSERT INTO table-name (field1, field2, ...)
VALUES (value1, value2, ...)

Inserts a new record into a table
with specified values

UPDATE table-name SET field1=value1,
field2=value2, ... [WHERE condition]

Updates records in a table with
new values

DELETE FROM table-name [WHERE condition] Deletes records from a table

SELECT field1, field2, ... FROM table-name
[WHERE condition]

Retrieves matching records from
a table

RENAME table-name TO new-table-name Renames a table

DROP TABLE table-name Deletes a table

DROP DATABASE database-name Deletes a database

Table 7-1 Common SQL Statements

 Chapter 7: Working with Databases and SQL 191

Try This 7-1

Q: How widely supported is SQL?

A: SQL is both an ANSI and ISO standard, and is widely supported by all standards-
compliant SQL database systems. That said, many database vendors have also
extended “standard” SQL with proprietary extensions, in order to offer customers
an improved feature set or better performance. These extensions differ from vendor
to vendor, and SQL statements that use these extensions may not work in the same
fashion on all database systems. Therefore, it’s always wise to check your database
system’s documentation and understand which, if any, proprietary extensions it offers
and how these extensions affect the SQL statements that you write.

Ask the Expert

 Creating and Populating a Database
Now that you’ve understood the basics, let’s try a hands-on exercise that should get you
familiar with using databases and SQL. In this section, you’ll use the interactive MySQL
command-line client to create a database and tables, add and edit records, and generate
result sets matching various criteria.

NOTE
Throughout the following exercise, boldface type indicates commands that you
should enter at the MySQL command-line prompt. Commands can be entered in
either uppercase or lowercase. Before beginning with the exercise, ensure that you
have installed, configured, and tested the MySQL database system according to the
instructions in Appendix A of this book.

Begin by starting up the MySQL command-line client and connecting to the MySQL
database with your username and password:

shell> mysql -u user -p
Password: ******

If all went well, you’ll see a welcome message and an interactive SQL prompt, like this:

mysql>

You can now proceed to enter SQL statements at this prompt. These statements will be
transmitted to, and executed on, the MySQL server, and the results will be displayed on
the lines following the prompt. Remember to end each statement with a semicolon.

(continued)

 192 PHP: A Beginner’s Guide

Creating the Database
Since all tables are stored in a database, the first step is to create one, using the CREATE
DATABASE statement:

mysql> CREATE DATABASE music;
Query OK, 1 row affected (0.05 sec)

Next, select this newly minted database as the default for all future commands with
the USE statement:

mysql> USE music;
Database changed

Adding Tables
Once you’ve got your database initialized, it’s time to add some tables to it. The SQL
command to accomplish this is the CREATE TABLE statement, which requires a table
name and a detailed description of the table’s fields. Here’s an example:

mysql> CREATE TABLE artists (
 -> artist_id INT(4) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 -> artist_name VARCHAR (50) NOT NULL,
 -> artist_country CHAR (2) NOT NULL
 ->);
Query OK, 0 rows affected (0.07 sec)

This statement creates a table named artists with three fields, artist_id, artist_name,
and artist_country. Notice that each field name is followed by a type declaration; this
declaration identifies the type of data that the field will hold, whether string, numeric,
temporal, or Boolean. MySQL supports a number of different data types, and the most
important ones are summarized in Table 7-2.

There are a few additional constraints (modifiers) that are set for the table in the
preceding statement:

● The NOT NULL modifier ensures that the field cannot accept a NULL value after each
field definition.

● The PRIMARY KEY modifier marks the corresponding field as the table’s primary key.

● The AUTO_INCREMENT modifier, which is only available for numeric fields, tells
MySQL to automatically generate a value for this field every time a new record is
inserted into the table, by incrementing the previous value by 1.

 Chapter 7: Working with Databases and SQL 193

Now, go ahead and create two more tables using these SQL statements:

mysql> CREATE TABLE ratings (
 -> rating_id INT(2) NOT NULL PRIMARY KEY,
 -> rating_name VARCHAR (50) NOT NULL
 ->);
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE songs (
 -> song_id INT(4) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 -> song_title VARCHAR(100) NOT NULL,
 -> fk_song_artist INT(4) NOT NULL,
 -> fk_song_rating INT(2) NOT NULL
 ->);
Query OK, 0 rows affected (0.05 sec)

Adding Records
Adding a record to a table is a simple matter of calling the INSERT statement with
appropriate values. Here’s an example, which adds a record to the artists table by
specifying values for the artist_id and artist_name fields:

mysql> INSERT INTO artists (artist_id, artist_name, artist_country)
 -> VALUES ('1', 'Aerosmith', 'US');
Query OK, 1 row affected (0.00 sec)

Field Type Description
INT A numeric type that can accept values in the range of –2147483648 to 2147483647

DECIMAL A numeric type with support for floating-point or decimal numbers

DATE A date field in the YYYY-MM-DD format

TIME A time field in the HH:MM:SS format

DATETIME A combined date/time type in the YYYY-MM-DD HH:MM:SS format

YEAR A field specifically for year displays in the range 1901 to 2155, in either YYYY or YY formats

TIMESTAMP A timestamp type, in YYYYMMDDHHMMSS format

CHAR A string type with a maximum size of 255 characters and a fixed length

VARCHAR A string type with a maximum size of 255 characters and a variable length

TEXT A string type with a maximum size of 65535 characters

BLOB A binary type for variable data

ENUM A string type that can accept one value from a list of previously defined possible values

SET A string type that can accept zero or more values from a set of previously defined possible values

Table 7-2 MySQL Data Types

(continued)

 194 PHP: A Beginner’s Guide

You’ll remember, from the preceding section, that the artist_id field was marked with
the AUTO_INCREMENT flag. This is a MySQL extension to standard SQL, which tells
MySQL to automatically assign a value to this field if it’s left unspecified. To see this in
action, try adding another record using the following statement:

mysql> INSERT INTO artists (artist_name, artist_country)
 -> VALUES ('Abba', 'SE');
Query OK, 1 row affected (0.00 sec)

In a similar vein, add some records to the ratings table:

mysql> INSERT INTO ratings (rating_id, rating_name) VALUES (4, 'Good');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO ratings (rating_id, rating_name) VALUES (5, 'Excellent');
Query OK, 1 row affected (0.00 sec)

And some to the songs table:

mysql> INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
 -> VALUES ('Janie\'s Got A Gun', 1, 4);
Query OK, 1 row affected (0.04 sec)
mysql> INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
 -> VALUES ('Crazy', 1, 5);
Query OK, 1 row affected (0.00 sec)

Notice that the records in the songs table are linked to records in the artists and ratings
tables via foreign keys. You’ll see these foreign key relationships in action in the next
section.

NOTE
The code archive for this book has a full list of SQL INSERT statements to populate the
three tables used in this exercise. Run these statements and complete building the tables
before proceeding to the next section.

Executing Queries
Once the data is in the database, it’s time to do something with it. SQL allows you to
search for records matching specific criteria using the SELECT statement. Here’s an
example, which returns all the records from the artists table:

 Chapter 7: Working with Databases and SQL 195

mysql> SELECT artist_id, artist_name FROM artists;
+-----------+-------------+
| artist_id | artist_name |
+-----------+-------------+
1	Aerosmith
2	Abba
3	Timbaland
4	Take That
5	Girls Aloud
6	Cubanismo
+-----------+-------------+
6 rows in set (0.00 sec)

In most cases, you will want to add filters to your query, to reduce the size of your result
set and ensure that it contains only records matching certain criteria. This is accomplished
by adding a WHERE clause to your SELECT statement together with one or more conditional
expressions. Here’s an example, which lists only artists from the United States:

mysql> SELECT artist_id, artist_name FROM artists
 -> WHERE artist_country = 'US';
+-----------+-------------+
| artist_id | artist_name |
+-----------+-------------+
| 1 | Aerosmith |
| 3 | Timbaland |
+-----------+-------------+
2 rows in set (0.00 sec)

All the standard comparison operators you’re already familiar with from PHP are
supported by SQL. The preceding example demonstrated the equality (=) operator; this
next one demonstrates the greater-than-or-equal-to (>=) operator, by listing all those songs
with ratings of 4 or higher:

mysql> SELECT song_title, fk_song_rating FROM songs
 -> WHERE fk_song_rating >= 4;
+-------------------+----------------+
| song_title | fk_song_rating |
+-------------------+----------------+
Janie's Got A Gun	4
Crazy	5
En Las Delicious	5
Pray	4
Apologize	4
SOS	4
Dancing Queen	4
+-------------------+----------------+
7 rows in set (0.00 sec)

(continued)

 196 PHP: A Beginner’s Guide

You can combine conditional expressions using the AND, OR, and NOT logical operators
(just like with regular PHP conditional statements). Here’s an example, which lists artists
from the United States or United Kingdom:

mysql> SELECT artist_name, artist_country FROM artists
 -> WHERE artist_country = 'US'
 -> OR artist_country = 'UK';
+-------------+----------------+
| artist_name | artist_country |
+-------------+----------------+
Aerosmith	US
Timbaland	US
Take That	UK
Girls Aloud	UK
+-------------+----------------+
4 rows in set (0.02 sec)

Ordering and Limiting Result Sets
If you’d like to see the data from a table ordered by a specific field, SQL offers the ORDER
BY clause. This clause lets you define the field name to sort against and the sort direction
(ascending or descending).

For example, to see an alphabetically sorted song list, use the following SQL statement:

mysql> SELECT song_title FROM songs
 -> ORDER BY song_title;
+---------------------------+
| song_title |
+---------------------------+
| Another Crack In My Heart |
| Apologize |
| Babe |
| Crazy |
| Dancing Queen |
| En Las Delicious |
| Gimme Gimme Gimme |
| Janie's Got A Gun |
| Pray |
| SOS |
| Sure |
| Voulez Vous |
+---------------------------+
12 rows in set (0.04 sec)

 Chapter 7: Working with Databases and SQL 197

To reverse-sort the list, add the additional DESC modifier, as in the next example:

mysql> SELECT song_title FROM songs
 -> ORDER BY song_title DESC;
+---------------------------+
| song_title |
+---------------------------+
| Voulez Vous |
| Sure |
| SOS |
| Pray |
| Janie's Got A Gun |
| Gimme Gimme Gimme |
| En Las Delicious |
| Dancing Queen |
| Crazy |
| Babe |
| Apologize |
| Another Crack In My Heart |
+---------------------------+
12 rows in set (0.00 sec)

SQL also lets you limit how many records appear in the result set with the LIMIT
keyword, which accepts two parameters: the record offset to start at (beginning with 0)
and the number of records to display. For example, to display rows 4–9 (inclusive) of a
result set, use the following statement:

mysql> SELECT song_title FROM songs
 -> ORDER BY song_title
 -> LIMIT 3,6;
+-------------------+
| song_title |
+-------------------+
| Crazy |
| Dancing Queen |
| En Las Delicious |
| Gimme Gimme Gimme |
| Janie's Got A Gun |
| Pray |
+-------------------+
5 rows in set (0.00 sec)

Using Wildcards
The SQL SELECT statement also supports a LIKE clause, which can be used to search
within text fields using wildcards. There are two types of wildcards allowed in a LIKE

(continued)

 198 PHP: A Beginner’s Guide

clause: the % character, which is used to signify zero or more occurrences of a character,
and the _ character, which is used to signify exactly one occurrence of a character.

The following example illustrates a LIKE clause in action, searching for song titles
with the character 'g' in them:

mysql> SELECT song_id, song_title FROM songs
 -> WHERE song_title LIKE '%g%';
+---------+-------------------+
| song_id | song_title |
+---------+-------------------+
1	Janie's Got A Gun
7	Apologize
8	Gimme Gimme Gimme
10	Dancing Queen
+---------+-------------------+
4 rows in set (0.00 sec)

Joining Tables
So far, all the queries you’ve seen have been concentrated on a single table. But SQL also
allows you to query two or more tables at a time, and display a combined result set. This
is technically referred to as a join, since it involves “joining” different tables at common
fields (the foreign keys) to create new views of the data.

TIP
When joining tables, prefix each field name with the name of the table it belongs to, in
order to avoid confusion in case fields in different tables share the same name.

Here’s an example of joining the songs and artists tables together using the common
artist_id field (the WHERE clause is used to map the common fields to each other):

mysql> SELECT song_id, song_title, artist_name FROM songs, artists
 -> WHERE songs.fk_song_artist = artists.artist_id;
+---------+---------------------------+-------------+
| song_id | song_title | artist_name |
+---------+---------------------------+-------------+
1	Janie's Got A Gun	Aerosmith
2	Crazy	Aerosmith
8	Gimme Gimme Gimme	Abba
9	SOS	Abba
10	Dancing Queen	Abba
11	Voulez Vous	Abba
7	Apologize	Timbaland
4	Sure	Take That

 Chapter 7: Working with Databases and SQL 199

5	Pray	Take That
6	Another Crack In My Heart	Take That
12	Babe	Take That
3	En Las Delicious	Cubanismo
+---------+---------------------------+-------------+
12 rows in set (0.00 sec)

And here’s an example of joining all three tables together and then filtering the result set
even further to include only those songs with a rating of 4 or higher and with non-U.S. artists:

mysql> SELECT song_title, artist_name, rating_name
 -> FROM songs, artists, ratings
 -> WHERE songs.fk_song_artist = artists.artist_id
 -> AND songs.fk_song_rating = ratings.rating_id
 -> AND ratings.rating_id >= 4
 -> AND artists.artist_country != 'US';
+------------------+-------------+-------------+
| song_title | artist_name | rating_name |
+------------------+-------------+-------------+
En Las Delicious	Cubanismo	Excellent
Pray	Take That	Good
SOS	Abba	Good
Dancing Queen	Abba	Good
+------------------+-------------+-------------+
4 rows in set (0.02 sec)

Modifying and Removing Records
Just as you INSERT records into a table, so too can you delete records with the DELETE
statement. Typically, you would select a specific subset of rows to be deleted by adding
the WHERE clause to the DELETE statement, as in the next example, which deletes all those
songs with a rating less than or equal to 3:

mysql> DELETE FROM songs
 -> WHERE fk_song_rating <= 3;
Query OK, 5 rows affected (0.02 sec)

There’s also an UPDATE statement, which can be used to change the contents of a
record; this too accepts a WHERE clause, so that you can apply changes to only those
records matching specific criteria. Consider the following example, which changes the
rating 'Excellent' to 'Fantastic':

mysql> UPDATE ratings SET rating_name = 'Fantastic'
 -> WHERE rating_name = 'Excellent';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

(continued)

 200 PHP: A Beginner’s Guide

You can alter multiple fields by separating them with commas. Here’s an example that
updates a particular song record in the songs table, changing both its title and its rating:

mysql> UPDATE songs SET song_title = 'Waterloo',
 -> fk_song_rating = 5
 -> WHERE song_id = 9;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Q: I’m using ____ database and it doesn’t support the _____ field type. What do I
do now?

A: Different databases have different syntax for field data types. For example, MySQL
calls integer fields INT, while SQLite calls the same fields INTEGER. However,
almost all databases will support—at a minimum—data types for integer values,
floating-point values, string values, binary values, and NULL values. All you need to
do is look up your database documentation and figure out the syntax to correctly use
these data types in your SQL statements.

Q: Why do I need to list all the required fields in my SELECT statement? Can’t I use the
* wildcard to get back all available fields?

A: While SQL does support the asterisk (*) wildcard to represent “all fields in a table,”
it is preferable to always explicitly name the fields that you would like to see in the
result set. This allows the application to survive structural changes in its table(s), and
is also usually more memory-efficient because the result set will not contain unwanted
or irrelevant data.

Using PHP’s MySQLi Extension
As explained previously, PHP allows developers to interact with databases in two ways:
by using a customized database-specific extension, or by using the database-neutral
PHP Data Objects (PDO) extension. While the PDO extension is more portable, many
developers still find it preferable to use the native database extension, especially when the
native extension offers better performance or more features than the PDO version.

Ask the Expert

 Chapter 7: Working with Databases and SQL 201

Of the various database engines supported by PHP, the most popular one by far is
MySQL. It’s not difficult to understand why: both PHP and MySQL are open-source
projects, and by using them together, developers can benefit from huge savings on the
licensing costs of commercial alternatives. Historically, too, PHP has offered out-of-
the-box support for MySQL since PHP 3, and it only makes sense to leverage off the
tremendous amount of thought PHP and MySQL developers have put into making sure
that the two packages work together seamlessly and smoothly.

In addition to supporting MySQL through the PHP Data Objects extension (discussed
in the next section), PHP also includes a custom MySQL extension named MySQL
Improved (MySQLi). This extension provides both speed and feature benefits over
the PDO version and is a good choice for MySQL-specific development projects. The
following sections discuss this extension in greater detail.

Retrieving Data
In the preceding section, you create a database table and used a SELECT query to retrieve
a result set from it. Now, do the same thing using PHP, as in the following script:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $mysqli->query($sql)) {
 if ($result->num_rows > 0) {
 while($row = $result->fetch_array()) {
 echo $row[0] . ":" . $row[1] . "\n";
 }
 $result->close();
 } else {
 echo "No records matching your query were found.";
 }
} else {
 echo "ERROR: Could not execute $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

 202 PHP: A Beginner’s Guide

Figure 7-3 illustrates what the output of this script should look like.
As you can see, using PHP to get data from a database involves several steps, which

are described here:

 1. In order to begin communication with the MySQL database server, you first need to
open a connection to the server. All communication between PHP and the database
server takes place through this connection.

 In order to initialize this connection, initialize an instance of the MySQLi class and
pass the object constructor four arguments: the host name of the MySQL server to
connect to, a valid username and password to gain access to it, and the name of the
database to use.

 Assuming the connection attempt is successful, this object instance represents the
database connection for all future operations and exposes methods for querying,
fetching, and processing result sets. If the connection attempt is unsuccessful, the
object instance will become false; an error message explaining the reason for failure
can now be obtained by calling the mysqli_connect_error() function.

TIP
If the database server and the Web server are both running on the same physical
machine, you can use localhost as the server name.

Figure 7-3 Retrieving records from a MySQL database with PHP

 Chapter 7: Working with Databases and SQL 203

 2. The next step is to create and execute the SQL query. This is accomplished by calling
the MySQLi object’s query() method and passing it the query to be executed.
If the query was unsuccessful, the method returns Boolean false, and an error message
explaining the cause of failure is stored in the MySQLi object’s 'error' property.

 3. If, on the other hand, the query is successful and returns one or more records, the return
value of the query() method is another object, this one an instance of the MySQLi_
Result class. This object represents the result set returned by the query, and it exposes
various methods for processing the individual records in the result set.

 One such method is the fetch_array() method. Each time fetch_array()
is invoked, it returns the next record in the result set as an array. This makes the
fetch_array() method very suitable for use in a while or for loop. The loop
counter determines how many times the loop should run; this value is obtained from
the MySQLi_Result object’s 'num_rows' property, which stores the number of
rows returned by the query. Individual fields from the record can be accessed as array
elements, using either the field index or the field name.

CAUTION
The 'num_rows' property is only meaningful when used with queries that return data,
such as SELECT queries; it shouldn’t be used with INSERT, UPDATE, or DELETE queries.

 4. Each result set returned after a query occupies some amount of memory. Thus, once the
result set has been processed, it’s a good idea to destroy the MySQLi_Result object,
and free up the used memory, by calling the object’s close() method. And once
you’ve completed working with the database, it’s also a good idea to destroy the main
MySQLi object in a similar manner, by calling its close() method.

Returning Records as Arrays and Objects
The preceding listing demonstrated one method of processing a result set: the fetch_
array() method of the MySQLi_Result object. This method returns each record from
the result set as an array containing both numerically indexed and string-indexed keys;
this allows developers the convenience of referring to individual fields of each record
either by index or by field name.

The preceding listing demonstrated how to retrieve individual fields using the field
index number. The following listing, which is equivalent to the preceding one, performs
the same task using field names:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");

 204 PHP: A Beginner’s Guide

if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $mysqli->query($sql)) {
 if ($result->num_rows > 0) {
 while($row = $result->fetch_array()) {
 echo $row['artist_id'] . ":" . $row['artist_name'] . "\n";
 }
 $result->close();
 } else {
 echo "No records matching your query were found.";
 }
} else {
 echo "ERROR: Could not execute $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

However, there’s also a third way of retrieving records: as objects, using the fetch_
object() method. Here, each record is represented as an object, and the fields of a
record are represented as object properties. Individual fields can then be accessed using
standard $object->property notation. The following listing illustrates this approach:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $mysqli->query($sql)) {
 if ($result->num_rows > 0) {
 while($row = $result->fetch_object()) {
 echo $row->artist_id . ":" . $row->artist_name . "\n";
 }

 Chapter 7: Working with Databases and SQL 205

 $result->close();
 } else {
 echo "No records matching your query were found.";
 }
} else {
 echo "ERROR: Could not execute $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

Adding or Modifying Data
It’s equally simple to perform a query that changes the data in the database, be it an
INSERT, UPDATE, or DELETE. The following example illustrates, by adding a new record
to the artists table:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// add a new record
// output: "New artist with id:7 added."
$sql = "INSERT INTO artists (artist_name, artist_country) VALUES
('Kylie Minogue', 'AU')";
if ($mysqli->query($sql) === true) {
 echo 'New artist with id:' . $mysqli->insert_id . ' added.';
} else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

As you’ll see, this is not very different from the programming needed to perform a
SELECT query. In fact, it’s a little simpler because there’s no result set to process; all
that’s needed is to test the return value of the query() method and check if the query was
successfully executed or not. Notice also the use of a new property, the 'insert_id'

 206 PHP: A Beginner’s Guide

property: this property returns the ID generated by the last INSERT query (only useful if
the table into which the INSERT occurred contained an auto-incrementing field).

How about updating an existing record? All that’s needed is to change the SQL
query string:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// add a new record
// output: "1 row(s) updated."
$sql = "UPDATE artists SET artist_name = 'Eminem', artist_country = 'US' WHERE
artist_id = 7";
if ($mysqli->query($sql) === true) {
 echo $mysqli->affected_rows . ' row(s) updated.';
} else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

When performing an UPDATE or DELETE, the number of rows affected by the
statement will be stored in the MySQLi object’s 'affected_rows' property. The
preceding listing shows this property in use.

Using Prepared Statements
In the event that you need to execute a particular query multiple times with different
values—for example, a series of INSERT statements—the MySQL database server
supports prepared statements, which offer a more efficient means of accomplishing this
task than repeatedly calling the $mysqli->query() method.

Essentially, a prepared statement is an SQL query template containing placeholder
variables for the values to be inserted or modified. This statement is stored on the database
server and invoked as often as needed, with the placeholders replaced with actual values
on each execution. Because the statement is stored on the database server, a prepared
statement is typically faster for batch operations that involve running the same SQL query
over and over with different values.

 Chapter 7: Working with Databases and SQL 207

Q: How do prepared statements offer better performance?

A: In the normal course, every time an SQL statement is executed on the database server,
the server must parse the SQL code and check its syntax and structure before allowing
it to execute. With a prepared statement, the SQL statement is stored in a temporary
location on the database server and thus only needs to be parsed and validated once.
Further, every time the statement is executed, only the placeholder values need to be
transmitted to the server instead of the complete statement.

Ask the Expert

To see a prepared statement in action, consider the following script, which inserts
multiple songs into the database using a prepared statement with PHP’s MySQLi
extension:

<?php
// define values to be inserted
$songs = array(
 array('Patience', 4, 3),
 array('Beautiful World', 4, 4),
 array('Shine', 4, 4),
 array('Hold On', 4, 3),
);

// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// prepare query template
// execute multiple times
$sql = "INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
VALUES (?, ?, ?)";
if ($stmt = $mysqli->prepare($sql)) {
 foreach ($songs as $s) {
 $stmt->bind_param('sii', $s[0], $s[1], $s[2]);
 if ($stmt->execute()) {
 echo "New song with id: " . $mysqli->insert_id . " added.\n";
 } else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
 }
 }

 208 PHP: A Beginner’s Guide

} else {
 echo "ERROR: Could not prepare query: $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

As this listing illustrates, using a prepared statement involves a different procedure
from the one you’re used to seeing from previous examples.

To use a prepared statement, it is necessary to first define the SQL query string
that will be executed multiple times. This query string typically contains one or more
placeholders, denoted by question marks (?). These placeholders will be replaced by
actual values on each execution of the statement. The query string with its placeholders is
then passed to the MySQLi object’s prepare() method, which checks the SQL for errors
and returns a MySQLi_Stmt object representing the prepared statement.

Executing the prepared statement is now a matter of performing two actions, usually
within a loop:

 1. Bind the values to the prepared statement. The values to be interpolated into the
statement must be bound to their placeholders with the MySQLi_Stmt object’s
bind_param() method. The first argument to this method must be an ordered
string sequence indicating the data types of the values to be interpolated (s for string,
i for integer, d for double-precision number); this argument is then followed by the
actual values. In the preceding listing, the string 'sii' indicates that the values to be
interpolated into the prepared statement will be, in sequence, a string type (the song
title), an integer type (the artist foreign key), and an integer type (the rating foreign key).

 2. Execute the prepared statement. Once the values have been bound to their placeholders,
the prepared statement is executed by calling MySQLi_Stmt object’s execute()
method. This method replaces the placeholders in the prepared statement with actual
values and executes it on the server.

Thus, using a prepared statement offers performance benefits when you need to execute
the same statement multiple times, with only the values changing on each execution.
Most popular databases, including MySQL, PostgreSQL, Oracle, and InterBase, support
prepared statements, and this feature should be used where available to make your SQL
batch operations more efficient.

 Chapter 7: Working with Databases and SQL 209

Try This 7-2

Handling Errors
If your database code doesn’t work as expected, don’t worry—the MySQLi extension
comes with a bunch of functions that can tell you why. You’ve already seen these in action
at various places in previous listings, but here’s a complete list:

● The MySQLi object’s 'error' property holds the last error message generated by the
database server.

● The MySQLi object’s 'errno' property holds the last error code returned by the
database server.

● The mysqli_connect_error() function returns the error message generated by
the last (failed) connection attempt.

● The mysqli_connect_errno() function returns the error code generated by the
last (failed) connection attempt.

TIP
To make your application more robust to errors, and to make it easier to find and
resolve bugs, it’s a good idea to use these error-handling functions liberally within
your code.

 Adding Employees to a Database
Now that you know the basics of using PHP’s MySQLi extension, let’s apply what you
learned in the preceding section to a “real” application. The application here is a Web
form, which allows a user to enter employee names and designations into a MySQL-based
employee database. Values entered into the form are validated and sanitized using PHP,
and transformed into database records using the PHP MySQLi extension.

To begin building this application, first fire up your MySQL command-line client and
initialize an empty database:

mysql> CREATE DATABASE employees;
Query OK, 1 row affected (0.20 sec)

Next, create a table to hold the employee records:

mysql> USE employees;
Database changed
mysql> CREATE TABLE employees (

(continued)

 210 PHP: A Beginner’s Guide

 -> id INT(4) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> name VARCHAR(255) NOT NULL,
 -> designation VARCHAR(255) NOT NULL
 ->);
Query OK, 0 rows affected (0.26 sec)

All done? The next step is to build a Web form to accept employee data—in this case,
each employee’s name and designation. On submission, the form processor will check the
input and, if valid, generate an INSERT query to write it to the database table created in
the preceding step.

Here’s the script (employee.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-2: Adding Employees to a Database</title>
 <style type="text/css">
 div#message {
 text-align:center;
 margin-left:auto;
 margin-right:auto;
 width:40%;
 border: solid 2px green
 }
 </style>
 </head>
 <body>
 <h2>Project 7-2: Adding Employees to a Database</h2>
 <h3>Add New Employee</h3>
<?php
 // if form submitted
 // process form input
 if (isset($_POST['submit'])) {
 // attempt connection to MySQL database
 $mysqli = new mysqli("localhost", "user", "pass", "employees");
 if ($mysqli === false) {
 die("ERROR: Could not connect to database. " . mysqli_connect_error());
 }

 // open message block
 echo '<div id="message">';

 // retrieve and check input values
 $inputError = false;
 if (empty($_POST['emp_name'])) {

 Chapter 7: Working with Databases and SQL 211

 echo 'ERROR: Please enter a valid employee name';
 $inputError = true;
 } else {
 $name = $mysqli->escape_string($_POST['emp_name']);
 }

 if ($inputError != true && empty($_POST['emp_desig'])) {
 echo 'ERROR: Please enter a valid employee designation';
 $inputError = true;
 } else {
 $designation = $mysqli->escape_string($_POST['emp_desig']);
 }

 // add values to database using INSERT query
 if ($inputError != true) {
 $sql = "INSERT INTO employees (name, designation)
 VALUES ('$name', '$designation')";
 if ($mysqli->query($sql) === true) {
 echo 'New employee record added with ID: ' . $mysqli->insert_id;
 } else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
 }
 }

 // close message block
 echo '</div>';

 // close connection
 $mysqli->close();
 }
?>
 </div>

 <form action="employee.php" method="POST">
 Employee name:

 <input type="text" name="emp_name" size="40" />
 <p/>
 Employee designation:

 <input type="text" name="emp_desig" size="40" />
 <p/>
 <input type="submit" name="submit" value="Submit" />
 </form>

 </body>
</html>

When this script is invoked, it generates a Web form with fields for an employee’s
name and designation. Figure 7-4 demonstrates what the initial form looks like.

(continued)

 212 PHP: A Beginner’s Guide

When this form is submitted, the script proceeds to initialize a new MySQLi object
and open a connection to the MySQL database server. It then checks the form fields to
ensure that they contain valid input values. If they do, each input value is “sanitized” using
the MySQLi object’s escape_string() method, which automatically escapes special
characters in the input as a prelude to inserting it into the database, and then interpolated into
an INSERT query, which is executed via the object’s query() method to save the values to
the database. Errors, if any, are displayed using the MySQLi object’s error property.

Figure 7-5 demonstrates the output when a record is successfully added and Figure 7-6
demonstrates the output when an input field fails validation.

So that was pretty easy. Now, how about revising this script so that, in addition to
allowing you to add new employees to the database, it also displays the existing employee
records from the database? This isn’t very difficult—add another call to the query()

Figure 7-4 A Web form to enter a new employee

 Chapter 7: Working with Databases and SQL 213

Figure 7-5 The results of successfully adding a new employee to the database

(continued)
Figure 7-6 The output after invalid data is submitted through the Web form

 214 PHP: A Beginner’s Guide

method, this time with a SELECT query, and process the result set using a loop. Here’s the
revised code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-2: Adding Employees to a Database</title>
 <style type="text/css">
 div#message {
 text-align:center;
 margin-left:auto;
 margin-right:auto;
 width:40%;
 border: solid 2px green
 }
 table {
 border-collapse: collapse;
 width: 320px;
 }
 tr.heading {
 font-weight: bolder;
 }
 td {
 border: 1px solid black;
 padding: 0 0.5em;
 }
 </style>
 </head>
 <body>
 <h2>Project 7-2: Adding Employees to a Database</h2>
 <h3>Add New Employee</h3>
<?php
 // attempt connection to MySQL database
 $mysqli = new mysqli("localhost", "user", "pass", "employees");
 if ($mysqli === false) {
 die("ERROR: Could not connect to database. " . mysqli_connect_error());
 }

 // if form submitted
 // process form input
 if (isset($_POST['submit'])) {
 // open message block
 echo '<div id="message">';

 // retrieve and check input values
 $inputError = false;
 if (empty($_POST['emp_name'])) {

 Chapter 7: Working with Databases and SQL 215

 echo 'ERROR: Please enter a valid employee name';
 $inputError = true;
 } else {
 $name = $mysqli->escape_string($_POST['emp_name']);
 }

 if ($inputError != true && empty($_POST['emp_desig'])) {
 echo 'ERROR: Please enter a valid employee designation';
 $inputError = true;
 } else {
 $designation = $mysqli->escape_string($_POST['emp_desig']);
 }

 // add values to database using INSERT query
 if ($inputError != true) {
 $sql = "INSERT INTO employees (name, designation)
 VALUES ('$name', '$designation')";
 if ($mysqli->query($sql) === true) {
 echo 'New employee record added with ID: ' . $mysqli->insert_id;
 } else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
 }
 }

 // close message block
 echo '</div>';
 }
?>
 </div>

 <form action="employee.php" method="POST">
 Employee name:

 <input type="text" name="emp_name" size="40" />
 <p/>
 Employee designation:

 <input type="text" name="emp_desig" size="40" />
 <p/>
 <input type="submit" name="submit" value="Submit" />
 </form>

 <h3>Employee Listing</h3>
<?php
 // get records
 // format as HTML table
 $sql = "SELECT id, name, designation FROM employees";
 if ($result = $mysqli->query($sql)) {
 if ($result->num_rows > 0) {
 echo "<table>\n";
 echo " <tr class=\"heading\">\n";
 echo " <td>ID</td>\n";
 echo " <td>Name</td>\n";
 echo " <td>Designation</td>\n";

(continued)

 216 PHP: A Beginner’s Guide

 echo " </tr>\n";
 while($row = $result->fetch_object()) {
 echo " <tr>\n";
 echo " <td>" . $row->id . "</td>\n";
 echo " <td>" . $row->name . "</td>\n";
 echo " <td>" . $row->designation . "</td>\n";
 echo " </tr>\n";
 }
 echo "</table>";
 $result->close();
 } else {
 echo "No employees in database.";
 }
 } else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
 }

 // close connection
 $mysqli->close();
?>
 </body>
</html>

This version of the script now sports a SELECT query, which retrieves the records
from the employees table as objects and processes them using a loop. These records are
formatted as an HTML table and printed below the Web form. A useful side effect of this
arrangement is that new employee records saved through the form will be immediately
reflected in the HTML table once the form is submitted.

Figure 7-7 illustrates the revised output of the script.

Using PHP’s SQLite Extension
At this point, you know how to hook a PHP script up to a MySQL database and retrieve,
add, edit, and delete records from it. However, MySQL isn’t the only game in town—
PHP 5.x also includes built-in support for SQLite, a lightweight, efficient alternative to
MySQL. This section discusses SQLite and PHP’s SQLite extension in greater detail.

Introducing SQLite
SQLite is a fast, efficient database system that offers a viable alternative to MySQL,
especially for small- to medium-sized applications. However, unlike MySQL, which
contains a large number of interrelated components, SQLite is fully self-contained in a

 Chapter 7: Working with Databases and SQL 217

single library file. It’s also significantly smaller in size than MySQL—the command-
line version of SQLite weighs in at under 200KB—and supports all the standard SQL
commands you’re used to. MySQL and SQLite also differ in their licensing policies:
unlike MySQL, SQLite source code is completely public-domain, which means that
developers can use and distribute it however they choose, in both commercial and non-
commercial products.

SQLite’s small size belies its capabilities, however. It supports databases up to two
terabytes in size and can actually produce better performance than MySQL in certain
situations. Part of this is for architectural reasons: SQLite reads and writes records
directly from and to database files on disk and so incurs less performance overhead than
MySQL, which operates a client-server architecture that may be affected by network-level
variables.

Figure 7-7 A Web page displaying the list of employees

 218 PHP: A Beginner’s Guide

NOTE
In the following exercise, boldface type indicates commands that you should enter
at the SQLite command-line prompt. Commands can be entered in either uppercase
or lowercase. Before beginning with the exercise, ensure that you have installed,
configured, and tested the SQLite database system according to the instructions in
Appendix A of this book.

SQLite supports all the standard SQL statements you’ve grown to know and love over
the preceding two sections: SELECT, INSERT, DELETE, UPDATE, and CREATE TABLE.
The following example illustrates, by replicating the MySQL database tables used in the
preceding section using SQLite. Begin by starting up the SQLite command-line client and
creating a new SQLite database file in the current directory, named music.db:

shell> sqlite music.db

If all went well, you’ll see a welcome message and an interactive SQL prompt, like
this:

sqlite>

You can now proceed to enter SQL statements at this prompt. Begin by creating a
table to hold artist information:

sqlite> CREATE TABLE artists (
 ...> artist_id INTEGER NOT NULL PRIMARY KEY,
 ...> artist_name TEXT NOT NULL,
 ...> artist_country TEXT NOT NULL
 ...>);

Unlike MySQL, which offers a wide range of different data types for its fields, SQLite
supports just four types; these are summarized in Table 7-3.

Field Type Description
INTEGER A numeric type for signed integer values

REAL A numeric type for floating-point values

TEXT A string type

BLOB A binary type

Table 7-3 SQLite Data Types

 Chapter 7: Working with Databases and SQL 219

What is more important, SQLite is a “typeless” database engine. This means that fields
in an SQLite database need not be associated with a specific type, and even if they are,
they can still hold values of a type different than what is specified. The only exception to
this rule are fields of type INTEGER PRIMARY KEY: these fields are “auto-number” fields
that generate unique numeric identifiers for the records in a table, similar to MySQL’s
AUTO_INCREMENT fields.

With these facts in mind, go ahead and create the remaining two tables using these
SQL statements:

sqlite> CREATE TABLE ratings (
 ...> rating_id INTEGER NOT NULL PRIMARY KEY,
 ...> rating_name TEXT NOT NULL
 ...>);

sqlite> CREATE TABLE songs (
 ...> song_id INTEGER NOT NULL PRIMARY KEY,
 ...> song_title TEXT NOT NULL,
 ...> fk_song_artist INTEGER NOT NULL,
 ...> fk_song_rating INTEGER NOT NULL
 ...>);

Next, populate the tables with some records:

sqlite> INSERT INTO artists (artist_id, artist_name, artist_country)
 ...> VALUES ('1', 'Aerosmith', 'US');
sqlite> INSERT INTO artists (artist_name, artist_country)
 ...> VALUES ('Abba', 'SE');

sqlite> INSERT INTO ratings (rating_id, rating_name)
 ...> VALUES (4, 'Good');
sqlite> INSERT INTO ratings (rating_id, rating_name)
 ...> VALUES (5, 'Excellent');

sqlite> INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
 ...> VALUES ('Janie''s Got A Gun', 1, 4);
sqlite> INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
 ...> VALUES ('Crazy', 1, 5);

NOTE
The code archive for this book has a full list of SQL INSERT statements to populate the
three tables used in this exercise. Run these statements and complete building the tables
before proceeding.

 220 PHP: A Beginner’s Guide

Once you’re done, try a SELECT statement:

sqlite> SELECT artist_name, artist_country FROM artists
 ...> WHERE artist_country = 'US'
 ...> OR artist_country = 'UK';
Aerosmith|US
Timbaland|US
Take That|UK
Girls Aloud|UK

SQLite fully supports SQL joins—here’s an example:

sqlite> SELECT song_title, artist_name, rating_name
 ...> FROM songs, artists, ratings
 ...> WHERE songs.fk_song_artist = artists.artist_id
 ...> AND songs.fk_song_rating = ratings.rating_id
 ...> AND ratings.rating_id >= 4
 ...> AND artists.artist_country != 'US';
En Las Delicious|Cubanismo|Fantastic
Pray|Take That|Good
SOS|Abba|Fantastic
Dancing Queen|Abba|Good

Retrieving Data
Retrieving records from an SQLite database with PHP is not very different from retrieving
them from a MySQL database. The following PHP script illustrates the process using the
music.db database created in the preceding section:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $sqlite->query($sql)) {
 if ($result->numRows() > 0) {
 while($row = $result->fetch()) {
 echo $row[0] . ":" . $row[1] . "\n";
 }
 } else {
 echo "No records matching your query were found.";
 }
} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

 Chapter 7: Working with Databases and SQL 221

This script performs the following actions:

 1. It opens the SQLite database file for data operations, by initializing an instance of the
SQLiteDatabase class and passing the object constructor the full path to the database
file. If this database file cannot be found, an empty database file will be created with
the supplied name (assuming the script has write privileges to the corresponding
directory).

 2. The next step is to create and execute the SQL query. This is accomplished by calling
the SQLiteDatabase object’s query() method and passing it the query to be executed.
Depending on whether or not the query was successful, the function returns true or
false; in the event of a failure, the error code corresponding to reason for failure can be
obtained by calling the SQLiteDatabase object’s lastError() method. The sqlite_
error_string() function converts this error code into a human-readable error
message.

TIP
There’s a close similarity between these steps and the steps you followed to use the
MySQL extension in the preceding section.

 3. If, on the other hand, the query is successful and returns one or more records, the
return value of the query() method is another object, this one an instance of the
SQLiteResult class. This object represents the result set returned by the query, and it
exposes various methods for processing the individual records in the result set.

 This script uses the fetch() method, which returns the next record in the result set
as an array each time it is invoked. Used in a loop, this method provides a convenient
way to iterate over the entire result set, one record at a time. Individual fields from the
record can be accessed as array elements, using either the field index or the field name.
The number of records in the result set can be retrieved via the SQLiteResult object’s
numRows() method.

 4. Once the entire result set has been processed and no further database operations are to
take place, it’s a good idea to close the database handle, and free the memory occupied
by it, by destroying the SQLiteDatabase object.

Retrieving Records as Arrays and Objects
The SQLiteResult object’s fetch() method accepts an additional modifier, which
controls how result set records are fetched. This modifier can be any one of the values
SQLITE_NUM (to return each record as a numerically indexed array), SQLITE_ASSOC

 222 PHP: A Beginner’s Guide

(to return each record as an associative array), or SQLITE_BOTH (to return each record
as both a numerically indexed and an associative array and the default option). Here’s an
example, which illustrates these modifiers in action while producing output equivalent to
the preceding one:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

// attempt query execution
// print records using different styles
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $sqlite->query($sql)) {

 // retrieve record as numeric array
 $row = $result->fetch(SQLITE_NUM);
 echo $row[0] . ":" . $row[1] . "\n";

 // retrieve record as associative array
 $row = $result->fetch(SQLITE_ASSOC);
 echo $row['artist_id'] . ":" . $row['artist_name'] . "\n";

 // retrieve record as object
 $row = $result->fetchObject();
 echo $row->artist_id . ":" . $row->artist_name . "\n";

} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

It’s also possible to return each record as an object, by replacing fetch() with the
fetchObject() method. Here’s an example equivalent to the preceding listing, except
retrieving field values as object properties instead of array elements:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

 Chapter 7: Working with Databases and SQL 223

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $sqlite->query($sql)) {
 if ($result->numRows() > 0) {
 while($row = $result->fetchObject()) {
 echo $row->artist_id . ":" . $row->artist_name . "\n";
 }
 } else {
 echo "No records matching your query were found.";
 }
} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

An interesting feature of the SQLite extension is the ability to retrieve all the
records from the result set at once as a nested set of arrays, via the SQLiteResult
object’s fetchAll() method. A foreach loop can then iterate over this nested
collection, retrieving records one after another. The following example illustrates
this procedure in action:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $sqlite->query($sql)) {
 $data = $result->fetchAll();
 if (count($data) > 0) {
 foreach ($data as $row) {
 echo $row[0] . ":" . $row[1] . "\n";
 }
 } else {
 echo "No records matching your query were found.";
 }

 224 PHP: A Beginner’s Guide

} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

CAUTION
The fetchAll() method returns the complete result set as a nested set of arrays,
which are stored in system memory until completely processed. To avoid running out
of memory, don’t use this method if your query is likely to return a large number of
records.

Adding or Modifying Data
For queries that don’t return a result set, such as INSERT, UPDATE, and DELETE queries,
the SQLite extension offers the queryExec() method. The following example illustrates
it in action, by adding a new record to the artists table:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

// attempt query execution
// add a new record
// output: "New artist with id:8 added."
$sql = "INSERT INTO artists (artist_name, artist_country) VALUES ('James
Blunt', 'UK')";
if ($sqlite->queryExec($sql) == true) {
 echo 'New artist with id:' . $sqlite->lastInsertRowid() . ' added.';
} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

Depending on whether or not the query succeeded, queryExec() returns true or
false; it’s easy to test this return value and print a success or failure message. If the

 Chapter 7: Working with Databases and SQL 225

record was inserted into a table with an INTEGER PRIMARY KEY field, SQLite will
have automatically assigned the record a unique identifying number. This number can be
retrieved with the SQLiteDatabase object’s lastInsertRowid() method, as illustrated
in the preceding listing.

CAUTION
For INSERTs, UPDATEs, and DELETEs to work, remember that your PHP script must
have write privileges for the SQLite database file.

When performing an UPDATE or DELETE query, the number of rows affected by the
query can likewise be retrieved via the SQLiteDatabase object’s changes() method.
The following example demonstrates, by updating the song ratings in the database and
returning a count of the records affected:

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('music.db') or die ("Could not open database");

// attempt query execution
// update record
// output: "3 row(s) updated."
$sql = "UPDATE songs SET fk_song_rating = 4 WHERE fk_song_rating = 3";
if ($sqlite->queryExec($sql) == true) {
 echo $sqlite->changes() . ' row(s) updated.';
} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

Handling Errors
Both the query() and queryExec() methods return false if an error occurs during
query preparation or execution. It’s easy to check the return value of these methods
and retrieve the code corresponding to the error by calling the SQLiteDatabase object’s
lastError() method. Unfortunately, this error code isn’t very useful by itself; so, for a
textual description of what went wrong, wrap the call to lastError() in the sqlite_
error_string() function, as most of the preceding examples do.

 226 PHP: A Beginner’s Guide

Try This 7-3 Creating a Personal To-Do List
Now that you’ve got a handle on SQLite, how about using it in a practical application:
a personal to-do list that you can update and view through your Web browser. This to-
do list will allow you to enter tasks and due dates, assign priorities to tasks, edit task
descriptions, and mark tasks as complete. It’s a little more complicated than applications
you’ve worked on so far, as it includes quite a few moving parts; however, if you’ve been
following along until this point, you shouldn’t find it too hard to figure out.

To begin, create a new SQLite database named todo.db, and add an empty table to
hold task descriptions and dates:

shell> sqlite todo.db
sqlite> CREATE TABLE tasks (
 ...> id INTEGER PRIMARY KEY,
 ...> name TEXT NOT NULL,
 ...> due TEXT NOT NULL,
 ...> priority TEXT NOT NULL
 ...>);

This table has four fields, one each for the record ID, the task name, the due date for the
task, and the task’s priority.

Next, create a Web form to add new tasks to this database (save.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-3: Creating a Personal To-Do List</title>
 <style type="text/css">
 div#message {
 text-align:center;
 margin-left:auto;
 margin-right:auto;
 width:40%;
 border: solid 2px green
 }
 </style>
 </head>
 <body>
 <h2>Project 7-3: Creating a Personal To-Do List</h2>
 <h3>Add New Task</h3>

 <?php
 // if form not submitted
 // generate new form

 Chapter 7: Working with Databases and SQL 227

 if (!isset($_POST['submit'])) {
 ?>

 <form method="post" action="save.php">
 Description:

 <input type="text" name="name" />
 <p>
 Date due (dd/mm/yyyy):

 <input type="text" name="dd" size="2" />
 <input type="text" name="mm" size="2" />
 <input type="text" name="yy" size="4" />
 <p>
 Priority:

 <select name="priority">
 <option name="High">High</option>
 <option name="Medium">Medium</option>
 <option name="Low">Low</option>
 </select>
 <p>
 <input type="submit" name="submit" value="Save" />
 </form>

 <?php
 } else {
 // if form submitted
 // attempt database connection
 $sqlite = new SQLiteDatabase('todo.db') or die ("Could not open
database");

 // check and sanitize input
 $name = !empty($_POST['name']) ? sqlite_escape_string
($_POST['name']) : die('ERROR: Task name is required');
 $dd = !empty($_POST['dd']) ? sqlite_escape_string((int)
$_POST['dd']) : die('ERROR: Task due date is required');
 $mm = !empty($_POST['mm']) ? sqlite_escape_string((int)
$_POST['mm']) : die('ERROR: Task due date is required');
 $yy = !empty($_POST['yy']) ? sqlite_escape_string((int)
$_POST['yy']) : die('ERROR: Task due date is required');
 $date = checkdate($mm, $dd, $yy) ? mktime(0, 0, 0, $mm,
$dd, $yy) : die('ERROR: Task due date is invalid');
 $priority = !empty($_POST['priority']) ? sqlite_escape_string
($_POST['priority']) : die('ERROR: Task priority is required');

 // attempt query execution
 // add a new record
 $sql = "INSERT INTO tasks (name, due, priority) VALUES ('$name',
'$date', '$priority')";

(continued)

 228 PHP: A Beginner’s Guide

 if ($sqlite->queryExec($sql) == true) {
 echo '<div id="message">Task record successfully added to
database.</div>';
 } else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_
string($sqlite->lastError());
 }

 // close connection
 unset($sqlite);
 }
 ?>

 </body>
</html>

Figure 7-8 illustrates what this Web form looks like.

Figure 7-8 A Web form to add to-do items to the database

 Chapter 7: Working with Databases and SQL 229

When a user submits this form, the data entered is first validated to ensure that all
required fields are present. Values entered into the three date field are also checked with
PHP’s checkdate() function, to ensure that together they form a valid date. The input
is then further sanitized by passing it through the sqlite_escape_string() function,
which automatically escapes special characters in the input, and saved to the database
using an INSERT query.

Figure 7-9 illustrates the output of successfully adding a new task to the database.
So that takes care of adding tasks to the to-do list. Now, how about viewing them? As

you will probably have guessed by now, this is simply a matter of using a SELECT query
to retrieve all the records from the database, and then format the resulting information
such that it is suitable for display on a Web page. Here’s the relevant code (list.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-3: Creating a Personal To-Do List</title>
 <style type="text/css">
 div#message {
 text-align:center;

Figure 7-9 The results of adding a new to-do item to the database

(continued)

 230 PHP: A Beginner’s Guide

 margin-left:auto;
 margin-right:auto;
 width:60%;
 border: solid 2px green
 }
 table {
 border-collapse: collapse;
 width: 500px;
 }
 tr.heading {
 font-weight: bolder;
 }
 td {
 border: 1px solid black;
 padding: 1em;
 }
 tr.high {
 background: #cc1111;
 }
 tr.medium {
 background: #00aaaa;
 }
 tr.low {
 background: #66dd33;
 }
 a {
 color: black;
 border: outset 2px black;
 text-decoration: none;
 padding: 3px;
 }
 </style>
 </head>
 <body>
 <h2>Project 7-3: Creating a Personal To-Do List</h2>
 <h3>Task List</h3>

<?php
// attempt database connection
$sqlite = new SQLiteDatabase('todo.db') or die ("Could not open
database");

// get records
// format as HTML table
$sql = "SELECT id, name, due, priority FROM tasks ORDER BY due";
if ($result = $sqlite->query($sql)) {
 if ($result->numRows() > 0) {

 Chapter 7: Working with Databases and SQL 231

 echo "<table>\n";
 echo " <tr class=\"heading\">\n";
 echo " <td>Description</td>\n";
 echo " <td>Due date</td>\n";
 echo " <td></td>\n";
 echo " </tr>\n";
 while($row = $result->fetchObject()) {
 echo " <tr class=\"" . strtolower($row->priority) . "\">\n";
 echo " <td>" . $row->name . "</td>\n";
 echo " <td>" . date('d M Y',$row->due) . "</td>\n";
 echo " <td>id . "\">Mark as
Done</td>\n";
 echo " </tr>\n";
 }
 echo "</table>";
 } else {
 echo '<div id="message">No tasks listed in database.</div>';
 }
} else {
 echo 'ERROR: Could not execute query: $sql. ' . sqlite_error_
string($sqlite->lastError());
}

// close connection
unset($sqlite);
?>

 <p/>
 Add New Task

 </body>
</html>

Nothing too taxing here: the script merely executes a SELECT query with exec(),
and then iterates over the result set, printing the records found as rows of an HTML table.
Notice that depending on the priority field of each record, the corresponding HTML table
row is color-coded in red, green, or blue.

Figure 7-10 illustrates a sample of the output.
You’ll see something else in the figure: each item in the to-do list comes with an

option to 'Mark as Done'. This option points to yet another PHP script, mark.php,
which is responsible for removing the corresponding record from the database. Look
closely at the URL to mark.php, and you’ll see that the record ID is being passed along as
well, as the variable $id. Within mark.php, this ID will be accessible through the $_GET
array, as $_GET['id'].

(continued)

 232 PHP: A Beginner’s Guide

What does mark.php do? Nothing too complex—it simply uses the record ID passed to
it in $_GET to formulate and execute a DELETE query, which removes the record from the
database. Here’s the code (mark.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-3: Creating a Personal To-Do List</title>
 <style type="text/css">
 div#message {

Figure 7-10 A Web page displaying to-do list items, sorted by due date

 Chapter 7: Working with Databases and SQL 233

 text-align:center;
 margin-left:auto;
 margin-right:auto;
 width:40%;
 border: solid 2px green
 }
 </style>
 </head>
 <body>
 <h2>Project 7-3: Creating a Personal To-Do List</h2>
 <h3>Remove Completed Task</h3>

 <?php
 if (isset($_GET['id'])) {
 // attempt database connection
 $sqlite = new SQLiteDatabase('todo.db') or die ("Could not open
database");

 // check and sanitize input
 $id = !empty($_GET['id']) ? sqlite_escape_string((int)$_
GET['id']) : die('ERROR: Task ID is required');

 // delete record
 $sql = "DELETE FROM tasks WHERE id = '$id'";
 if ($sqlite->queryExec($sql) == true) {
 echo '<div id="message">Task record successfully removed from
database.</div>';
 } else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_
string($sqlite->lastError());
 }

 // close connection
 unset($sqlite);
 } else {
 die ('ERROR: Task ID is required');
 }
 ?>

 </body>
</html>

Figure 7-11 illustrates the output of successfully removing a task from the database.
And now, when you revisit list.php, your to-do list will no longer display the item that

you marked done. Simple, isn’t it!

 234 PHP: A Beginner’s Guide

Using PHP’s PDO Extension
In the previous sections, you learned how to integrate your PHP application with both
MySQL and SQLite databases. As you will have seen, the MySQLi and SQLite extensions
use differently named methods to do their work; as a result, switching from one database
system to another essentially involves rewriting all your database code to use the new
methods. That’s why PHP also offers the database-neutral PHP Data Objects (PDO)
extension, which offers greater portability and can significantly reduce the effort involved
in switching from one database system to another.

The following sections discuss the PDO extension in greater detail, providing
information on how it can be used to connect to different database systems, perform
queries, process result sets, and handle connection or query errors. Most of the examples
assume a MySQL database system; however, as you’ll see, PDO-based programs require
minimal modification to work with other database systems, including SQLite.

Retrieving Data
PDO works by providing a standard set of functions for common database operations such
as connecting, querying, result set processing and error handling, and internally translating
these functions to native API calls understood by the database in use. To illustrate how it

Figure 7-11 The results of marking a to-do item as complete

 Chapter 7: Working with Databases and SQL 235

works, consider the following example, which executes a SELECT query and displays the
records found:

<?php
// attempt a connection
try {
 $pdo = new PDO('mysql:dbname=music;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// create and execute SELECT query
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $pdo->query($sql)) {
 while($row = $result->fetch()) {
 echo $row[0] . ":" . $row[1] . "\n";
 }
} else {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
}

// close connection
unset($pdo);
?>

As this listing illustrates, using PDO to get data from a database involves steps similar
to those you’ve seen in previous sections:

 1. The first step is to initialize an instance of the PDO class and pass the object constructor
three arguments: a Data Source Name (DSN) string indicating the type of database to
connect to as well as other database-specific options, a valid database username, and
the corresponding password. The DSN string varies from database to database; you can
typically obtain the exact format for this string from the database’s documentation.

 Table 7-4 lists some common DSN string formats.

Database DSN String
MySQL 'mysql:host=host;port=port;dbname=db'

SQLite 'sqlite:path/to/database/file'

PostgreSQL 'pgsql:host=host port=port dbname=db user=user
password=pass'

Oracle 'oci:dbname=//host:port/db'

Firebird 'firebird:User=user;Password=pass;Database=db;
DataSource=host;Port=port'

Table 7-4 Common DSN Strings

 236 PHP: A Beginner’s Guide

 If the connection attempt is unsuccessful, an exception will be raised; this exception
can be caught and handled using PHP’s exception-handling mechanism (more details
on exceptions can be obtained from Chapter 10 of this book).

 2. Assuming a successful connection, the next step is to formulate an SQL query and
execute it using PDO’s query() method. The return value of this method is a resultset,
represented by a PDOStatement object. The contents of the resultset can be processed
using the object’s fetch() method, which returns the next record in the resultset as an
array (both associative and indexed). Individual fields from the record can be accessed
as array elements in a loop, using either the field index or the field name.

Q: How do I calculate the number of records in my resultset with PDO?

A: Unlike the MySQL and SQLite extensions, PDO does not offer a built-in method
or property to directly retrieve the number of records in a returned resultset. This is
because not all database systems return this information, and so PDO cannot provide this
information in a portable manner. Should you still require this information, however, the
recommended approach to this task in the PHP manual is to execute a SELECT COUNT(*)
... statement with your desired query and retrieve the first field of the resultset, which
will hold the number of records matching the query. For more information, review the
discussion at www.php.net/manual/en/function.PDOStatement-rowCount.php.

Ask the Expert

The PDOStatement object’s fetch() method accepts an additional modifier, which
controls how result set records are fetched. Some valid values for this modifier are listed
in Table 7-5.

Modifier What It Does
PDO::FETCH_NUM Returns each record as a numerically indexed array

PDO::FETCH_ASSOC Returns each record as an associative array keyed on the field name

PDO::FETCH_BOTH Returns each record as both a numerically indexed array and an associative
array (default value)

PDO::FETCH_OBJ Returns each record as an object with properties corresponding to the
field names

PDO::FETCH_LAZY Returns each record as a numerically indexed array, associative array,
and object

Table 7-5 Modifiers to PDO’s fetch() Method

 Chapter 7: Working with Databases and SQL 237

The following listing illustrates these modifiers in action:

<?php
// attempt a connection
try {
 $pdo = new PDO('mysql:dbname=music;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// create and execute SELECT query
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $pdo->query($sql)) {

 // retrieve record as numeric array
 $row = $result->fetch(PDO::FETCH_NUM);
 echo $row[0] . ":" . $row[1] . "\n";

 // retrieve record as associative array
 $row = $result->fetch(PDO::FETCH_ASSOC);
 echo $row['artist_id'] . ":" . $row['artist_name'] . "\n";

 // retrieve record as object
 $row = $result->fetch(PDO::FETCH_OBJ);
 echo $row->artist_id . ":" . $row->artist_name . "\n";

 // retrieve record using combination of styles
 $row = $result->fetch(PDO::FETCH_LAZY);
 echo $row['artist_id'] . ":" . $row->artist_name . "\n";

} else {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
}

// close connection
unset($pdo);
?>

Adding and Modifying Data
PDO also makes it easy to perform INSERT, UPDATE, and DELETE queries with its
exec() method. This method, which is designed for one-off SQL queries that change the

 238 PHP: A Beginner’s Guide

database, returns the number of records affected by the query. Here’s an example of using
it to insert and delete a record:

<?php
// attempt a connection
try {
 $pdo = new PDO('mysql:dbname=music;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// create and execute INSERT query
$sql = "INSERT INTO artists (artist_name, artist_country) VALUES ('Luciano
Pavarotti', 'IT')";
$ret = $pdo->exec($sql);
if ($ret === false) {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
} else {
 $id = $pdo->lastInsertId();
 echo 'New artist with id: ' . $id . ' added.';
}

// create and execute DELETE query
$sql = "DELETE FROM artists WHERE artist_country = 'IT'";
$ret = $pdo->exec($sql);
if ($ret === false) {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
} else {
 echo 'Deleted ' . $ret . ' record(s).';
}

// close connection
unset($pdo);
?>

This listing uses the exec() method twice, first to insert a new record and then
to delete records matching a specified condition. If the query passed to exec() is
unsuccessful, exec() returns false; if not, it returns the number of records affected by
the query. Notice also the script’s use of the PDO object’s lastInsertId() method,
which returns the ID generated by the last INSERT command if the table contains an auto-
incrementing field.

TIP
If no records are affected by the query executed by the exec() method, the method will
return zero. Don’t confuse this with the Boolean false value returned by exec() if the
query fails. To avoid confusion, the PHP manual recommends always testing the return
value of exec() with the === operator instead of the == operator.

 Chapter 7: Working with Databases and SQL 239

Using Prepared Statements
PDO also supports prepared statements, via its prepare() and execute() methods. The
following example illustrates, using a prepared statement to add various songs to the database:

<?php
// define values to be inserted
$songs = array(
 array('Voulez-Vous', 2, 5),
 array('Take A Chance On Me', 2, 3),
 array('I Have A Dream', 2, 4),
 array('Thank You For The Music', 2, 4),
);

// attempt a connection
try {
 $pdo = new PDO('mysql:dbname=music;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// create and execute SELECT query
$sql = "INSERT INTO songs (song_title, fk_song_artist, fk_song_rating) VALUES
(?, ?, ?)";
if ($stmt = $pdo->prepare($sql)) {
 foreach ($songs as $s) {
 $stmt->bindParam(1, $s[0]);
 $stmt->bindParam(2, $s[1]);
 $stmt->bindParam(3, $s[2]);
 if ($stmt->execute()) {
 echo "New song with id: " . $pdo->lastInsertId() . " added.\n";
 } else {
 echo "ERROR: Could not execute query: $sql. " . print_r
($pdo->errorInfo());
 }
 }

} else {
 echo "ERROR: Could not prepare query: $sql. " . print_r($pdo->errorInfo());
}

// close connection
unset($pdo);
?>

If you compare the preceding script with a similar script from the previous section on
MySQLi, you’ll see a marked resemblance. Like before, this script too defines an SQL

 240 PHP: A Beginner’s Guide

query template containing an INSERT statement, containing placeholders instead of actual
values, and then turns this template into a prepared statement using the PDO object’s
prepare() method.

If successful, prepare() returns a PDOStatement object representing the prepared
statement. The values to be interpolated into the statement are then bound to the
placeholders by repeatedly calling the PDOStatement object’s bindParam() method
with two arguments, the position of the placeholder and the variable to bind to it. Once
the variables are bound, the PDOStatement object’s execute() method takes care of
actually executing the prepared statement with the correct values.

NOTE
When using prepared statements with PDO, it’s important to note that the performance
benefits of these statements will only be available if the underlying database natively
supports these statements. For databases that don’t support prepared statements,
PDO will internally convert calls to prepare() and execute() into standard SQL
statements and no performance benefits will accrue in these cases.

Handling Errors
When performing database operations with PDO, errors may occur during either the
connection phase or the query execution phase. PDO offers robust tools to handle both
these types of errors.

Connection Errors
If PDO is unable to connect to the named database using the supplied DSN, username,
and password, it automatically generates a PDOException. This exception can be trapped
using PHP’s standard exception-handling mechanism (discussed in detail in Chapter 10),
and an error message explaining the cause of error can be retrieved from the exception
object.

Query Execution Errors
If an error occurs during query preparation or execution, PDO provides information on
the error via its errorInfo() method. This method returns an array containing three
elements: the SQL error code, a database error code, and a human-readable error message
(also generated by the underlying database). It’s easy to process this array and print the
appropriate elements from it within the error-handling section of your script.

 Chapter 7: Working with Databases and SQL 241

Try This 7-4 Building a Login Form
Let’s now put PDO through its paces with another practical application, one you’re likely
to encounter again and again in your PHP development: a login form. This application will
generate a Web form for users to enter their usernames and passwords; it will then verify
this input against credentials stored in a database and allow or reject the login attempt. In
the first instance, this application will use a MySQL database; later on, however, you’ll
see just how portable PDO code is, when we switch the application over to an SQLite
database.

Using a MySQL Database
To begin, fire up your MySQL command-line client and create a table to hold usernames
and passwords, as follows:

mysql> CREATE DATABASE app;
Query OK, 0 rows affected (0.07 sec)
mysql> USE app;
Query OK, 0 rows affected (0.07 sec)
mysql> CREATE TABLE users (
 -> id int(4) NOT NULL AUTO_INCREMENT,
 -> username VARCHAR(255) NOT NULL,
 -> password VARCHAR(255) NOT NULL,
 -> PRIMARY KEY (id));
Query OK, 0 rows affected (0.07 sec)

At this point, it’s also a good idea to “seed” the table by entering some usernames
and passwords. For simplicity, we’ll keep the passwords the same as the usernames,
but encrypt them so that they’re shielded from casual viewers (and not-so-casual
hackers):

mysql> INSERT INTO users (username, password)
 -> VALUES ('john', ' 1Tk0.gh4.$42EZDbQ4mOfmXMq.0m1tS1');
Query OK, 1 row affected (0.21 sec)

mysql> INSERT INTO users (username, password)
 -> VALUES ('jane', '1.l5.tR/.$XK1KW1Wzqy0UuMFKQDHH00');
Query OK, 1 row affected (0.21 sec)

(continued)

 242 PHP: A Beginner’s Guide

Now, all that’s needed is a login form, and some PHP code to read the values entered
into the form and test them against the values in the database. Here’s the code (login.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 7-4: Building A Login Form</title>
 </head>
 <body>
 <h2>Project 7-4: Building A Login Form</h2>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="login.php">
 Username:

 <input type="text" name="username" />
 <p>
 Password:

 <input type="password" name="password" />
 <p>
 <input type="submit" name="submit" value="Log In" />
 </form>

<?php
 // if form submitted
 // check supplied login credentials
 // against database
 } else {
 $username = $_POST['username'];
 $password = $_POST['password'];

 // check input
 if (empty($username)) {
 die('ERROR: Please enter your username');
 }
 if (empty($password)) {
 die('ERROR: Please enter your password');
 }

 // attempt database connection
 try {
 $pdo = new PDO('mysql:dbname=test;host=localhost',
'user', 'pass');
 } catch (PDOException $e) {

 Chapter 7: Working with Databases and SQL 243

 die("ERROR: Could not connect: " . $e->getMessage());
 }

 // escape special characters in input
 $username = $pdo->quote($username);

 // check if usernames exists
 $sql = "SELECT COUNT(*) FROM users WHERE username = $username";
 if ($result = $pdo->query($sql)) {
 $row = $result->fetch();
 // if yes, fetch the encrypted password
 if ($row[0] == 1) {
 $sql = "SELECT password FROM users WHERE
username = $username";
 // encrypt the password entered into the form
 // test it against the encrypted password stored in
the database
 // if the two match, the password is correct
 if ($result = $pdo->query($sql)) {
 $row = $result->fetch();
 $salt = $row[0];
 if (crypt($password, $salt) == $salt) {
 echo 'Your login credentials were successfully
verified.';
 } else {
 echo 'You entered an incorrect password.';
 }
 } else {
 echo "ERROR: Could not execute $sql. " . print_r
($pdo->errorInfo());
 }
 } else {
 echo 'You entered an incorrect username.';
 }
 } else {
 echo "ERROR: Could not execute $sql. " . print_r
($pdo->errorInfo());
 }

 // close connection
 unset($pdo);
 }
?>
 </body>
</html>

Figure 7-12 illustrates what the login form looks like.

(continued)

 244 PHP: A Beginner’s Guide

When this form is submitted, the second half of the script comes into play. This performs
a number of steps:

 1. It checks the form input to ensure that both the username and the password are present,
and halts script execution with an error message if either one is absent. It also escapes
special characters in the input using PDO’s quote() method.

 2. It opens a connection to the database and performs a SELECT query to check if a
matching username is present in the database. If this check returns false, it generates
the error message “You entered an incorrect username.”

 3. If the username is present, the script then proceeds to test the password. Because
the password is encrypted using a one-way encryption scheme, this test cannot be
performed directly; the only way to do this is to re-encrypt the user’s password, as
entered in the form, and test the result against the version stored in the database. If
the two encrypted strings match, it implies that the password entered is correct.

Figure 7-12 A Web-based login form

 Chapter 7: Working with Databases and SQL 245

 4. Depending on the results of the test, the script then generates either the message 'You
entered an incorrect password.' or 'Your login credentials were
successfully verified.'

Figure 7-13 illustrates the result of entering an incorrect password and Figure 7-14
illustrates the result of entering a correct password.

Figure 7-13 The results of entering an incorrect password into the login form

Figure 7-14 The results of entering a correct password into the login form

 246 PHP: A Beginner’s Guide

Q: How did you generate the encrypted passwords used in this example?

A: The encrypted password strings used in this example were generated with PHP’s
crypt() function, which uses a one-way encryption scheme to encrypt any string
passed to it as input. A one-way encryption scheme renders the original password
irrecoverable (hence the term “one-way”). The encryption is based on a unique key
or salt, which can be optionally provided to the function as a second argument; in its
absence, PHP automatically generates a salt.

The original password is no longer recoverable after being passed through
crypt(), and so performing password validation later against a user-supplied value
is a two-step process: first, re-encrypt the user-supplied value with the same salt used
in the original encryption process and then, test if the two encrypted strings match.
That’s precisely what the form processing script in this example does.

Switching to a Different Database
Now, let’s assume that external reasons force you to switch over from MySQL to SQLite.
The first thing you’ll need to do is create a database table to hold all the user account
information. So, fire up your SQLite client and replicate the database created in the
preceding section (name the database file app.db):

sqlite> CREATE TABLE users (
 -> id INTEGER PRIMARY KEY,
 -> username TEXT NOT NULL,
 -> password TEXT NOT NULL
 ->);

sqlite> INSERT INTO users (username, password)
 -> VALUES ('john', ' 1Tk0.gh4.$42EZDbQ4mOfmXMq.0m1tS1');
sqlite> INSERT INTO users (username, password)
 -> VALUES ('jane', '1.l5.tR/.$XK1KW1Wzqy0UuMFKQDHH00');

The next step is to update your application’s code so that it communicates with this
SQLite database instead of the MySQL database. Because you’re using PDO, this update
consists of changing one—that’s right, one—line in your PHP script: the DSN passed to
the PDO object constructor. Here’s the relevant segment of code:

<?php
 // attempt database connection
 try {
 $pdo = new PDO('sqlite:app.db');

Ask the Expert

 Chapter 7: Working with Databases and SQL 247

 } catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
 }
?>

And now, when you try logging in, your application will work exactly as it did before,
except that now it will use the SQLite database instead of the MySQL database. Try it for
yourself and see!

This portability is precisely why PDO is gaining popularity among PHP developers; it
makes the entire process of switching from one database system to another an extremely
simple one, reducing both development and testing time and the associated cost.

Summary
PHP’s database support is one of the biggest reasons for its popularity, and this chapter
covered all the ground necessary for you to get started with this important language
feature. It began by introducing you to basic database concepts, and teaching you the
basics of Structured Query Language. It then rapidly proceeded to a discussion of PHP’s
most popular database extensions: the MySQLi extension, the SQLite extension, and
the Portable Database Objects (PDO) extension. The discussion included both practical
information and code examples of querying and modifying databases with PHP to get you
started using these extensions in your daily development.

To read more about the topics discussed in this chapter, consider visiting the following
links:

● Database concepts, at
www.melonfire.com/community/columns/trog/article.php?id=52

● SQL basics, at www.melonfire.com/community/columns/trog/article.php?id=39
and www.melonfire.com/community/columns/trog/article.php?id=44

● More information on SQL joins, at
www.melonfire.com/community/columns/trog/article.php?id=148

● The MySQL Web site, at www.mysql.com

● The SQLite Web site, at www.sqlite.org

● PHP’s MySQLi extension, at www.php.net/mysqli

● PHP’s SQLite extension, at www.php.net/sqlite

● PHP’s PDO extension, at www.php.net/pdo

 248 PHP: A Beginner’s Guide

 Chapter 7 Self Test
 1. Mark the following statements as true or false:

 A SQL table joins can only take place between foreign and primary key fields.

 B MySQL support is new to PHP.

 C The ORDER BY clause is used to sort the fields of an SQL result set.

 D PRIMARY KEY fields can hold null values.

 E It is possible to override the value generated by SQLite for an INTEGER PRIMARY
KEY field.

 F Prepared statements can be used only for INSERT operations.

 2. Correctly identify the SQL command for each of the following database operations:

 A Delete a database

 B Update a record

 C Delete a record

 D Create a table

 E Select a database for use

 3. What is database normalization, and why is it useful?

 4. Name one advantage and one disadvantage of using a database abstraction library like
PDO instead of a native database extension.

 5. Using the PDO extension, write a PHP script to add new songs to the songs table
developed in this chapter. Allow users to select the song’s artist and rating from drop-
down form selection lists populated with the contents of the artists and ratings tables.

 6. Using PHP’s MySQLi extension, write a PHP script to create a new database table with
four fields of your choice. Then, do the same task with an SQLite database table using
PHP’s SQLite extension.

 7. Manually populate the MySQL database tables created in the preceding assignment
with 7–10 records of your choice. Then, write a PDO-based script to read the contents
of this table and migrate the data found therein to the SQLite database table also
created in the preceding assignment. Use a prepared statement.

✓

249

Chapter 8
Working with XML

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 250 PHP: A Beginner’s Guide

Key Skills & Concepts
● Understand basic XML concepts and technologies

● Understand PHP’s SimpleXML and DOM extensions

● Access and manipulate XML documents with PHP

● Create new XML documents from scratch using PHP

● Integrate third-party RSS feeds in a PHP application

● Convert between SQL and XML using PHP

The Extensible Markup Language (XML) is a widely accepted standard for data
description and exchange. It allows content authors to “mark up” their data with

customized machine-readable tags, thereby making data easier to classify and search.
XML also helps enforce a formal structure on content, and it provides a portable format
that can be used to easily exchange information between different systems.

PHP has included support for XML since PHP 4, but it was only in PHP 5 that the
various XML extensions in PHP were standardized to use a common XML parsing toolkit.
This chapter introduces you to two of PHP’s most useful and powerful XML processing
extensions—SimpleXML and DOM—and includes numerous code examples and practical
illustrations of using XML in combination with PHP-based applications.

Introducing XML
Before getting into the nitty-gritty of manipulating XML files with PHP, it’s instructive
to spend some time getting familiar with XML. If you’re new to XML, the following
section provides a grounding in basic XML, including an overview of XML concepts and
technologies. This information will be helpful to understand the more advanced material
in subsequent sections.

XML Basics
Let’s begin with a very basic question: what is XML, and why is it useful?

XML is a language that helps document authors describe the data in a document, by
“marking it up” with custom tags. These tags don’t come from a predefined list; instead,

 Chapter 8: Working with XML 251

XML encourages authors to create their own tags and structure, suited to their own
particular requirements, as a way to increase flexibility and usability. This fact, coupled
with the Recommendation status bestowed on it by the W3C in 1998, has served to make
XML one of the most popular ways to describe and store structured information on (and
off) the Web.

XML data is physically stored in text files. This makes XML documents very portable,
because every computer system can read and process text files. Not only does this
facilitate data sharing, but it also allows XML to be used in a wide variety of applications.
For example, the Rich Site Summaries (RSS) and Atom Weblog feed formats are both
based on XML, as is Asynchronous JavaScript and XML (AJAX) and the Simple Object
Access Protocol (SOAP).

Q: What programs can I use to create or view an XML file?

A: On a UNIX/Linux system, both vi and emacs can be used to create XML documents,
while Notepad remains a favorite on Windows systems. Both Microsoft Internet
Explorer and Mozilla Firefox have built-in XML support and can read and display
an XML document in a hierarchical tree view.

Ask the Expert

Anatomy of an XML Document
Internally, an XML document is made up of various components, each one serving
a specific purpose. To understand these components, consider the following XML
document, which contains a recipe for spaghetti bolognese:

1. <?xml version='1.0'?>
2. <recipe>
3. <ingredients>
4. <item quantity="250" units="gm">Beef mince</item>
5. <item quantity="200" units="gm">Onions</item>
6. <item quantity="75" units="ml">Red wine</item>
7. <item quantity="12">Tomatoes</item>
8. <item quantity="2" units="tbsp">Parmesan cheese</item>
9. <item quantity="200" units="gm">Spaghetti</item>
10. </ingredients>
11. <method>
12. <step number="1">Chop and fry the onions.</step>
13. <step number="2">Add the mince to the fried onions &
continue frying.</step>

 252 PHP: A Beginner’s Guide

14. <step number="3">Puree the tomatoes and blend them into the
mixture with the wine.</step>
15. <step number="4">Simmer for an hour.</step>
16. <step number="5">Serve on top of cooked pasta with Parmesan
cheese.</step>
17. </method>
18. </recipe>

This XML document contains a recipe, broken up into different sections; each
section is further “marked up” with descriptive tags to precisely identify the type of data
contained within it. Let’s look at each of these in detail.

 1. Every XML document must begin with a declaration that states the version of XML
being used; this declaration is referred to as the document prolog, and it can be seen
in Line 1 of the preceding XML document. In addition to the version number, this
document prolog may also contain character encoding information and Document Type
Definition (DTD) references (for data validation).

 2. The document prolog is followed by a nested series of elements (Lines 2–18). Elements
are the basic units of XML; they typically consist of a pair of opening and closing
tags that enclose some textual content. Element names are user-defined; they should
be chosen with care, as they are intended to describe the content sandwiched between
them. Element names are case-sensitive and must begin with a letter, optionally
followed by more letters and numbers. The outermost element in an XML document—
in this example, the element named <recipe> on Line 2—is known as the document
element or the root element.

 3. The textual data enclosed within elements is known, in XML parlance, as character
data. This character data can consist of strings, numbers, and special characters (with
some exceptions: angle brackets and ampersands within textual data should be replaced
with the entities <, $gt;, and & respectively to avoid confusing the XML
parser when it reads the document). Line 13, for example, uses the & entity to
represent an ampersand within its character data.

 4. Finally, elements can also contain attributes, which are name-value pairs that hold
additional information about the element. Attribute names are case-sensitive and
follow the same rules as element names. The same attribute name cannot be used more
than once within the same element, and attribute values should always be enclosed in
quotation marks. Lines 4–9 and 12–16 in the example document illustrate the use of
attributes to provide additional descriptive information about the element to which they
are attached; for example, the 'units' attribute specifies the unit measure for each
ingredient.

 Chapter 8: Working with XML 253

XML documents can also contain various other components: namespaces, processing
instructions, and CDATA blocks. These are a little more complex, and you won’t see them
in any of the examples used in this chapter; however, if you’re interested in learning more
about them, take a look at the links at the end of the chapter for more detailed information
and examples.

Q: Can I create elements that don’t contain anything?

A: Sure. The XML specification supports elements that hold no content and therefore do
not require a closing tag. To close these elements, simply add a slash to the end of the
opening tag, as in the following code snippet:

The line breaks
 here.

Ask the Expert

Well-Formed and Valid XML
The XML specification makes an important distinction between well-formed and valid
documents.

● A well-formed document follows all the rules for element and attribute names, contains
all essential declarations, contains one (and only one) root element, and follows a
correctly nested element hierarchy below the root element. All the XML documents
you’ll see in this chapter are well-formed documents.

● A valid document is one which meets all the conditions of being well-formed and also
conforms to additional rules laid out in a Document Type Definition (DTD) or XML
Schema. This chapter doesn’t discuss DTDs or XML Schemas in detail, so you won’t
see any examples of this type of document; however, you’ll find many examples of
such documents online, and in the resource links at the end of the chapter.

XML Parsing Methods
Typically, an XML document is processed by a software application known as an XML
parser. This parser reads the XML document using one of two approaches, the Simple API
for XML (SAX) approach or the Document Object Model (DOM) approach:

● A SAX parser works by traversing an XML document sequentially, from beginning
to end, and calling specific user-defined functions as it encounters different types of
XML constructs. Thus, for example, a SAX parser might be programmed to call one

 254 PHP: A Beginner’s Guide

function to process an attribute, another one to process a starting element, and yet a
third one to process character data. The functions called in this manner are responsible
for actually processing the XML construct found, and any information stored within it.

● A DOM parser, on the other hand, works by reading the entire XML document in one
fell swoop and converting it to a hierarchical “tree” structure in memory. The parser
can then be programmed to traverse the tree, jumping between “sibling” or “child”
branches of the tree to access specific pieces of information.

Each of these methods has pros and cons: SAX reads XML data in “chunks” and is
efficient for large files, but it requires the programmer to create customized functions to
handle the different elements in an XML file. DOM requires less customization but can
rapidly consume memory for its actions and so is often unsuitable for large XML data
files. The choice of method thus depends heavily on the requirements of the application
in question.

XML Technologies
As XML’s popularity has increased, so too has the list of technologies that use it. Here are
a few that you might have heard about already:

● XML Schema XML Schemas define the structure and format of XML documents,
allowing for more flexible validation and support for datatyping, inheritance,
grouping, and database linkage.

● XLink XLink is a specification for linking XML data structures together. It allows
for more sophisticated link types than regular HTML hyperlinks, including links with
multiple targets.

● XPointer XPointer is a specification for navigating the hierarchical tree structure of
an XML document, easily finding elements, attributes, and other data structures within
the document.

● XSL The Extensible Stylesheet Language (XSL) applies formatting rules to XML
documents and “transforms” them from one format to another.

● XHTML XHTML combines the precision of XML markup with the easy-to-
understand tags of HTML to create a newer, more standards-compliant version of
HTML.

● XForms XForms separates the information gathered in a Web form from the form’s
appearance, allowing for more stringent validation and easier reuse of forms in
different media.

 Chapter 8: Working with XML 255

Try This 8-1

● XML Query XML Query allows developers to query XML document and generate
result sets, in much the same way that SQL is used to query and retrieve database
records.

● XML Encryption and XML Signature XML Encryption is a means of encrypting
and decrypting XML documents, and representing the resulting data. It is closely
related to XML Signature, which provides a way to represent and verify digital
signatures with XML.

● SVG Scalable Vector Graphics (SVG) uses XML to describe vector or raster
graphical images, with support for alpha masks, filters, paths, and transformations.

● MathML MathML uses XML to describe mathematical expressions and formulae,
such that they can be easily rendered by Web browsers.

● SOAP The Simple Object Access Protocol (SOAP) uses XML to encode requests
and responses between network hosts using HTTP.

Q: When should I use an attribute, and when should I use an element?

A: Both attributes and elements contain descriptive data, so it’s often a matter of judgment
as to whether a particular piece of information is better stored as an element or as an
attribute. In most cases, if the information is hierarchically structured, elements are
more appropriate containers; on the other hand, attributes are better for information that
is ancillary or does not lend itself to a formal structure.

For a more formal discussion of this topic, take a look at the IBM developerWorks
article at www.ibm.com/developerworks/xml/library/x-eleatt.html, which discusses
the issues involved in greater detail.

Ask the Expert

 Creating an XML Document
Now that you know the basics of XML, let’s put that knowledge to the test by creating
a well-formed XML document and viewing it in a Web browser. This document will
describe a library of books using XML. Each entry in the document will contain
information on a book’s title, author, genre, and page count.

(continued)

 256 PHP: A Beginner’s Guide

To create this XML document, pop open your favorite text editor and enter the
following markup (library.xml):

<?xml version="1.0"?>
<library>
 <book id="1" genre="horror" rating="5">
 <title>The Shining</title>
 <author>Stephen King</author>
 <pages>673</pages>
 </book>
 <book id="2" genre="suspense" rating="4">
 <title>Shutter Island</title>
 <author>Dennis Lehane</author>
 <pages>390</pages>
 </book>
 <book id="3" genre="fantasy" rating="5">
 <title>The Lord Of The Rings</title>
 <author>J. R. R. Tolkien</author>
 <pages>3489</pages>
 </book>
 <book id="4" genre="suspense" rating="3">
 <title>Double Cross</title>
 <author>James Patterson</author>
 <pages>308</pages>
 </book>
 <book id="5" genre="horror" rating="4">
 <title>Ghost Story</title>
 <author>Peter Straub</author>
 <pages>389</pages>
 </book>
 <book id="6" genre="fantasy" rating="3">
 <title>Glory Road</title>
 <author>Robert Heinlein</author>
 <pages>489</pages>
 </book>
 <book id="7" genre="horror" rating="3">
 <title>The Exorcist</title>
 <author>William Blatty</author>
 <pages>301</pages>
 </book>
 <book id="8" genre="suspense" rating="2">
 <title>The Camel Club</title>
 <author>David Baldacci</author>
 <pages>403</pages>
 </book>
</library>

Save this file to a location under your Web server’s document root, and name it
library.xml. Then, start up your Web browser, and browse to the URL corresponding
to the file location. You should see something like Figure 8-1.

 Chapter 8: Working with XML 257

Using PHP’s SimpleXML Extension
Although PHP has support for both DOM and SAX parsing methods, by far the easiest
way to work with XML data in PHP is via its SimpleXML extension. This extension,
which is enabled by default in PHP 5, provides a user-friendly and intuitive interface to
reading and processing XML data in a PHP application.

Working with Elements
SimpleXML represents every XML document as an object and turns the elements within it
into a hierarchical set of objects and object properties. Accessing a particular element now
becomes as simple as using parent->child notation to traverse the object tree until that
element is reached.

Figure 8-1 An XML document, as seen in Mozilla Firefox

 258 PHP: A Beginner’s Guide

To illustrate how this works in practice, consider the following XML file (address.xml):

<?xml version='1.0'?>
<address>
 <street>13 High Street</street>
 <county>Oxfordshire</county>
 <city>
 <name>Oxford</name>
 <zip>OX1 1BA</zip>
 </city>
 <country>UK</country>
</address>

Here’s a PHP script that uses SimpleXML to read this file and retrieve the city name
and ZIP code:

<?php
// load XML file
$xml = simplexml_load_file('address.xml') or die ("Unable to load XML!");

// access XML data
// output: 'City: Oxford \n Postal code: OX1 1BA\n'
echo "City: " . $xml->city->name . "\n";
echo "Postal code: " . $xml->city->zip . "\n";
?>

To read an XML file with SimpleXML, use the simplexml_load_file() function
and pass it the disk path to the target XML file. This function will then read and parse
the XML file and, assuming it is well-formed, return a SimpleXML object representing
the document’s root element. This object is only the top level of a hierarchical object tree
that mirrors the internal structure of the XML data: elements below the root element are
represented as properties or child objects and can thus be accessed using the standard
parentObject->childObject notation.

TIP
If your XML data is in a string variable instead of a file, use the simplexml_load_
string() function to read it into a SimpleXML object.

Multiple instances of the same element at the same level of the XML document tree
are represented as arrays. These can easily be processed using PHP’s loop constructs. To
illustrate, consider this next example, which reads the library.xml file developed in the
preceding section and prints the title and author names found within it:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

 Chapter 8: Working with XML 259

// loop over XML data as array
// print book titles and authors
// output: 'The Shining is written by Stephen King. \n ...'
foreach ($xml->book as $book) {
 echo $book->title . " is written by " . $book->author . ".\n";
}
?>

Here, a foreach loop iterates over the <book> objects generated from the XML data,
printing each object’s 'title' and 'author' properties.

You can also count the number of elements at particular level in the XML document
with a simple call to count(). The next listing illustrates, counting the number of
<book>s in the XML document:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// loop over XML data as array
// print count of books
// output: '8 book(s) found.'
echo count($xml->book) . ' book(s) found.';
?>

Working with Attributes
If an XML element contains attributes, SimpleXML has an easy way to get to these as
well: attributes and values are converted into keys and values of a PHP associative array
and can be accessed like regular array elements.

To illustrate, consider the following example, which reads the library.xml file from
the preceding section and prints each book title found, together with its 'genre' and
'rating':

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// access XML data
// for each book
// retrieve and print 'genre' and 'rating' attributes
// output: 'The Shining \n Genre: horror \n Rating: 5 \n\n ...'
foreach ($xml->book as $book) {
 echo $book->title . "\n";
 echo "Genre: " . $book['genre'] . "\n";
 echo "Rating: " . $book['rating'] . "\n\n";
}
?>

 260 PHP: A Beginner’s Guide

Try This 8-2

In this example, a foreach loop iterates over the <book> elements in the XML data,
turning each into an object. Attributes of the book element are represented as elements of
an associative array and can thus be accessed by key: the key 'genre' returns the value
of the 'genre' attribute, and the key 'rating' returns the value of the 'rating'
attribute.

 Converting XML to SQL
Now that you know how to read XML elements and attributes, let’s look at a practical
example of SimpleXML in action. This next program reads an XML file and converts the
data within it into a series of SQL statements, which can be used to transfer the data into
a MySQL or other SQL-compliant database.

Here’s the sample XML file (inventory.xml):

<?xml version='1.0'?>
<items>
 <item sku="123">
 <name>Cheddar cheese</name>
 <price>3.99</price>
 </item>
 <item sku="124">
 <name>Blue cheese</name>
 <price>5.49</price>
 </item>
 <item sku="125">
 <name>Smoked bacon (pack of 6 rashers)</name>
 <price>1.99</price>
 </item>
 <item sku="126">
 <name>Smoked bacon (pack of 12 rashers)</name>
 <price>2.49</price>
 </item>
 <item sku="127">
 <name>Goose liver pate</name>
 <price>7.99</price>
 </item>
 <item sku="128">
 <name>Duck liver pate</name>
 <price>6.49</price>
 </item>
</items>

 Chapter 8: Working with XML 261

And here’s the PHP code that converts this XML data into SQL statements
(xml2sql.php):

<?php

// load XML file

$xml = simplexml_load_file('inventory.xml') or die ("Unable to load XML!");

// loop over XML <item> elements

// access child nodes and interpolate with SQL statement

foreach ($xml as $item) {

 echo "INSERT INTO items (sku, name, price) VALUES ('" . addslashes($item['sku']) .

"','" . addslashes($item->name) . "','" . addslashes($item->price) . "');\n";

}

?>

This script should be simple to understand if you’ve been following along: it iterates
over all the <item> elements in the XML document, using object->property notation
to access each item’s <name> and <price>. The 'sku' attribute of each <item> is
similarly accessed via the 'sku' key of each item’s attribute array. The values retrieved
in this fashion are then interpolated into an SQL INSERT statement.

This statement would normally then be supplied to a function such as mysql_
query() or sqlite_query() for insertion into a MySQL or SQLite database; for
purposes of this example, it’s simply printed to the output device.

Figure 8-2 illustrates the output of this script.

Figure 8-2 Converting XML to SQL with SimpleXML

 262 PHP: A Beginner’s Guide

Altering Element and Attribute Values
With SimpleXML, it’s easy to change the content in an XML file: simply assign a new
value to the corresponding object property using PHP’s assignment operator (=). To
illustrate, consider the following PHP script, which changes the title and author of the
second book in library.xml and then outputs the revised XML document:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// change element values
// set new title and author for second book
$xml->book[1]->title = 'Invisible Prey';
$xml->book[1]->author = 'John Sandford';

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

Here, SimpleXML is used to access the second <book> element by index, and the
values of the <title> and <author> elements are altered by setting new values for
the corresponding object properties. Notice the asXML() method, which is new in this
example: it converts the nested hierarchy of SimpleXML objects and object properties
back into a regular XML string.

Changing attribute values is just as easy: assign a new value to the corresponding key
of the attribute array. Here’s an example, which changes the sixth book’s 'rating' and
outputs the result:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// change attribute values
// set new rating for sixth book
$xml->book[5]{'rating'} = 5;

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

 Chapter 8: Working with XML 263

Adding New Elements and Attributes
In addition to allowing you to alter element and attribute values, SimpleXML also lets you
dynamically add new elements and attributes to an existing XML document. To illustrate,
consider the next script, which adds a new <book> to the library.xml XML data:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// get the last book 'id'
$numBooks = count($xml->book);
$lastID = $xml->book[($numBooks-1)]{'id'};

// add a new <book> element
$book = $xml->addChild('book');

// get the 'id' attribute
// for the new <book> element
// by incrementing $lastID by 1
$book->addAttribute('id', ($lastID+1));

// add 'rating' and 'genre' attributes
$book->addAttribute('genre', 'travel');
$book->addAttribute('rating', 5);

// add <title>, <author> and <page> elements
$title = $book->addChild('title', 'Frommer\'s Italy 2007');
$author = $book->addChild('author', 'Various');
$page = $book->addChild('pages', 820);

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

Every SimpleXML object exposes an addChild() method (for adding new child
elements) and an addAttribute() method (for adding new attributes). Both these
methods accept a name and a value, generate the corresponding element or attribute, and
attach it to the parent object within the XML hierarchy.

These methods are illustrated in the preceding listing, which begins by reading
the existing XML document into a SimpleXML object. The root element of this XML
document is stored in the PHP object $xml. The listing then needs to calculate the
ID to be assigned to the new <book> element: it does this by counting the number of
<book> elements already present in the XML document, accessing the last such element,
retrieving that element’s 'id' attribute, and adding 1 to it.

 264 PHP: A Beginner’s Guide

With that formality out of the way, the listing then dives into element and attribute
creation proper:

 1. It starts off by attaching a new <book> element to the root element, by invoking the
$xml object’s addChild() method. This method accepts the name of the element to
be created and (optionally) a value for that element. The resultant XML object is stored
in the PHP object $book.

 2. With the element created, it’s now time to set its 'id', 'genre', and 'rating'
attributes. This is done via the $book object’s addAttribute() method, which also
accepts two arguments—the attribute name and value—and sets the corresponding
associative array keys.

 3. Once the outermost <book> element is fully defined, it’s time to add the <title>,
<author>, and <pages> elements as children of this <book> element. This is easily
done by again invoking the addChild() method, this time of the $book object.

 4. Once these child objects are defined, the object hierarchy is converted to an XML
document string with the asXML() method.

Figure 8-3 illustrates what the output looks like.

Creating New XML Documents
You can also use SimpleXML to create a brand-spanking-new XML document from
scratch, by initializing an empty SimpleXML object from an XML string, and then using
the addChild() and addAttribute() methods to build the rest of the XML document
tree. Consider the following example, which illustrates the process:

<?php
// load XML from string
$xmlStr = "<?xml version='1.0'?><person></person>";
$xml = simplexml_load_string($xmlStr);

// add attributes
$xml->addAttribute('age', '18');
$xml->addAttribute('sex', 'male');

// add child elements
$xml->addChild('name', 'John Doe');
$xml->addChild('dob', '04-04-1989');

// add second level of child elements
$address = $xml->addChild('address');

 Chapter 8: Working with XML 265

$address->addChild('street', '12 A Road');
$address->addChild('city', 'London');

// add third level of child elements
$country = $address->addChild('country', 'United Kingdom');
$country->addAttribute('code', 'UK');

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

This PHP script is similar to what you’ve already seen in the preceding section, with
one important difference: instead of grafting new elements and attributes on to a preexisting
XML document tree, this one generates an XML document tree entirely from scratch!

Figure 8-3 Inserting elements into an XML tree with SimpleXML

 266 PHP: A Beginner’s Guide

Try This 8-3

The script begins by initializing a string variable to hold the XML document prolog
and root element. The simplexml_load_string() method takes care of converting
this string into a SimpleXML object representing the document’s root element. Once this
object has been initialized, it’s a simple matter to add child elements and attributes to it,
and to build the rest of the XML document tree programmatically. Figure 8-4 shows the
resulting XML document tree.

 Reading RSS Feeds
RDF Site Summary (RSS) is an XML-based format originally devised by Netscape to
distribute information about the content on its My.Netscape.com portal. Today, RSS is
extremely popular on the Web as a way to distribute content; many Web sites offer RSS
“feeds” that contain links and snippets of their latest news stories or content, and most
browsers come with built-in RSS readers, which can be used to read and “subscribe” to
these feeds.

Figure 8-4 Dynamically generating a new XML document with SimpleXML

 Chapter 8: Working with XML 267

An RSS document follows all the rules of XML markup and typically contains a list of
resources (URLs), marked up with descriptive metadata. Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<rss>
 <channel>
 <title>Feed title here</title>
 <link>Feed URL here</link>
 <description>Feed description here</description>
 <item>
 <title>Story title here</title>
 <description>Story description here</description>
 <link>Story URL here</link>
 <pubDate>Story timestamp here</pubDate>
 </item>
 <item>
 ...
 </item>
 </channel>
</rss>

As this sample document illustrates, an RSS document opens and closes with the
<rss> element. A <channel> block contains general information about the Web
site providing the feed; this is followed by multiple <item> elements, each of which
represents a different content unit or news story. Each of these <item> elements further
contains a title, a URL, and a description of the item.

Given this well-defined and hierarchical structure, parsing an RSS feed with
SimpleXML is extremely simple. That’s precisely what this next script does: it connects
to a URL hosting a live RSS feed, retrieves the XML-encoded feed data, parses it, and
converts it to an HTML page suitable for viewing in any Web browser. Here’s the code
(rss2html.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-3: Reading RSS Feeds</title>
 <style type="text/css">
 div.heading {
 font-weight: bolder;
 }
 div.story {
 background-color: white;
 border: 1px solid black;

(continued)

 268 PHP: A Beginner’s Guide

 width: 320px;
 height: 200px;
 margin: 20px;
 }
 div.headline a {
 font-weight: bolder;
 color: orange;
 margin: 5px;
 }
 div.body {
 margin: 5px;
 }
 div.timestamp {
 font-size: smaller;
 font-style: italic;
 margin: 5px;
 }
 ul {
 list-style-type: none;
 }
 li {
 float: left;
 }
 </style>
 </head>
 <body>
 <h2>Project 8-3: Reading RSS Feeds</h2>
<?php
// read newsvine.com's RSS feed for top technology news stories
$xml = simplexml_load_file("http://www.newsvine.com/_feeds/rss2
 /tag?id=technology") or die("ERROR: Cannot read RSS feed");
?>
 <h3 style="heading"><?php echo $xml->channel->title; ?></h3>

<?php
// iterate over list of stories
// print each story's title, URL and timestamp
// and then the story body
foreach ($xml->channel->item as $item) {
?>

 <div class="story">
 <div class="headline">
 <a href="<?php echo $item->link; ?>">
 <?php echo $item->title; ?>

 </div>

 Chapter 8: Working with XML 269

 <div class="timestamp"><?php echo $item->pubDate; ?></div>
 <div class="body"><?php echo $item->description; ?></div>
 </div>

<?php
}
?>

 </body>
</html>

This script begins by using SimpleXML’s simplexml_load_file() method to
connect to a remote URL—in this case, an RSS feed hosted by NewsVine.com—and convert
the XML data found therein to a SimpleXML object. It then uses SimpleXML’s ability to
loop over node collections to quickly retrieve each news story’s title, URL, timestamp, and
body; marks these bits of information up with HTML; and prints them to the page.

Figure 8-5 illustrates what the output might look like.

Figure 8-5 Parsing an RSS feed with SimpleXML

 270 PHP: A Beginner’s Guide

Using PHP’s DOM Extension
Now, while PHP’s SimpleXML extension is easy to use and understand, it’s not very
good for anything other than the most basic XML manipulation. For more complex XML
operations, it’s necessary to look further afield, to PHP’s DOM extension. This extension,
which is also enabled by default in PHP 5, provides a sophisticated toolkit that complies
with the DOM Level 3 standard and brings comprehensive XML parsing capabilities
to PHP.

Working with Elements
The DOM parser works by reading an XML document and creating objects to represent
the different parts of that document. Each of these objects comes with specific methods
and properties, which can be used to manipulate and access information about it. Thus,
the entire XML document is represented as a “tree” of these objects, with the DOM parser
providing a simple API to move between the different branches of the tree.

To illustrate how this works in practice, let’s revisit the address.xml file from the
preceding section:

<?xml version='1.0'?>
<address>
 <street>13 High Street</street>
 <county>Oxfordshire</county>
 <city>
 <name>Oxford</name>
 <zip>OX1 1BA</zip>
 </city>
 <country>UK</country>
</address>

Here’s a PHP script that uses the DOM extension to parse this file and retrieve the
various components of the address:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('address.xml');

// get root element
$root = $doc->firstChild;

 Chapter 8: Working with XML 271

// get text node 'UK'
echo "Country: " . $root->childNodes->item(3)->nodeValue . "\n";

// get text node 'Oxford'
echo "City: " . $root->childNodes->item(2)->childNodes->
 item(0)->nodeValue . "\n";

// get text node 'OX1 1BA'
echo "Postal code: " . $root->childNodes->item(2)->childNodes->
 item(1)->nodeValue . "\n";

// output: 'Country: UK \n City: Oxford \n Postal code: OX1 1BA'
?>

A quick glance, and it’s clear that we’re not in SimpleXML territory any longer.
With PHP’s DOM extension, the first step is always to initialize an instance of the
DOMDocument object, which represents an XML document. Once this object has been
initialized, it can be used to parse an XML file via its load() method, which accepts
the disk path to the target XML file.

The result of the load() method is a tree containing DOMNode objects, with every
object exposing various properties and methods for accessing its parent, child, and sibling
nodes. For example, every DOMNode object exposes a parentNode property, which can
be used to access its parent node, and a childNodes property, which returns a collection
of its child nodes. In a similar vein, every DOMNode object also exposes nodeName
and nodeValue properties, which can be used to access the node’s name and value
respectively. It’s thus quite easy to navigate from node to node of the tree, retrieving node
values at each stage.

To illustrate the process, consider the preceding script carefully. Once the XML
document has been load()-ed, it calls the DOMDocument object’s firstChild
property, which returns a DOMNode object representing the root element <address>.
This DOMNode object, in turn, has a childNodes property, which returns a collection
of all the child elements of <address>. Individual elements of this collection can be
accessed via their index position using the item() method, with indexing starting from
zero. These elements are again represented as DOMNode objects; as such, their names
and values are therefore accessible via their nodeName and nodeValue properties.

Thus, the element <country>, which is the fourth child element under <address>,
is accessible via the path $root->childNodes->item(3), and the text value of this
element, 'UK', is accessible via the path $root->childNodes->item(3)->nodeValue.
Similarly, the element <name>, which is the first child of the <city> element, is accessible
via the path $root->childNodes->item(2)->childNodes->item(0), and the
text value 'Oxford' is accessible via the path $root->childNodes->item(2)->
childNodes->item(0)->nodeValue.

 272 PHP: A Beginner’s Guide

Figure 8-6 should make these relationships clearer, by mapping the XML document
tree from address.xml to the DOM methods and properties used in this section.

Q: When I process an XML document using the DOM, there often appear to be extra
text nodes in each node collection. However, when I access these nodes, they appear
to be empty. What’s going on?

A: As per the DOM specification, all document whitespace, including carriage returns,
must be treated as a text node. If your XML document contains extra whitespace,
or if your XML elements are neatly formatted and indented on separate lines,
this whitespace will be represented in your node collections as apparently empty
text nodes. In the PHP DOM API, you can disable this behavior by setting the
DOMDocument->preserveWhiteSpace property to 'false', as the examples
in this section do.

Ask the Expert

An alternative approach—and one that can come in handy when you’re
faced with a deeply nested XML tree—is to use the DOMDocument object’s
getElementsByTagName() method to directly retrieve all elements with a particular
name. The output of this method is a collection of matching DOMNode objects; it’s then
easy to iterate over the collection with a foreach loop and retrieve the value of each node.

Figure 8-6 DOM relationships

<?xml?>

<address>

<street>

<county>

<country>

<city>

<name>

<zip>

DOMDocument

firstChild

childNodes–> item (0)

childNodes–> item (1)

childNodes–> item (0)

childNodes–> item (1)

childNodes–> item (2)

childNodes–> item (3)

 Chapter 8: Working with XML 273

If your document happens to have only one instance of each element—as is the case
with address.xml—using getElementsByTagName() can serve as an effective shortcut
to the traditional tree navigation approach. Consider the following example, which
produces the same output as the preceding listing using this approach:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('address.xml');

// get collection of <country> elements
$country = $doc->getElementsByTagName('country');
echo "Country: " . $country->item(0)->nodeValue . "\n";

// get collection of <name> elements
$city = $doc->getElementsByTagName('name');
echo "City: " . $city->item(0)->nodeValue . "\n";

// get collection of <zip> elements
$zip = $doc->getElementsByTagName('zip');
echo "Postal code: " . $zip->item(0)->nodeValue . "\n";

// output: 'Country: UK \n City: Oxford \n Postal code: OX1 1BA'
?>

In this example, the getElementsByTagName() method is used to return a
DOMNode collection representing all elements with the name <country> in the first
instance. From the XML document tree, it’s clear that the collection will contain only
one DOMNode object. Accessing the value of this node is then simply a matter of calling
the collection’s item() method with argument 0 (for the first index position) to get the
DOMNode object, and then reading its nodeValue property.

In most cases, however, your XML document will not have only one instance of
each element. Take, for example, the library.xml file you’ve seen in previous sections,
which contains multiple instances of the <book> element. Even in such situations, the
getElementsByTagName() method is useful to quickly and efficiently create a subset
of matching nodes, which can be processed using a PHP loop. To illustrate, consider

 274 PHP: A Beginner’s Guide

this next example, which reads library.xml and prints the title and author names found
within it:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each <book>, get the value of the <title> and <author> elements
// output: 'The Shining is written by Stephen King. \n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 $author = $book->getElementsByTagName('author')->item(0)->nodeValue;
 echo "$title is written by $author.\n";
}
?>

In this case, the first call to getElementsByTagName() returns a collection
representing all the <book> elements from the XML document. It’s then easy to iterate
over this collection with a foreach() loop, processing each DOMNode object and
retrieving the value of the corresponding <title> and <author> elements with further
calls to getElementsByTagName().

TIP
You can return a collection of all the elements in a document by calling
DOMDocument-> getElementsByTagName(*).

To find out how many elements were returned by a call to getElementsByTagName(),
use the resulting collection’s length property. Here’s an example:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

 Chapter 8: Working with XML 275

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// return a count of the total number of <book> elements
// output: '8 book(s) found.'
$books = $doc->getElementsByTagName('book');
echo $books->length . ' book(s) found.';
?>

Working with Attributes
The DOM also includes extensive support for attributes: every DOMElement object
comes with a getAttribute() method, which accepts an attribute name and returns the
corresponding value. Here’s an example, which prints each book’s rating and genre from
library.xml:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each book
// retrieve and print 'genre' and 'rating' attributes
// output: 'The Shining \n Genre: horror \n Rating: 5 \n\n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 $rating = $book->getAttribute('rating');
 $genre = $book->getAttribute('genre');
 echo "$title\n";
 echo "Genre: $genre\n";
 echo "Rating: $rating\n\n";
}
?>

What if you don’t know the attribute name but simply want to process all attributes
of an element? Well, every DOMElement has an attributes property, which returns a
collection of all the element’s attributes. It’s easy to iterate over this collection to retrieve

 276 PHP: A Beginner’s Guide

Try This 8-4

each attribute’s name and value. The following example demonstrates, by revising the
preceding script to use this approach:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each book
// retrieve and print all attributes
// output: 'The Shining \n id: 1 \n genre: horror \n rating: 5 \n\n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 echo "$title\n";
 foreach ($book->attributes as $attr) {
 echo "$attr->name: $attr->value \n";
 }
 echo "\n";
}
?>

 Recursively Processing an XML
Document Tree

If you plan to work with XML and PHP in the future, this next project will almost
certainly come in handy some day: it’s a simple program that starts at the root of the XML
document tree and works its way through to the ends of its branches, processing every
element and attribute it finds on the way. Given the tree-like nature of an XML document,
the most efficient way to accomplish this task is with a recursive function—and given the
wealth of information supplied by the DOM, writing such a function is quite easy.

Assume for a moment that the XML document to be processed looks like this
(inventory.xml):

<?xml version='1.0'?>
<objects>
 <object color="red" shape="square">

 Chapter 8: Working with XML 277

 <length units="cm">5</length>
 </object>
 <object color="red" shape="circle">
 <radius units="px">7</radius>
 </object>
 <object color="green" shape="triangle">
 <base units="in">1</base>
 <height units="in">2</height>
 </object>
 <object color="blue" shape="triangle">
 <base units="mm">100</base>
 <height units="mm">50</height>
 </object>
 <object color="yellow" shape="circle">
 <radius units="cm">18</radius>
 </object>
</objects>

And here’s the PHP code to recursively process this (or any other) XML document
using the DOM:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-4: Recursively Processing An XML Document</title>
 </head>
 <body>
 <h2>Project 8-4: Recursively Processing An XML Document</h2>
 <pre>
<?php
// recursive function to process XML node collection
function xmlProcess($node, $depthMarker) {

 // process this node's children
 foreach ($node->childNodes as $n) {
 switch ($n->nodeType) {

 // for elements, print element name
 case XML_ELEMENT_NODE:
 echo "$depthMarker $n->nodeName \n";
 // if the element has attributes
 // list their names and values
 if ($n->attributes->length > 0) {
 foreach ($n->attributes as $attr) {
 echo "$depthMarker <i>attr</i>: $attr->name => $attr->value \n";
 }
 }
 break;

(continued)

 278 PHP: A Beginner’s Guide

 // for text data, print value
 case XML_TEXT_NODE:
 echo "$depthMarker <i>text</i>: \"$n->nodeValue\" \n";
 break;
 }

 // if this node has a further level of sub-nodes
 // increment depth marker
 // run recursively
 if ($n->hasChildNodes()) {
 xmlProcess($n, $depthMarker . DEPTH_CHAR);
 }
 }
}
// end function definition

// define the character used for indentation
define ('DEPTH_CHAR', ' ');

// initialize DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('objects.xml');

// call recursive function with root element
xmlProcess($doc->firstChild, DEPTH_CHAR);
?>
 </pre>
 </body>
</html>

In this program, the user-defined xmlProcess() function is a recursive function
that works by accepting a DOMNode object as input, retrieving a collection of this node’s
children by reading the object’s childNodes property, and iterating over this collection
with a foreach loop. Depending on whether the current node is an element node or a text
node, it prints either the node name or the node value. If the node is an element node, it
performs an additional step of checking for attributes and printing those as necessary. A
“depth string” is used to indicate the hierarchical position of the node in the output; this
string is automatically incremented every time the loop runs.

Having completed all these tasks, the last action of the function is to check whether the
current node has any children; if it does, it calls itself recursively to process the next level
of the node tree. The process continues until no further nodes remain to be processed.

Figure 8-7 illustrates the output of the program when xmlProcess() is called with
the document’s root element as input argument.

 Chapter 8: Working with XML 279

Altering Element and Attribute Values
Under the DOM, changing the value of an XML element is quite simple: navigate to the
DOMNode object representing the element and alter its nodeValue property to reflect
the new value. To illustrate, consider the following PHP script, which changes the title and
author of the second book in library.xml, and then outputs the revised XML document:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

Figure 8-7 Recursively processing an XML document with the DOM

 280 PHP: A Beginner’s Guide

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// change the <title> element of the second <book>
$books->item(1)->getElementsByTagName('title')->item(0)->nodeValue =
'Invisible Prey';

// change the <author> element of the second <book>
$books->item(1)->getElementsByTagName('author')->item(0)->nodeValue =
'John Sandford';

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

Here, the getElementsByTagName() method is used to first obtain a collection of
<book> elements and navigate to the second element in this collection (index position: 1).
It’s then used again, to obtain references to DOMNode objects representing the <title>
and <author> element. The nodeValue properties of these objects are then assigned
new values using PHP’s assignment operator, and the revised XML tree is converted back
into a string with the DOMDocument object’s saveXML() method.

Changing attribute values is just as easy: assign a new value to an attribute using the
corresponding DOMElement object’s setAttribute() method. Here’s an example,
which changes the sixth book’s 'rating' and outputs the result:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// change the 'genre' element of the fifth <book>
$books->item(4)->setAttribute('genre', 'horror-suspense');

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

 Chapter 8: Working with XML 281

Creating New XML Documents
The DOM comes with a full-fledged API for creating new XML documents, or for
grafting elements, attributes, and other XML structures on to an existing XML document
tree. This API, which is much more sophisticated than that offered by SimpleXML, should
be your first choice when dynamically creating or modifying an XML document tree
through PHP.

The best way to illustrate this API is with an example. Consider the following script,
which sets up a new XML file from scratch:

<?php
// initialize new DOMDocument
$doc = new DOMDocument('1.0');

// create and attach root element <schedule>
$root = $doc->createElement('schedule');
$schedule = $doc->appendChild($root);

// create and attach <course> element under <schedule>
$course = $doc->createElement('course');
$schedule->appendChild($course);

// create and attach <title> element under <course>
// add a value for the <title> element
$title = $doc->createElement('title');
$titleData = $doc->createTextNode('Macro-Economics');
$course->appendChild($title);
$title->appendChild($titleData);

// create and attach <teacher> element under <course>
// add a value for the <teacher> element
$teacher = $doc->createElement('teacher');
$teacherData = $doc->createTextNode('Professor Q. Draw');
$course->appendChild($teacher);
$teacher->appendChild($teacherData);

// create and attach <credits> element under <course>
// add a value for the <credits> element
$credits = $doc->createElement('credits');
$creditData = $doc->createTextNode('4');
$course->appendChild($credits);
$credits->appendChild($creditData);

// attach an attribute 'transferable' to the <credits> element
// set a value for the attribute
$transferable = $doc->createAttribute('transferable');

 282 PHP: A Beginner’s Guide

$credits->appendChild($transferable);
$credits->setAttribute('transferable', 'no');

// format XML output
$doc->formatOutput = true;

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

Figure 8-8 illustrates the XML document generated by this script.
This script introduces some new methods, all related to dynamically creating XML

nodes and attaching them to an XML document tree. There are two basic steps involved in
this process:

 1. Create an object representing the XML structure you wish to add. The base DOMDocument
object exposes create...() methods corresponding to each of the primary XML
structures: createElement() for element objects, createAttribute() for attribute
objects, and createTextNode() for character data.

Figure 8-8 Dynamically generating a new XML document with the DOM

 Chapter 8: Working with XML 283

 2. Attach the newly minted object at the appropriate point in the document tree, by calling
the parent’s appendChild() method.

The previous listing illustrates these steps, following a specific sequence to arrive at
the result tree shown in Figure 8-8.

 1. It begins by first initializing a DOMDocument object named $doc and then calling
its createElement() method to generate a new DOMElement object named
$schedule. This object represents the document’s root element; as such, it is attached
to the base of the DOM tree by calling the $doc->appendChild() method.

 2. One level below the root <schedule> element comes a <course> element. In DOM
terms, this is accomplished by creating a new DOMElement object named $course
with the DOMDocument object’s createElement() method, and then attaching
this object to the tree under the <schedule> element by calling $schedule->
appendChild().

 3. One level below the <course> element comes a <title> element. Again, this is
accomplished by creating a DOMElement object named $title and then attaching
this object under <course> by calling $course->appendChild(). There’s a twist
here, though: the <title> element contains the text value 'Macro-Economics'.
To create this text value, the script creates a new DOMTextNode object via the
createTextNode() object, populates it with the text string, and then attaches it as
a child of the <title> element by calling $title->appendChild().

 4. The same thing happens a little further along, when creating the <credits> element.
Once the element and its text value have been defined and attached to the document
tree under the <course> element, the createAttribute() method is used to create
a new DOMAttr object to represent the attribute 'transferable'. This attribute is
then attached to the <credits> element by calling $credits->appendChild(),
and a value is assigned to the attribute in the normal fashion, by calling $credits->
setAttribute().

Converting Between DOM and SimpleXML
An interesting feature in PHP is the ability to convert XML data between DOM and
SimpleXML. This is accomplished by means of two functions: the simplexml_import_
dom() function, which accepts a DOMElement object and returns a SimpleXML object,

 284 PHP: A Beginner’s Guide

Try This 8-5

and the dom_import_simplexml() function, which does the reverse. The following
example illustrates this interoperability:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// convert the sixth <book> to a SimpleXML object
// print title of sixth book
// output: 'Glory Road'
$sxml = simplexml_import_dom($books->item(5));
echo $sxml->title;
?>

 Reading and Writing XML
Configuration Files

Now that you know how to read and create XML document trees programmatically, let’s
use this knowledge in an application that’s increasingly popular these days: XML-based
configuration files, which use XML to mark up an application’s configuration data.

The next listing illustrates this in action, generating a Web form that allows users to
configure an oven online by entering configuration value for temperature, mode, and heat
source. When the form is submitted, the data entered by the user is converted to XML and
saved to a disk file. When users revisit the form, the data previously saved to the file is
read and used to prefill the form’s fields.

Here’s the code (configure.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-5: Reading And Writing XML Configuration Files</title>
 </head>

 Chapter 8: Working with XML 285

 <body>
 <h2>Project 8-5: Reading And Writing XML Configuration Files</h2>
 <h3 style="background-color: silver">Oven Configuration</h3>
<?php
 // define configuration file name and path
 $configFile = 'config.xml';

 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {

 // set up array with default parameters
 $data = array();
 $data['mode'] = null;
 $data['temperature'] = null;
 $data['duration'] = null;
 $data['direction'] = null;
 $data['autooff'] = null;

 // read current configuration values
 // use them to pre-fill the form
 if (file_exists($configFile)) {
 $doc = new DOMDocument();
 $doc->preserveWhiteSpace = false;
 $doc->load($configFile);
 $oven = $doc->getElementsByTagName('oven');
 foreach ($oven->item(0)->childNodes as $node) {
 $data[$node->nodeName] = $node->nodeValue;
 }
 }
?>
 <form method="post" action="configure.php">
 Mode:

 <select name="data[mode]">
 <option value="grill" <?php echo ($data['mode'] == 'grill') ?
'selected' : null; ?>>Grill</option>
 <option value="bake" <?php echo ($data['mode'] == 'bake') ?
'selected' : null; ?>>Bake</option>
 <option value="toast" <?php echo ($data['mode'] == 'toast') ?
'selected' : null; ?>>Toast</option>
 </select>

 <p>

 Temperature:

 <input type="text" size="2" name="data[temperature]" value="<?php echo
$data['temperature']; ?>"/>

 <p>

(continued)

 286 PHP: A Beginner’s Guide

 Duration (minutes):

 <input type="text" size="2" name="data[duration]" value="<?php echo
$data['duration']; ?>"/>

 <p>

 Heat source and direction:

 <input type="radio" name="data[direction]" value="top-down" <?php echo
($data['direction'] == 'top-down') ? 'checked' : null; ?>>Top, downwards</input>
 <input type="radio" name="data[direction]" value="bottom-up" <?php echo
($data['direction'] == 'bottom-up') ? 'checked' : null; ?>>Bottom, upwards
</input>
 <input type="radio" name="data[direction]" value="both" <?php echo
($data['direction'] == 'both') ? 'checked' : null; ?>>Both</input>

 <p>

 Automatically power off when done:
 <input type="checkbox" name="data[autooff]" value="yes" <?php echo
($data['autooff'] == 'yes') ? 'checked' : null; ?>/>

 <p>

 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // read submitted data
 $config = $_POST['data'];

 // validate submitted data as necessary

 if ((trim($config['temperature']) == '') || (trim($config['temperature'])
!= '' && (int)$config['temperature'] <= 0)) {
 die('ERROR: Please enter a valid oven temperature');
 }

 if ((trim($config['duration']) == '') || (trim($config['duration']) != ''
&& (int)$config['duration'] <= 0)) {
 die('ERROR: Please enter a valid duration');
 }

 // generate new XML document
 $doc = new DOMDocument();

 // create and attach root element <configuration>
 $root = $doc->createElement('configuration');
 $configuration = $doc->appendChild($root);

 Chapter 8: Working with XML 287

 // create and attach <oven> element under <schedule>
 $oven = $doc->createElement('oven');
 $configuration->appendChild($oven);

 // write each configuration value to the file
 foreach ($config as $key => $value) {
 if (trim($value) != '') {
 $elem = $doc->createElement($key);
 $text = $doc->createTextNode($value);
 $oven->appendChild($elem);
 $elem->appendChild($text);
 }
 }

 // format XML output
 // save XML file
 $doc->formatOutput = true;
 $doc->save($configFile) or die('ERROR: Cannot write configuration file');
 echo 'Configuration data successfully written to file.';
 }
?>
 </body>
</html>

Figure 8-9 illustrates the Web form generated by this script.
Once this form is submitted, the data entered into it arrives in the form of an

associative array, whose keys correspond to XML element names. This data is first
validated, and the DOM API is then used to generate a new XML document tree
containing these elements and their values. Once the tree is completely generated, the
DOMDocument object’s save() function is used to write the XML to a disk file.

Here’s an example of what the XML output file config.xml would look like after
submitting the form in Figure 8-9:

<?xml version="1.0"?>
<configuration>
 <oven>
 <mode>toast</mode>
 <temperature>22</temperature>
 <duration>1</duration>
 <direction>bottom-up</direction>
 <autooff>yes</autooff>
 </oven>
</configuration>

If a user revisits the Web form, the script first checks if a configuration file named
config.xml exists in the current directory. If it does, the XML data in the file is read into
a new DOMDocument object with the load() method and converted into an associative

(continued)

 288 PHP: A Beginner’s Guide

array by iterating over the list of child nodes in a loop. The various radio buttons, check
boxes, and selection lists in the form are then checked or preselected, depending on the
values in this array.

Figure 8-10 illustrates the form, prefilled with data read from the XML configuration
file.

If the user submits the Web form with new values, these new values will again be
encoded in XML and used to rewrite the configuration file. Because the configuration is
expressed in XML, any application that has XML parsing capabilities can read and use
this data. XML, when used in this fashion, thus provides a way to transfer information
between applications, even if they’re written in different programming languages or run
on incompatible operating systems.

Figure 8-9 A Web form for configuration data

 Chapter 8: Working with XML 289

Summary
At the end of this chapter, you should know enough to begin writing PHP programs
that can successfully interact with XML-encoded data. This chapter began with an
introduction to XML, explaining basic XML structures like elements, attributes, and
character data, and providing a crash course in XML technologies and parsing methods.
It then proceeded into a discussion of two of PHP’s most popular extensions for XML
processing, the SimpleXML and DOM extensions, and showed you how each of these
extensions could be used to access element and attribute values, create node collections,
and programmatically generate or change XML document trees. Various projects, ranging
from an XML-to-SQL converter to an RSS feed parser, were used to illustrate practical
applications of the interface between XML and PHP.

Figure 8-10 The same Web form, prefilled with configuration data

 290 PHP: A Beginner’s Guide

XML is an extensive topic, and the material in this chapter barely begins to scratch its
surface. However, there are many excellent tutorials and articles on XML and PHP on the
Web, and links to some of these are presented here, should you be interested in learning
more about this interesting and continually changing field:

● XML basics, at www.melonfire.com/community/columns/trog/article.php?id=78
and www.melonfire.com/community/columns/trog/article.php?id=79

● XPath basics, at www.melonfire.com/community/columns/trog/article.php?id=83

● XSL basics, at www.melonfire.com/community/columns/trog/article.php?id=82
and www.melonfire.com/community/columns/trog/article.php?id=85

● SimpleXML functions, at www.php.net/simplexml

● DOM API functions in PHP, at www.php.net/dom

● The DOM specification, at www.w3.org/DOM/

● Building XML documents using PHP and PEAR, at
www.melonfire.com/community/columns/trog/article.php?id=180

● Serializing XML, at
www.melonfire.com/community/columns/trog/article.php?id=244

● Performing XML-based Remote Procedure Calls (RPC) with PHP, at
www.melonfire.com/community/columns/trog/article.php?id=274

 Chapter 8 Self Test
 1. What are the two methods of parsing an XML document, and how do they differ?

 2. Name two characteristics of a well-formed XML document.

 3. Given the following XML document (email.xml), write a program to retrieve and print
all the e-mail addresses from the document using SimpleXML:

<?xml version='1.0'?>
<data>
 <person>
 <name>Clone One</name>
 <email>one@domain.com</name>
 </person>
 <person>
 <name>Clone SixtyFour</name>
 <email>sixtyfour@domain.com</name>
 </person>

✓

 Chapter 8: Working with XML 291

 <person>
 <name>Clone Three</name>
 <email>three@domain.com</name>
 </person>
 <person>
 <name>Clone NinetyNine</name>
 <email>ninetynine@domain.com</name>
 </person>
</data>

 4. Given the following XML document (tree.xml), suggest three different ways to retrieve
the text value 'John' using the DOM:

<?xml version='1.0'?>
<tree>
 <person type="grandpa" />
 <person type="grandma" />
 <children>
 <person type="pa" />
 <person type="ma" />
 <children>
 <person type="bro">
 <name>John</name>
 </person>
 <person type="sis">
 <name>Jane</name>
 </person>
 </children>
 </children>
</tree>

 5. Write a program to count the number of elements in an XML file. Use the DOM.

 6. Write a program to process the library.xml file from earlier in this chapter, increase
each book’s rating by 1, and print the revised output. Use SimpleXML.

 7. Write a program that connects to a MySQL database and retrieves the contents of any
one of its tables as an XML file. Use the DOM.

This page intentionally left blank

293

Chapter 9
Working with Cookies,
Sessions, and Headers

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 294 PHP: A Beginner’s Guide

Key Skills & Concepts
● Understand how cookies work

● Set and use your own cookies to create “sticky” pages

● Share data between pages with sessions and session variables

● Manipulate the user’s browser by sending it customized HTTP headers

You probably already know that the Hypertext Transfer Protocol (HTTP) is the standard
protocol used to transfer data between your browser and the various Web sites you visit.

What you may not know, however, is that HTTP is a “stateless” protocol, which treats
each request for a Web page as a unique and independent transaction, with no relationship
whatsoever to the transactions that preceded it. To work around this problem, most Web
sites use cookies or sessions to “maintain state,” in order to offer enhanced services—for
example, shopping carts or automatic restoration of personal settings—to site users.

PHP includes full-featured support for cookies and sessions. Using this built-in
support, it’s easy to create sessions and cookies, store and retrieve user-specific data in
them, manipulate them from within your PHP application, and even send custom headers
to the user’s browser to alter its default behavior. This chapter will show you how, with
some practical examples of how useful these features can be when building Web sites and
applications.

Working with Cookies
Cookies aren’t particularly difficult to get your mind around, but there are some basic
concepts you need to be familiar with before you begin writing your own cookie-handling
code. The following section will introduce you to these basic concepts.

Cookie Basics
In its simplest form, a cookie is a text file saved to a user’s system by a Web site. This file
contains information that the site can retrieve on the user’s next visit, thereby allowing
the site to “recognize” the user and provide an enhanced set of features customized to that
specific user. Common examples of such features include displaying site content that is
personalized according to the user’s settings, maintaining a record of the content previously
viewed by the user, and integrating personal user information into site display and layout.

 Chapter 9: Working with Cookies, Sessions, and Headers 295

Because cookies facilitate data transfer between a user and a remote Web site,
they’ve often been vilified in the media as “insecure” and “bad.” In truth, much of this is
exaggeration: while cookies (like any other technology) can certainly be misused, most
Web sites’ usage of cookies is harmless and can be directly linked to enhancing the user
experience. In addition, cookies also have some important security features, as follows:

● A cookie can only be read by the Web site or domain that created it.

● A single domain cannot set more than 20 cookies.

● A single cookie cannot exceed 4 kilobytes in size.

● The maximum number of cookies that may be set on a user’s system is 300.

CAUTION
Since cookies are stored on the user’s hard drive, developers have very little control over
them. If a user decides to “turn off” cookie support in his or her browser, your cookies
will simply not be saved. Therefore, if data persistence is an important feature of your
Web site, have a backup plan (such as server-side cookies or sessions) ready as well.

Cookie Attributes
A typical Web site cookie contains fewer ingredients than the baked variety—five, to be
precise. Table 9-1 has a list.

 1. Every cookie contains a name-value pair, which represents the variable name and
corresponding value to be stored in the cookie.

Attribute Description Example
name=value The cookie name and value 'email=myself@some.domain

.com'

expires The validity of the cookie 'expires=Friday, 25-Jan-08
23:59:50 IST'

domain The domain associated with the cookie 'domain=.thiswebsite.com'

path The domain path associated with the cookie 'path=/'

secure If present, a secure HTTP connection is
required to read the cookie

'secure'

Table 9-1 Cookie Attributes

 296 PHP: A Beginner’s Guide

 2. A cookie’s 'expires' attribute defines how long the cookie is valid for. Setting this
attribute’s value to a date in the past will usually cause the browser to delete the cookie.

 3. A cookie’s 'domain' attribute defines the domain name to be associated with the
cookie. Only this domain will be able to access the information in the cookie.

 4. A cookie’s 'path' attribute defines which sections of the domain specified in the
'domain' attribute can access the cookie. Setting this to the server root (/) allows
the entire domain access to the information stored in the cookie.

 5. A cookie’s 'secure' attribute indicates whether a secure HTTP connection is
mandatory before the cookie can be accessed.

Cookie Headers
Cookies are transmitted between the user’s browser and a remote Web site by means of
HTTP headers. For example, to set a cookie, a Web site must send the user’s browser
a 'Set-Cookie:' header containing the necessary attributes. The following example
illustrates the headers sent to create two cookies for a domain:

Set-Cookie: username=john; path=/; domain=.thiswebsite.com;
expires=Friday, 25-Jan-08 23:59:50 IST
Set-Cookie: location=UK; path=/; domain=.thiswebsite.com;
expires=Friday, 25-Jan-08 23:59:50 IST

Similarly, if a particular cookie is valid for a Web site and path, the user’s browser
automatically includes the cookie information in a 'Cookie:' header when requesting
the site URL. Using the preceding example, when the user next visits the thiswebsite.com
domain, the browser will automatically include the following header in its request:

Cookie: username=john; location=UK

Q: Can I read the cookies stored on my system?

A: Cookies are text files stored on your system and, as such, can be read with any
text editor. The exact location of the cookie repository on your system depends on
which browser and operating system you’re using. As an example, under Microsoft
Windows, Internet Explorer stores its cookies as separate files under C:/Documents
and Settings/[username]/cookies, while Mozilla Firefox stores all its cookies in a
single file at C:/Documents and Settings/[username]/Application Data/Mozilla/
Firefox/Profiles/[profilename]/cookies.txt.

Ask the Expert

 Chapter 9: Working with Cookies, Sessions, and Headers 297

Setting Cookies
PHP’s cookie-manipulation API is very simple: it consists of a single function, setcookie(),
which can be used to both set and remove cookies. This function accepts six arguments: the
cookie’s name and value, its expiry date in UNIX timestamp format, its domain and path, and
a Boolean flag for the 'secure' attribute. The function returns true if the cookie header was
successfully transmitted to the user’s system; however, this does not indicate if the cookie was
successfully set or not (if the user’s browser is set to reject all cookies, a cookie header might
be successfully transmitted but the cookie might not actually be set on the user’s system).

Here’s an example, which sets a cookie containing the user’s e-mail address:

<?php
// set a cookie
setcookie('email', 'john@somewebsite.com', mktime()+129600, '/');
?>

It’s possible to set multiple cookies, simply by calling setcookie() once for each
cookie. Here’s an example, which sets three cookies with different validity periods and paths:

<?php
// set multiple cookies
setcookie('username', 'whitewhale', mktime()+129600, '/');
setcookie('email', 'john@somewebsite.com', mktime()+86400, '/');
setcookie('role', 'moderator', mktime()+3600, '/admin');
?>

CAUTION
Because cookies are set using HTTP headers, calls to setcookie() must precede any
output generated by your script. A failure to adhere to this rule will not only prevent the
cookie from being set, but will also generate a series of PHP error messages.

Reading Cookies
Cookies set for a domain become available in the special $_COOKIE associative array in
PHP scripts running on that domain. These cookies may be accessed using standard array
notation. Here’s an example:

<?php
// read cookie
if (isset($_COOKIE['email'])) {
 echo 'Welcome back, ' . $_COOKIE['email'] . '!';
} else {
 echo 'Hello, new user!';
}
?>

 298 PHP: A Beginner’s Guide

Try This 9-1

Removing Cookies
To delete a cookie, use setcookie() with its name to set the cookie’s expiry date to a
value in the past, as shown here:

<?php
// remove cookie
$ret = setcookie('role', 'moderator', mktime()-1600, '/admin');
if ($ret) {
 echo 'Cookie headers successfully transmitted.';
}
?>

 Saving and Restoring User Preferences
Let’s now build a simple application that uses cookies to save and restore user
preferences. The Web form in the next listing asks the user to select his or her preferences
on a long flight, and stores these preferences in a cookie on the user’s system. When
the user returns to the page, the previously set preferences are read from the cookie and
automatically restored.

Here’s the code (flight-prefs.php):

<?php
// if form submitted
// write cookie with settings
if (isset($_POST['submit'])) {
 $ret1 = (isset($_POST['name'])) ? setcookie('name', $_POST['name'],
mktime() + 36400, '/') : null;
 $ret2 = (isset($_POST['seat'])) ? setcookie('seat', $_POST['seat'],
mktime() + 36400, '/') : null;
 $ret3 = (isset($_POST['meal'])) ? setcookie('meal', $_POST['meal'],
mktime() + 36400, '/') : null;
 $ret4 = (isset($_POST['offers'])) ? setcookie('offers', implode(',',
$_POST['offers']), mktime() + 36400, '/') : null;
}

// read cookie and assign cookie values
// to PHP variables
$name = isset($_COOKIE['name']) ? $_COOKIE['name'] : '';
$seat = isset($_COOKIE['seat']) ? $_COOKIE['seat'] : '';
$meal = isset($_COOKIE['meal']) ? $_COOKIE['meal'] : '';
$offers = isset($_COOKIE['offers']) ? explode(',',$_COOKIE['offers'])
: array();
?>

 Chapter 9: Working with Cookies, Sessions, and Headers 299

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 9-1: Saving and Restoring User Preferences</title>
 </head>
 <body>
 <h2>Project 9-1: Saving and Restoring User Preferences</h2>
 <h3>Set Your Flight Preferences</h3>
 <?php
 // if form submitted
 // display success message
 if (isset($_POST['submit'])) {
 ?>
 Thank you for your submission.
 <?php
 // if form not submitted
 // display form
 } else {
 ?>
 <form method="post" action="flight-prefs.php">
 Name:

 <input type="text" size="20" name="name" value="<?php echo
$name; ?>" />

 <p>

 Seat selection:

 <input type="radio" name="seat" value="aisle" <?php echo
($seat == 'aisle') ? 'checked' : ''; ?>>Aisle</input>
 <input type="radio" name="seat" value="window" <?php echo
($seat == 'window') ? 'checked' : ''; ?>>Window</input>
 <input type="radio" name="seat" value="center" <?php echo
($seat == 'center') ? 'checked' : ''; ?>>Center</input>

 <p>

 Meal selection:

 <input type="radio" name="meal" value="normal-veg" <?php echo
($meal == 'normal-veg') ? 'checked' : ''; ?>>Vegetarian</input>
 <input type="radio" name="meal" value="normal-nveg" <?php echo
($meal == 'normal-nveg') ? 'checked' : ''; ?>>Non-vegetarian</input>
 <input type="radio" name="meal" value="diabetic" <?php echo
($meal == 'diabetic') ? 'checked' : ''; ?>>Diabetic</input>
 <input type="radio" name="meal" value="child" <?php echo
($meal == 'child') ? 'checked' : ''; ?>>Child</input>

(continued)

 300 PHP: A Beginner’s Guide

 <p>

 I'm interested in special offers on flights from:

 <input type="checkbox" name="offers[]" value="LHR" <?php echo
in_array('LHR', $offers) ? 'checked' : ''; ?>>London (Heathrow)</
input>
 <input type="checkbox" name="offers[]" value="CDG" <?php echo
in_array('CDG', $offers) ? 'checked' : ''; ?>>Paris</input>
 <input type="checkbox" name="offers[]" value="CIA" <?php echo
in_array('CIA', $offers) ? 'checked' : ''; ?>>Rome (Ciampino)</input>
 <input type="checkbox" name="offers[]" value="IBZ" <?php echo
in_array('IBZ', $offers) ? 'checked' : ''; ?>>Ibiza</input>
 <input type="checkbox" name="offers[]" value="SIN" <?php echo
in_array('SIN', $offers) ? 'checked' : ''; ?>>Singapore</input>
 <input type="checkbox" name="offers[]" value="HKG" <?php echo
in_array('HKG', $offers) ? 'checked' : ''; ?>>Hong Kong</input>
 <input type="checkbox" name="offers[]" value="MLA" <?php echo
in_array('MLA', $offers) ? 'checked' : ''; ?>>Malta</input>
 <input type="checkbox" name="offers[]" value="BOM" <?php echo
in_array('BOM', $offers) ? 'checked' : ''; ?>>Bombay</input>

 <p>

 <input type="submit" name="submit" value="Submit" />
 </form>
 <?php
 }
 ?>
 </body>
</html>

This Web form contains various fields for the user to enter his or her name, select a
seat and meal type, and sign up for special offers. Figure 9-1 illustrates what this Web
form looks like.

When this form is submitted, the choices selected by the user are saved to cookies on
the user’s system. As a result, every time the user revisits the Web form, this cookie data
is automatically read by PHP into the $_COOKIE array. The Web form can then use this
cookie data to preselect and prefill the form fields according to the user’s last submission,
thus appearing to “remember” the user’s settings on his or her next visit.

The cookies themselves are stored on the user’s system and may be viewed using any
text editor. Some browsers also let you view cookies using built-in tools. For example, in
Mozilla Firefox, you can view the contents of all cookies set on your system through the
Tools | Options | Privacy | Show Cookies menu, as illustrated in Figure 9-2.

 Chapter 9: Working with Cookies, Sessions, and Headers 301

Figure 9-1 A Web form for the user to enter his or her flight preferences

Figure 9-2 Viewing a cookie in Mozilla Firefox

 302 PHP: A Beginner’s Guide

Working with Sessions
Like cookies, sessions also offer a way to maintain state for a Web site or application,
albeit using a slightly different approach. The following sections explain how sessions
work under PHP, and the PHP functions to create and use sessions within a Web
application.

Session Basics
By now, you know what cookies are: text files stored on a user’s system that help a Web
site or application recognize the user and retrieve specific information about him or her.
The problem with cookies is that they’re not very secure: because they’re stored on the
client, it’s possible for any reasonably adept user to open the cookie file and read or
modify the information stored within it, sometimes to malicious ends.

That’s why many Web sites prefer to use sessions. Sessions work much like cookies,
except that the information used to maintain state is stored on the server, rather than on
the client. In a session-based environment, every client is identified through a unique
number—a so-called session identifier—and this unique number is used to link each client
with its information on the server. Every time the client visits the Web site or application,
the site reads the client’s session identifier and restores state information from a data
repository on the server.

Under this system, state information is stored in an SQL database or text file on the
server; as a result, users cannot access or modify it, making the entire system that much
more secure. The session identifier itself may be stored on the client in a cookie, or it may
be passed from page to page in the URL. Under PHP, this cookie is named PHPSESSID.

The following sections discuss the PHP functions to create sessions, register and use
session variables, and destroy sessions.

Creating Sessions and Session Variables
It’s easy to begin a new session under PHP: simply call the session_start() function
to create a new session and generate a session ID for the client. Once a session has
been created, it becomes possible to create and attach any number of session variables
to the session; these are like regular variables, in that they can store textual or numeric
information, but they’re also special because they remain extant over the duration of the
session, as the user clicks his or her way through different pages of the site.

Session variables are “registered” by saving them as key-value pairs of the $_SESSION
associative array. Like $_POST and $_GET, this array is always available in the global
scope and may be accessed directly at any point in your PHP script.

 Chapter 9: Working with Cookies, Sessions, and Headers 303

To see how sessions and session variables work, consider the following script, which
creates a new client session and registers two session variables:

<?php
// start session
session_start();

// register session variables
$_SESSION['name'] = 'Ronald';
$_SESSION['species'] = 'Rabbit';
?>

CAUTION
The session_start() function typically sets a cookie containing the session ID on the
client system. Therefore, as with the setcookie() function, calls to session_start()
must precede any output generated by the script. This is because of restrictions in the
HTTP protocol that require cookie headers to be sent before any script output.

It’s now possible to access these session variables from any other page on the same
Web domain. To do so, create a new PHP script, recreate the session by calling session_
start() and then try accessing the values of the $_SESSION associative array, as in the
next example:

<?php
// start session
session_start();

// read session variables
// output: 'Welcome back, Ronald Rabbit'
echo 'Welcome back, ' . $_SESSION['name'] . ' ' . $_SESSION['species'] ;
?>

Q: Help! My session variables aren’t being saved. What do I do now?

A: If your session variables aren’t being correctly registered, there are a couple of
possibilities you could look into before giving up and calling the session police:

● By default, PHP saves session data on the server to the /tmp directory. However, if
you’re using Microsoft Windows, this directory will not exist, and your sessions will
not be correctly saved. To rectify this, open the PHP configuration file, php.ini, and edit
the 'session.save_path' variable to reflect your system’s temporary directory.

Ask the Expert

(continued)

 304 PHP: A Beginner’s Guide

● By default, PHP sets a cookie on the user’s system with the session identifier. If the
user’s browser is set to reject all cookies, this session identifier will not be set and
session information will not be maintained from page to page. To rectify this, you
can instead pass the session identifier from page to page as part of the URL string
(although this is less secure) by setting the 'session.use_trans_sid' variable
in the PHP configuration file to true.

● Every PHP session has a timeout value—a duration, measured in seconds, of how
long the session should remain “alive” in the absence of any user activity. In some
cases, this timeout value may be set too low for your application, resulting in
sessions being automatically destroyed too soon. You can adjust this timeout value by
changing the 'session.gc_maxlifetime' variable in the PHP configuration file.

Removing Sessions and Session Variables
To unregister a specific session variable, simply unset the corresponding key of the
$_SESSION array:

<?php
// start session
session_start();

// erase session variable
unset($_SESSION['name']);
?>

Alternatively, to unregister all session variables and erase the session, use the
session_destroy() function:

<?php
// start session
session_start();

// erase session
session_destroy();
?>

It’s important to notice that before you can destroy a session with session_destroy(),
you need to first recreate the session environment (so that there is something to destroy) with
session_start().

 Chapter 9: Working with Cookies, Sessions, and Headers 305

Try This 9-2 Tracking Previous Visits to a Page
Let’s now put all this theory in context, by building a simple application that demonstrates
how sessions work. This next example uses a session to record every visit made by a user
to a Web page. On each visit, the script prints the dates and times of all previous visits and
adds a record for the current visit to the session.

Here’s the code (visits.php):

<?php
// start session
session_start();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 9-2: Tracking Previous Visits To A Page</title>
 </head>
 <body>
 <h2>Project 9-2: Tracking Previous Visits To A Page</h2>
 <?php
 if (!isset($_SESSION['visits'])) {
 echo 'This is your first visit.';
 } else {
 echo 'You previously visited this page on:
';
 foreach ($_SESSION['visits'] as $v) {
 echo date('d M Y h:i:s', $v) . '
';
 }
 }
 ?>
 </body>
</html>
<?php
// add current date/time stamp to session array
$_SESSION['visits'][] = mktime();
?>

To see this script in action, visit the Web page a few times, and you should see a
growing list containing records of all your previous visits. This list remains available so
long as you don’t close the browser window—so even if you visit a few other sites and
then return to this script, you’ll still see the records of all your previous visits. Once you
close the browser, however, the session cookie will be destroyed and the list will begin
anew.

(continued)

 306 PHP: A Beginner’s Guide

Figure 9-3 illustrates a sample of what you might see.
This script works by creating a session every time a user visits the page, and storing

the timestamp of the user’s visits in the session variable $_SESSION['visits']. On
each subsequent visit, the session is recreated, the array containing the timestamps of
previous visits is restored, and a foreach loop is used to iterate over this array and print
its records in human-readable date and time format.

Using HTTP Headers
In previous sections, you’ve seen how PHP automatically sends the user’s browser
headers to set cookies. However, as a PHP developer, these aren’t the only headers you
can send; PHP lets you send the user’s browser any header supported by the HTTP
protocol, via its header() function.

Figure 9-3 Tracking previous visits to a Web page

 Chapter 9: Working with Cookies, Sessions, and Headers 307

Perhaps the most commonly used header is the 'Location:' header, used to
transparently redirect the user’s browser to a different URL. Here’s an example of it in
action:

<?php
// redirect to www.php.net
header('Location: http://www.php.net');
?>

You can also send other headers—for example, 'Cache-Control:' or 'Content-
Encoding:' headers—as in the next example:

<?php
// control caching
header('Cache-Control: no-cache');

// set content-type
header('Content-Type: text/xml');

// set content-encoding
echo "<?xml version='1.0'?><doc><element/></doc>";
?>

As you now know, sending an HTTP header after the script has already generated
output will produce an error. You can avoid this error by first testing if any headers
have already been sent, via PHP’s headers_sent() function. Consider the following
example, which illustrates:

<?php
// check if headers sent
// if no, send headers
// if yes, display error message
if (!headers_sent()) {
 header('Cache-Control: no-cache');
 header('Content-Type: text/plain');
 echo 'Headers sent.';
} else {
 die ('ERROR: Cannot send headers!');
}
?>

TIP
For a complete list of headers supported by the HTTP protocol, take a look at the
protocol specification at www.w3.org/Protocols/rfc2616/rfc2616.html, or the
Wikipedia page at en.wikipedia.org/wiki/List_of_HTTP_headers.

 308 PHP: A Beginner’s Guide

Try This 9-3

To obtain a complete list of HTTP headers that will be sent to the user’s browser, use
the headers_list() function. Here’s an example:

<?php
// control caching
header('Cache-Control: no-cache');

// set content-type
header('Content-Type: text/plain');

// print header list
print_r(headers_list());
?>

Figure 9-4 illustrates the output of this script.

 Building a Better Login Form
In Chapter 7, you built a login form that dynamically interacted with a MySQL database
to verify user credentials. Now, let’s juice that form up a little with sessions, cookies, and
headers. This next example will enhance the login form from Chapter 7 to remember the
username entered into it, and to restrict access to certain pages only to logged-in users.

Figure 9-4 A list of HTTP headers that will be sent to the client

 Chapter 9: Working with Cookies, Sessions, and Headers 309

Assuming that you’ve set up the MySQL database according to the instructions in
Chapter 7, here’s the revised login form (login.php):

<?php
// if form not yet submitted
// display form
if (!isset($_POST['submit'])) {
 $username = (isset($_COOKIE['name'])) ? $_COOKIE['name'] : '';
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 9-3: Building A Better Login Form</title>
 </head>
 <body>
 <h2>Project 9-3: Building A Better Login Form</h2>
 <form method="post" action="login.php">
 Username:

 <input type="text" name="username" value="<?php echo $username; ?>"/>
 <p>
 Password:

 <input type="password" name="password" />
 <p>
 <input type="checkbox" name="sticky" checked />
 Remember me
 <p>
 <input type="submit" name="submit" value="Log In" />
 </form>
 </body>
</html>
<?php
// if form submitted
// check supplied login credentials
// against database
} else {
 $username = $_POST['username'];
 $password = $_POST['password'];

 // check input
 if (empty($username)) {
 die('ERROR: Please enter your username');
 }
 if (empty($password)) {
 die('ERROR: Please enter your password');
 }

 // attempt database connection
 try {
 $pdo = new PDO('mysql:dbname=app;host=localhost', 'user', 'pass');
 } catch (PDOException $e) {

(continued)

 310 PHP: A Beginner’s Guide

 die("ERROR: Could not connect: " . $e->getMessage());
 }

 // escape special characters in input
 $username = $pdo->quote($username);

 // check if usernames exists
 $sql = "SELECT COUNT(*) FROM users WHERE username = $username";
 if ($result = $pdo->query($sql)) {
 $row = $result->fetch();
 // if yes, fetch the encrypted password
 if ($row[0] == 1) {
 $sql = "SELECT password FROM users WHERE username = $username";
 // encrypt the password entered into the form
 // test it against the encrypted password stored in the database
 // if the two match, the password is correct
 if ($result = $pdo->query($sql)) {
 $row = $result->fetch();
 $salt = $row[0];
 if (crypt($password, $salt) == $salt) {
 // password correct
 // start a new session
 // save the username to the session
 // if required, set a cookie with the username
 // redirect the browser to the main application page
 session_start();
 $_SESSION['username'] = $username;
 if ($_POST['sticky']) {
 setcookie('name', $_POST['username'], mktime()+86400);
 }
 header('Location: main.php');
 } else {
 echo 'You entered an incorrect password.';
 }
 } else {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
 }
 } else {
 echo 'You entered an incorrect username.';
 }
 } else {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
 }

 // close connection
 unset($pdo);
}
?>

Figure 9-5 illustrates what the login form looks like.
When this form is submitted, the second half of the script verifies the username

and password against the values stored in the database, using the procedure previously

 Chapter 9: Working with Cookies, Sessions, and Headers 311

explained in Chapter 7. There are some important differences, though: in this version,
instead of simply generating a success message if the supplied username and password are
valid, the script starts a new session and registers the username as a session variable.

Next, the script checks if the “Remember Me” option on the Web form was selected.
If it was, the script sets a cookie on the user’s system to store the username for subsequent
logins. The next time the user visits this page, the cookie set in the previous step will be
automatically read, and the form will be prefilled with the username. Once the session and
cookie have both been set, the script uses the header() function to redirect the user’s
browser to the application’s main page, main.php.

This is only half the story, though. In order to restrict access to logged-in users only,
it’s necessary to check for the presence of a valid session on other pages of the site.
To illustrate how this works, look at the application’s main page (main.php), which
implements one such check:

<?php
// recreate session
// check if user has logged in
// if not, display an error message and halt processing

Figure 9-5 A Web form to log in to an application

(continued)

 312 PHP: A Beginner’s Guide

session_start();
if (!isset($_SESSION['username'])) {
 die('ERROR: You attempted to access a restricted page. Please log in.');
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 9-3: Building A Better Login Form</title>
 </head>
 <body>
 <h2>Project 9-3: Building A Better Login Form</h2>
 This is the main application page.
 <p/>
 You will only see this page after a successful login.
 <p/>
 </body>
</html>

Figure 9-6 illustrates what logged-in users would see.
And Figure 9-7 illustrates what users attempting to access this page without logging in

would see.

Figure 9-6 The result of successfully logging in

 Chapter 9: Working with Cookies, Sessions, and Headers 313

Summary
This chapter demonstrated two of PHP’s most useful and sophisticated features: the ability
to work around restrictions in the HTTP protocol and the ability to maintain state through
sessions and cookies. These features are commonly used by developers to improve
and enhance the user experience on PHP-enabled Web sites, and as you saw over the
preceding pages, they’re quite easy to implement as well.

In addition to a discussion of the theory behind sessions, cookies, and headers,
this chapter also included practical examples to put the theory in context. A common
Web task—allowing only logged-in users to access parts of a Web site—was used to
demonstrate how sessions, cookies, and headers can be used together to build a functional
and secure application.

To read more about the topics discussed in this chapter, consider visiting the following
links:

● Cookies in PHP, at www.php.net/setcookie

● Sessions in PHP, at www.php.net/session

● HTTP headers in PHP, at www.php.net/header

Figure 9-7 The result of accessing a secure page without first logging in

 314 PHP: A Beginner’s Guide

 Chapter 9 Self Test
 1. What is the difference between a session and a cookie?

 2. How do you remove a previously set cookie?

 3. How do you register a session variable? And how do you access its value on a different
page?

 4. What is wrong with the following PHP script? Without running it, what is the likely
output?

<?php
echo 'Redirecting you...';
header('Location: http://www.php.net');
?>

 5. Write a program that counts how many times a user has visited a particular page:

 A Within the same session

 B Over different sessions

 6. Review the last project in this chapter. Then, enhance it by writing a PHP script that
logs users out of the application and redirects them back to the login form.

✓

Part III
Security and
Troubleshooting

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

317

Chapter 10
Handling Errors

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 318 PHP: A Beginner’s Guide

Key Skills & Concepts

● Understand PHP’s error levels

● Control which errors are displayed in your PHP script

● Bypass PHP’s default error handler and divert errors to a custom function

● Understand how to generate and handle exceptions

● Automatically log errors to a file or e-mail address

● Generate a backtrace to debug script errors

A common misconception, especially among less experienced developers, is that a
“good” program is one that works without errors. In fact, this is not strictly true: a

better definition might be that a good program is one that anticipates all possible error
conditions ahead of time and deals with them in a consistent and correct manner.

Writing “intelligent” programs that conform to this definition is as much art as
science. Experience and imagination play an important role in assessing potential causes
of error and defining corrective action, but no less important is the programming language
itself, which defines the tools and functions available to trap and resolve errors.

Fortunately, PHP is no slouch in this department: the language comes with a
sophisticated framework to help developers catch errors and take remedial action. This
chapter will introduce you to this framework, teaching you about the PHP 5.3 exception
model and showing you how to create customized error handling routines tailored to your
PHP application’s requirements.

Handling Script Errors
As you’ve worked your way through the projects in this book, you’ll undoubtedly have
had a few accidents: a misplaced brace here, a missing semicolon there, perhaps a wrongly
invoked function somewhere else. And you’ll have noticed that PHP is actually quite
good about pointing out these errors. In some cases, PHP would have generated an error
message but continued executing your script; in other, more serious cases, it would have
halted script execution with a message indicating the line number that caused the error.

 Chapter 10: Handling Errors 319

The type of errors just described are “script-level” errors; they arise when the PHP
engine encounters defects in the syntax or structure of a PHP script. Typically, they only
become visible once PHP actually starts parsing and executing a script. To illustrate, try
creating and running the following script:

<?php
// try dividing by zero
echo 45/0;

// try calling an undefined function
echo someFunc();
?>

The output of this script should look something like Figure 10-1.
As Figure 10-1 illustrates, this script generated two types of errors: a “warning” about

the attempt to divide by zero, and a “fatal error” about the attempt to invoke an undefined
function. In fact, PHP errors can broadly be classified into three main categories, as listed
in Table 10-1.

There’s a clear hierarchy to PHP’s error messages: notices are less serious than
warnings, which in turn are less serious that fatal errors. By default, PHP only displays
warnings and fatal errors in script output (although, as you will shortly see, you can
change this default behavior so that even notices are visible in script output). Errors can

Figure 10-1 An example of a PHP error page

 320 PHP: A Beginner’s Guide

arise at various stages during a script’s lifetime—at startup, at parse time, at compile time,
or at run time—and so PHP also makes internal distinctions between these various stages.
Collectively, this adds up to twelve different error levels (plus two “special” levels),
represented by named constants. A complete list of these error levels can be obtained from
www.php.net/manual/en/ref.errorfunc.php#errorfunc.constants; Table 10-2 lists the ones
you’ll be using most often.

Most of these error levels are easy to understand. The only ones you might have
trouble with are the E_USER error levels, which are set aside for custom application-level
errors. Don’t worry about these, as they’ve largely been supplanted by the new exception
model introduced in PHP 5.

Table 10-1 PHP Error Categories

Error Type Description Example
Notices Non-critical errors that don’t stop PHP from

executing a script
Accessing a variable that hasn’t
been initialized

Warnings More serious errors that require attention but still
don’t stop script execution (although some parts
of the script may function incorrectly)

Reading a file that doesn’t exist in
the stated path

Fatal errors Syntax errors, or critical errors that force PHP to
stop executing a script

Instantiating an object of an
undefined class

Table 10-2 PHP Error Levels

Error Level Description
E_PARSE Fatal parse errors

E_NOTICE Non-fatal run-time errors (notices)

E_WARNING Non-fatal run-time errors (warnings)

E_ERROR Fatal run-time errors that force script termination

E_USER_NOTICE User-defined non-fatal application errors (notices)

E_USER_WARNING User-defined non-fatal application errors (warnings)

E_USER_ERROR User-defined fatal application errors

E_STRICT Non-fatal run-time errors arising from legacy/deprecated PHP syntax

E_ALL All errors

 Chapter 10: Handling Errors 321

Controlling Error Reporting
You can control which errors are displayed in script output with a built-in PHP function
called error_reporting(). This function accepts one or more of the named constants
from Table 10-2 and tells the script to report only errors that match that type. There’s one
exception, however: parsing errors (E_PARSE) that arise from syntactical defects in a PHP
script cannot be hidden using the error_reporting() function.

To see this in action, consider the following rewrite of one of the earlier scripts to
“hide” non-fatal errors:

<?php
// only display fatal errors
error_reporting(E_ERROR);
echo 45/0;
?>

In this case, when the script executes, no warning will be generated even though the
script attempts to perform division by zero.

Q: What does the E_STRICT error level do?

A: At the E_STRICT error level, PHP inspects your code at run time and automatically
generates recommendations about how it may be improved. Using E_STRICT can often
provide a heads-up on functions that will break in a future version of PHP, and using it is
recommended to improve the long-term maintainability of your code.

Ask the Expert

You can also use error_reporting() to turn off reporting of run-time fatal errors,
as in the following example:

<?php
// only display warnings
error_reporting(E_WARNING);
echo someFunc();
?>

It’s important to realize that error_reporting() doesn’t automatically make your
script error-free; all it does is hide errors of a certain type. As a case in point, although the
preceding script will not display a visible error message, it will still generate a fatal error,
and script execution will still stop at the point of error.

 322 PHP: A Beginner’s Guide

You can also pass error_reporting() a combination of error levels, to customize
PHP’s error reporting system even further. For example, consider the following script,
which only reports notices and fatal errors, but not warnings:

<?php
// only display notices and fatal errors
error_reporting(E_NOTICE | E_ERROR);
echo $var; // notice
echo 45/0; // warning
echo someFunc(); // fatal
?>

It is also possible to selectively turn off error reporting, on a per-function basis, by
prefixing the function call with the @ operator. For example, the following code snippet
would normally generate a fatal error because someFunction() doesn’t exist:

<?php
// call a non-existent function
someFunction();
?>

However, this error could be suppressed by placing an @ symbol before the function
call, like this:

<?php
// call a non-existent function
@someFunction();
?>

Using a Custom Error Handler
By default, when a script error is triggered, PHP’s built-in error handler identifies the error
type, displays an appropriate error message (based on the error_reporting() setting),
and optionally halts script execution (if the error is fatal). The message generated by the
error handler uses a standard template: it indicates the error type, the reason for the error,
and the file name and line number where the error was generated (see Figure 10-1 for an
example).

As your PHP applications become more complex, however, this default error handling
mechanism may often end up being inadequate. For example, you might wish to customize
the template used by the error handler to display more or less information, or you might
wish to log the error to a file or database instead of displaying it to the user. For all these
situations, PHP offers the set_error_handler() function, which allows you to replace
PHP’s built-in error handler with your own.

 Chapter 10: Handling Errors 323

The set_error_handler() function accepts a single argument: the name of the
user-defined function that should be invoked when an error occurs. This custom function
must be capable of accepting a minimum of two mandatory arguments (the error type
and the corresponding descriptive message) and up to three additional arguments (the
filename, the line number where the error occurred, and a dump of the variable space at
the time of error).

NOTE
A custom error handler cannot intercept fatal errors (E_ERROR), parsing errors
(E_PARSE), or legacy code notifications (E_STRICT).

To illustrate how this works, consider the following example. Here, a user-defined
error handling function replaces PHP’s built-in handler, dynamically generating a custom
error page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title></title>
 <style type="text/css">
 .notice {
 font-weight: bolder;
 color: purple;
 }
 .warning {
 font-weight: bolder;
 font-size: larger;
 color: red;
 }
 </style>
 </head>
 <body>
<?php
// divert errors to custom error handler
set_error_handler('myHandler');

// report all errors
error_reporting(E_ALL);

// generate some errors
echo $var; // notice
echo 23/0; // warning

 324 PHP: A Beginner’s Guide

// custom error handler
function myHandler($type, $msg, $file, $line, $context) {
 $text = "An error occurred on line $line while processing your
request.<p>
 Please visit our home page
and try again.";
 switch($type) {
 case E_NOTICE:
 echo "<div class=\"notice\">$text</div><p>";
 break;

 case E_WARNING:
 echo "<div class=\"warning\">$text</div><p>";
 break;
 }
}
?>
 </body>
</html>

Here, the set_error_handler() function automatically diverts all errors to the
user-defined function myHandler(). When an error occurs, this function is passed the
error type, error message, file, and line number where the error occurred, along with
the variable context. It then displays a custom error page containing the line number of
the error in either purple (notices) or red (warnings), and manually halts script execution.
Figure 10-2 illustrates the output.

Figure 10-2 An error page generated by a custom error handler

 Chapter 10: Handling Errors 325

Try This 10-1

Q: How do I restore PHP’s default error handling mechanism once I’ve called set_
error_handler()?

A: There are two ways to do this. The simplest method is to use PHP’s restore_error_
handler() function. This function restores the last error handler in use before set_
error_handler() was called; in most cases, this will be PHP’s default error handler.

Another option is to have the custom error handler return false; this will force
the error to be transferred back to PHP’s default handler for processing in the normal
manner. This technique is particularly handy if you need to pass errors through a
custom function first for preprocessing or logging, and you’ll see an example in the
section entitled “Logging Errors.”

Ask the Expert

 Generating a Clean Error Page
PHP’s default error handler merely displays information about an error. Often, this
error message appears while an output page is being generated, disrupting page layout
and creating unnecessary user confusion and stress (see Figure 10-3 for an example of
such a page). However, by replacing the default error handler with a custom function,
it’s possible to easily resolve this problem by generating a “clean” error page while
simultaneously logging script errors to a database for later review. This next example
will show you how to do this.

To begin, create a new SQLite database, and a table to hold error information, as
shown here:

shell> sqlite app.db
sqlite> CREATE TABLE errors (
 ...> id INTEGER PRIMARY KEY,
 ...> date TEXT NOT NULL,
 ...> error TEXT NOT NULL,
 ...> script TEXT NOT NULL,
 ...> line TEXT NOT NULL
 ...>);

Next, define a custom error handler that intercepts all script errors and writes them to
this table using PDO, as in the following script (app.php):

<?php
// report all errors
error_reporting(E_ALL);
 (continued)

 326 PHP: A Beginner’s Guide

// use custom handler
set_error_handler('myHandler');

// create an output buffer
ob_start();

// define a custom handler
// which logs errors to the database
// then generates an error page
function myHandler($type, $msg, $file, $line, $context) {
 // log error to database
 $db = 'app.db';
 $pdo = new PDO("sqlite:$db");
 $msg = $pdo->quote($msg);
 $file = $pdo->quote($file);
 $line = $pdo->quote($line);

Figure 10-3 Error output interspersed with page content

 Chapter 10: Handling Errors 327

 $date = $pdo->quote(date('d-M-Y h:i:s', mktime()));
 $sql = "INSERT INTO errors (date, error, script, line) VALUES ($date, $msg,
$file, $line)";
 $pdo->exec($sql);

 // reset and close the output buffer
 // generate a new error page
 ob_end_clean();
 $errorPage = '
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Error Page</title>
 </head>
 <body>
 <div style="border:solid 1px black; padding:10px; width:50%; height:50%;
margin:auto; top:0; bottom:0; right:0; left:0; position:absolute">
 <h2>Oops!</h2>
 This script encountered an internal error and was unable to execute.
 The error has been logged and will be rectified as soon as possible.
 Until then, please return to the home page and select another activity.
 </div>
 </body>
 </html>';
 echo $errorPage;
 exit();
}
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 10-1: Generating a Custom Error Page</title>
 </head>
 <body>
<?php
// output some page text
echo "<h1>Hello and welcome to this page.</h1>";

// generate warning (file not found)
include('missingfile.php');

// output some page text
echo "Goodbye.";

// dump output buffer
ob_end_flush();
?>
 </body>
</html>

(continued)

 328 PHP: A Beginner’s Guide

In addition to components you’re already familiar with (PDO and custom error
handlers), this script also introduces a new animal: PHP’s output control functions. As the
name suggests, these functions provide a way for developers to exercise a high degree of
control over the output generated by a PHP script.

PHP’s output control functions work by diverting all the output generated by a script
to a special output buffer in memory, instead of sending it directly to the client browser.
The contents of this buffer remain in memory until they are explicitly made visible to the
user; alternatively, they may be erased simply by resetting the buffer.

There are three main functions to learn about in PHP’s output control API:

● The ob_start() function initializes an output buffer and prepares it to intercept the
output of a script. Needless to say, this function should be called before any output is
generated by the script.

● The ob_end_flush() function ends output buffering and sends the current contents
of the output buffer to the output device (usually the user’s browser).

● The ob_end_clean() function ends output buffering and clears the current contents
of the output buffer.

With all this theory in mind, let’s return to the preceding script to see how output
buffers can help to produce cleaner error pages. A quick glance at the script, and you’ll see
that it begins by initializing a new output buffer with ob_start(), and a custom error
handler with set_error_handler(). Any output generated by the script will now be
stored in the output buffer until it is released to the client via a call to ob_end_flush().

Now, consider what happens when an error occurs in the script. First, the custom
error handler will intercept this error, open a PDO handle to the SQLite database file
created in the previous step, and convert the error (notice or warning) into an SQL
INSERT query. This query will then be used to save the error to the database via PDO’s
exec() method, together with the exact date and time. Then, the call to ob_end_
clean() will flush the output buffer, send a custom error page to the browser, and
terminate script execution.

As a result of these actions, even if there was a Web page being constructed on the
fly when the error occurred, it will never see the light of day, as it will be discarded and
replaced by the custom error page. If, on the other hand, the script executes without any
errors, the final call to ob_end_flush() will take care of sending the full and final page
to the browser.

 Chapter 10: Handling Errors 329

And now, when you run the script, instead of the mangled output previously shown in
Figure 10-3, you should see a much cleaner error page. Figure 10-4 illustrates what you’ll
probably see.

While you’re at it, also look in the SQLite table. You should be able to see the error
messages thrown by the script, as shown here:

1|13-Feb-2008 06:25:30|Undefined variable: myVar|/ch10/project01/
app.php|28
2|13-Feb-2008 06:25:30|include(missingfile.php): failed to open
stream: No such file or directory| /ch10/project01/app.php|31
3|13-Feb-2008 06:25:30|include(): Failed opening 'missingfile.php' for
inclusion (include_path='. ')|/ch10/project01/app.php|31

A setup like this makes it easy for an administrator or developer to maintain a
permanent record of script errors and return to this record at any time to view or audit
errors, while also ensuring that the user experience is consistent and uncomplicated.

Figure 10-4 A clean error page

 330 PHP: A Beginner’s Guide

Q: What happens if the custom error handling function itself contains an error?

A: If the custom error handler itself contains an error, the error will be propagated upward
to PHP’s default error handling mechanism. So, for example, if the code inside a custom
error handler generates a warning, this warning will be reported per PHP’s current error
reporting level and handled by PHP’s default error handler.

Ask the Expert

Using Exceptions
In addition to errors, PHP 5 also introduced a new exception model, similar to that used
by other programming languages like Java and Python. In this exception-based approach,
program code is wrapped in a try block, and exceptions generated by it are “caught”
and resolved by one or more catch blocks. Because multiple catch blocks are possible,
developers can trap different types of exceptions and handle each type differently.

To illustrate how this works, consider the following listing, which attempts to access a
non-existent array element using an ArrayIterator:

<?php
// define array
$cities = array(
 "United Kingdom" => "London",
 "United States" => "Washington",
 "France" => "Paris",
 "India" => "Delhi"
);

// try accessing a non-existent array element
// generates an OutOfBoundsException
// output: 'Exception: Seek position 10 is out of range'
try {

 $iterator = new ArrayIterator($cities);
 $iterator->seek(10);

} catch (Exception $e) {
 echo 'ERROR: An exception occurred in your script.';
}
?>

When PHP encounters code wrapped within a try-catch block, it first attempts to
execute the code within the try block. If this code is processed without any exceptions
being generated, control transfers to the lines following the try-catch block. However,
if an exception is generated while running the code within the try block (as happens in the
preceding listing), PHP stops execution of the block at that point and begins checking each

 Chapter 10: Handling Errors 331

catch block to see if there is a handler for the exception. If a handler is found, the code
within the appropriate catch block is executed and then the lines following the try block
are executed; if not, a fatal error is generated and script execution stops at the point of error.

Every Exception object includes some additional information that can be used for
debugging the source of the error. This information can be accessed via the Exception
object’s built-in methods and includes a descriptive error message, an error code,
the filename and line number that caused the error, and a backtrace of the function
invocations leading to the error. Table 10-3 lists these methods.

And the following revision of the preceding listing illustrates these methods in use:

<?php
// define array
$cities = array(
 "United Kingdom" => "London",
 "United States" => "Washington",
 "France" => "Paris",
 "India" => "Delhi"
);

// try accessing a non-existent array element
// generates an OutOfBoundsException
try {

 $iterator = new ArrayIterator($cities);
 $iterator->seek(10);

} catch (Exception $e) {
 echo "ERROR: Something went wrong!\n";
 echo "Error message: " . $e->getMessage() . "\n";
 echo "Error code: " . $e->getCode() . "\n";
 echo "File name: " . $e->getFile() . "\n";
 echo "Line: " . $e->getLine() . "\n";
 echo "Backtrace: " . $e->getTraceAsString() . "\n";
}
?>

Method Name What It Does
getMessage() Returns a message describing what went wrong

getCode() Returns a numeric error code

getFile() Returns the disk path and name of the script that generated the exception

getLine() Returns the line number that generated the exception

getTrace() Returns a backtrace of the calls that led to the error, as an array

getTraceAsString() Returns a backtrace of the calls that led to the error, as a string

Table 10-3 Methods of the PHP Exception Object

 332 PHP: A Beginner’s Guide

TIP
It’s possible to handle different types of exceptions differently, by creating multiple
catch blocks and assigning different actions to each one. You’ll see an example of this
a little further along in the chapter.

Now, if you think about it, you might be tempted to conclude that exceptions are
simply old wine in a new bottle. After all, the capabilities already described seem quite
easy to replicate using a custom error handler, as described in the preceding section. In
reality, though, this exception-based approach is far more sophisticated than it appears,
because it offers the following additional benefits:

● In the traditional model, it’s necessary to check the return value of every function
called to identify if an error occurred and take corrective action. This can produce
unnecessarily complicated code and deeply nested code blocks. In the exception-based
model, a single catch block can be used to trap any error that occurs in the preceding
code block. This eliminates the need for multiple cascading error tests, and it produces
simpler and more readable code.

● The traditional model is prescriptive by nature: it requires the developer to think
through all possible errors that might occur, and write code to handle each of these
possibilities. By contrast, the exception-based approach is more flexible. A generic
exception handler works like a safety net, catching and handling even those errors for
which no specific handling code has been written. This only helps to make application
code more robust and resilient to unforeseen situations.

● Because the exception model used an object-based approach, developers can use
OOP concepts of inheritance and extensibility to subclass the base Exception object
and create different Exception objects for different types of exceptions. This makes
it possible to distinguish between different types of errors, and to handle each type
differently.

● The exception-based approach forces developers to make hard decisions about
how to handle different types of errors. Unlike in the traditional model, where
developers can easily omit (by accident or design) tests to check the return value of
functions, exceptions are not so easy to ignore. By requiring developers to create and
populate catch blocks, the exception model forces them to think about the causes
and consequences of errors and ultimately results in better design and more robust
implementation.

 Chapter 10: Handling Errors 333

The only downside? Exceptions were introduced only in PHP 5, and as a result,
they’re natively generated only by newer language extensions, such as SimpleXML, PHP
Data Objects (PDO), Service Data Objects (SDO), and Standard PHP Library (SPL). For
all other PHP functions, it’s necessary to check the function’s return value for errors and
manually convert it into an exception.

Manually creating, or raising, exceptions in this manner is a task for PHP’s throw
statement. This statement needs to be passed a descriptive error message, and an optional
error code; it then generates an Exception object using these parameters and makes the
message and code available to the exception handler. The process is illustrated in the
following listing:

<?php
// set file name
// attempt to copy and then delete file
$file = 'dummy.txt';
try {

 if (!file_exists($file)) {
 throw new Exception("File '$file' was not found.");
 }
 if (file_exists("$file.new")) {
 throw new Exception("Destination file '$file.new' already exists.");
 }
 if (!copy($file, "$file.new")) {
 throw new Exception("File '$file' could not be copied.");
 }
 if (!unlink($file)) {
 throw new Exception("File '$file' could not be removed.");
 }

} catch (Exception $e) {
 echo 'Oops! Something bad happened on line ' . $e->getLine() . ': ' .
$e->getMessage();
 exit();
}
echo 'SUCCESS: File operation successful.';
?>

Here, depending on the results of various file operations, a new exception is manually
thrown by the script. This exception is then caught by the generic exception handler, and
information specific to the error is extracted and displayed to the user.

 334 PHP: A Beginner’s Guide

Using Custom Exceptions
A more sophisticated approach is to subclass the generic Exception object and create
specific Exception objects for each possible error. This approach is useful when you need
to treat different types of exceptions differently, as it allows you to use a separate catch
block (and separate handling code) for each exception type. Here’s a revision of the
preceding example, which illustrates this approach.

<?php
// subclass Exception
class MissingFileException extends Exception { }
class DuplicateFileException extends Exception { }
class FileIOException extends Exception { }

// set file name
// attempt to copy and then delete file
$file = 'dummy.txt';
try {

 if (!file_exists($file)) {
 throw new MissingFileException($file);
 }
 if (file_exists("$file.new")) {
 throw new DuplicateFileException("$file.new");
 }
 if (!copy($file, "$file.new")) {
 throw new FileIOException("$file.new");
 }
 if (!unlink($file)) {
 throw new FileIOException($file);
 }

} catch (MissingFileException $e) {
 echo 'ERROR: Could not find file \'' . $e->getMessage() . '\'';
 exit();
} catch (DuplicateFileException $e) {
 echo 'ERROR: Destination file \'' . $e->getMessage() . '\' already exists';
 exit();
} catch (FileIOException $e) {
 echo 'ERROR: Could not perform file input/output operation on file \'' .
$e->getMessage() . '\'';
 exit();
} catch (Exception $e) {
 echo 'Oops! Something bad happened on line ' . $e->getLine() . ': ' . $e-
>getMessage();
 exit();
}
echo 'SUCCESS: File operation successful.';
?>

 Chapter 10: Handling Errors 335

Try This 10-2

This script extends the base Exception class to create three new Exception types, each
representing a different possible error. A separate catch block for each Exception now
makes it possible to customize how each of these three Exceptions is treated. The last
catch block is a generic “catch-all” handler: exceptions that are not handled by the more
specific blocks above it will fall through to, and be dealt with by, this handler.

Q: I’ve seen that uncaught exceptions generate a fatal error that causes the script to end
abruptly. Can I change this?

A: Yes and no. PHP offers the set_exception_handler() function, which allows you to
replace PHP’s default exception handler with your own custom code, in much the same way
as set_error_handler() does. However, there’s an important caveat to be aware of here.
As you’ve seen, PHP’s default exception handler displays a notification and then terminates
script exception. Using a custom exception handler allows limited control over this behavior:
while you can change the manner and appearance of the notification display, you can’t make
the script continue executing beyond the point where the exception was generated.

The moral of the story, then, is that an uncaught exception will always result in
script termination. That’s why it’s a good idea to always include a generic catch
block in your exception-handling code to catch all exceptions thrown by your script,
regardless of type.

 Validating Form Input
Now that you have a basic understanding of how exceptions work, as well as how to
throw and catch custom exceptions, let’s apply this learning to a small project that
demonstrates these tools in practice. This next example allows the user to place an order
for some fine art, by selecting an artist, medium, and price range. The order is then
validated, formatted into an e-mail message, and handed to the mail server for delivery.
Errors in this process are handled using custom exception handlers, producing code that’s
simpler to read and easier to maintain.

Here’s the code (art.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 10-2: Validating Form Input</title>

Ask the Expert

(continued)

 336 PHP: A Beginner’s Guide

 <style type="text/css">
 div.success {
 width:200px;
 padding:5px;
 border:solid 1px black;
 color:green;
 }
 div.error {
 width:400px;
 padding:5px;
 border:solid 1px black;
 color:red;
 }
 </style>
 </head>
 <body>
 <h2>Project 10-2: Validating Form Input</h2>
 <h3 style="background-color: silver">Purchase Fine Art</h3>
<?php
 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {
?>
 <form method="post" action="art.php">
 Artist:

 <select name="artist">
 <option value="">--select one--</option>
 <option value="Picasso">Picasso</option>
 <option value="Van Gogh">van Gogh</option>
 <option value="Chagall">Chagall</option>
 <option value="Degas">Degas</option>
 <option value="Monet">Monet</option>
 <option value="Matisse">Matisse</option>
 </select>

 <p>

 Medium:

 <select name="medium">
 <option value="">--select one--</option>
 <option value="oil">Oil</option>
 <option value="watercolor">Watercolor</option>
 <option value="ink">Ink</option>
 </select>

 <p>

 Price between:

 <input type="text" size="4" name="min"/> and <input type="text"
size="5" name="max"/>

 Chapter 10: Handling Errors 337

 <p>

 Email address:

 <input type="text" size="25" name="email"/>

 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 error_reporting(E_ERROR);

 // define exception classes
 class InputException extends Exception { }
 class LogicalException extends Exception { }
 class MailException extends Exception { }

 // get form input
 $artist = $_POST['artist'];
 $medium = $_POST['medium'];
 $min = $_POST['min'];
 $max = $_POST['max'];
 $email = $_POST['email'];

 try {

 // validate form input
 if (empty($artist)) {
 throw new InputException('Artist');
 }
 if (empty($medium)) {
 throw new InputException('Medium');
 }
 if (empty($email)) {
 throw new InputException('Email address');
 }
 if (empty($min) || empty($max) || (int)$min <= 0 || (int)$max <= 0) {
 throw new InputException('Price');
 }
 if ($max < $min) {
 throw new LogicalException('Maximum price cannot be less than
minimum price');
 }

 // send email with selection
 $subject = 'Purchase order';
 $to = $email;
 $from = $email;

(continued)

 338 PHP: A Beginner’s Guide

 $body = "
 ORDER DETAILS: \r\n\r\n
 Artist: $artist \r\n
 Medium: $medium \r\n
 Price: Between $min and $max \r\n
 ";
 if (!mail($to, $subject, $body, "From:$from")) {
 throw new MailException();
 }

 // print success message
 echo '<div class="success">SUCCESS: Order processed!</div>';

 } catch (InputException $e) {
 echo '<div class="error">ERROR: Please provide a valid value for the
field marked \'' . $e->getMessage() . '\'</div>';
 exit();
 } catch (LogicalException $e) {
 echo '<div class="error">ERROR: '. $e->getMessage() . '</div>';
 exit();
 } catch (MailException $e) {
 echo '<div class="error">ERROR: Unable to deliver email message</
div>';
 file_put_contents('error.log', '[' . date("d-M-Y h:i:s", mktime()) .
'] Mail delivery error to: ' . $e->getMessage() . "\n", FILE_APPEND);
 exit();
 } catch (Exception $e) {
 echo '<div class="error">'. $e->getMessage() . ' on line ' . $e-
>getLine() . '</div>';
 exit();
 }

 }
?>
 </body>
</html>

The first half of this script simply generates a Web form for the user to make his or her
selections, as in Figure 10-5.

Once the form is submitted, the script turns off error reporting for all but fatal errors and
defines three new exception types: InputException for errors in form input, LogicalException
for errors in input logic, and MailException for errors in mail delivery. These exceptions are
simple extensions of the generic Exception object, with no added flavor.

Next, a try block is used to encapsulate the script’s processing logic. First, the
various input fields are tested for consistency; errors in field data generate either an
InputException or a LogicalException. Once the data has been validated, it’s formatted
into an e-mail message, which is transmitted using PHP’s mail() function. If the

 Chapter 10: Handling Errors 339

mail() function returns false, indicating that message transmission was unsuccessful, a
MailException is raised; if not, a success message is printed.

The various exceptions generated by the processing logic aren’t just ignored; instead,
four catch blocks (one each for the three defined exception types and one generic)
trap these exceptions, print appropriate user notification of the error, and halt script
processing. Each of the exceptions is handled slightly differently, to illustrate just how
customized each exception-handling routine can be: for example, MailExceptions are
logged to a file with the date, time, and recipient e-mail address, and InputExceptions and
LogicalExceptions produce different error messages.

Figure 10-6 illustrates the result when an InputException is generated.
And Figure 10-7 illustrates the result when mail transmission fails and a MailException

is generated.

Figure 10-5 A Web form for the user to place an order for fine art

(continued)

 340 PHP: A Beginner’s Guide

Figure 10-6 The result of catching an InputException when processing the Web form

Figure 10-7 The result of catching a MailException when processing the Web form

 Chapter 10: Handling Errors 341

Logging Errors
In addition to trapping and handling errors at run time, it’s also usually a good idea to
maintain a semipermanent record of the errors that were generated by an application, for
debugging or inspection purposes. That’s where PHP’s error_log() function comes in:
it allows you to send error messages to a disk file or e-mail address as they occur.

The error_log() function needs a minimum of two arguments: the error message to
be logged and an integer value indicating the log destination. This integer value may be 0
(the system log file), 1 (an e-mail address), or 3 (a disk file). An e-mail address or disk file
path should be specified as a third argument to error_log() as needed.

Here’s an example that demonstrates how this works:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if (mysqli_connect_error()) {
 error_log("ERROR: Could not connect. " . mysqli_connect_error() . "\n", 3,
'debug.log');
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// iterate over result set
// print each record and its fields
// output: "1:Aerosmith \n 2:Abba \n ..."
$sql = "SELECT artist_id, artist_name FROM artists";
if ($result = $mysqli->query($sql)) {
 if ($result->num_rows > 0) {
 while($row = $result->fetch_array()) {
 echo $row['artist_id'] . ":" . $row['artist_name'] . "\n";
 }
 $result->close();
 } else {
 echo "No records matching your query were found.";
 }
} else {
 error_log("ERROR: Could not execute $sql. " . $mysqli->error . "\n", 3,
'debug.log');
 echo "ERROR: Could not execute $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

 342 PHP: A Beginner’s Guide

Assuming an incorrect user name or password, this script will log the following
message to the file debug.log:

ERROR: Could not connect. Access denied for user 'user'@'localhost'
(using password: YES)

It’s quite easy to combine this error logging facility with a custom error handler to
ensure that all script errors get logged to a file. Here’s an example that demonstrates this:

<?php
// custom handler
function myHandler($type, $msg, $file, $line, $context) {
 error_log("[" . date("d-M-Y h:i:s", mktime()) . "] $msg on line
$line of $file\n", 3, 'debug.log');
 return false;
}

// report all errors
error_reporting(E_ALL);

// set custom handler
set_error_handler("myHandler");

// trigger E_NOTICE (undefined variable)
echo $someVar;

// trigger E_WARNING (missing file)
include("common.php");
?>

In this script, all notices and warnings generated by the code will first be automatically
logged to the file debug.log with a timestamp. Following this, the custom handler returns
false; this is deliberately done to return control back to PHP’s default error handler and
have the error handled in the normal manner.

Debugging Errors
With more complex applications, it becomes necessary to encapsulate commonly used
tasks into independent components (functions and classes) and import these as needed
into your PHP scripts. While this approach certainly improves the maintainability of
your code, it can prove to be a burden when things aren’t working as they should. For
example, it’s quite possible for an error in one component to affect the correct function of
other components, and tracing this error back through the call stack is often a long (and
frustrating) experience.

 Chapter 10: Handling Errors 343

To reduce the pain involved in this process, there are various tools you can use. The
first is provided by PHP itself, in the form of the debug_print_backtrace() function.
This function prints a list of all the function calls leading up to a particular error, to help
you identify the source quickly. To illustrate it in action, consider the following script,
which contains a deliberate error:

<?php
// custom error handler
// prints a stack trace if an error occurs
function myHandler($type, $msg) {
 debug_print_backtrace();
 exit();
}

class Page {
 public function __construct($num1, $num2) {
 $ex = new Example($num1, $num2);
 }
}

class Example {
 public function __construct($a, $b) {
 $this->a = $a+1;
 $this->b = $b-1;
 $this->run();
 }

 public function run() {
 return $this->a/$this->b;
 }
}

set_error_handler('myHandler');
$page = new Page(10,1);
echo 'Code execution successful';
?>

Here, the script will generate a “division by zero” warning, not because of an error
in the Page class definition, but because of a warning generated by the run() method
further down in the call stack. Figure 10-8 illustrates the error message one would
normally see in this case.

Debugging such an error in practice can become fairly messy, especially when the
function and class definitions are held in separate files. However, because the error
handler in this script automatically prints a backtrace when an error occurs, it’s not too
difficult to identify the function that’s causing the error. Figure 10-9 illustrates the revised
output, showing the backtrace.

 344 PHP: A Beginner’s Guide

TIP
To enhance PHP’s core engine so that it automatically adds backtrace output to every
error message, try adding the free Xdebug extension to your PHP build. For more
information and installation instructions, visit www.xdebug.com/.

An even more sophisticated approach involves the use of the PHP Debug class, which
is freely available from www.php-debug.com/. This class provides a useful framework for
tracing script execution, watching and dumping variables, calculating execution times, and
performing other common debugging tasks.

Figure 10-8 A PHP error without additional debugging information

Figure 10-9 A PHP error enhanced with a backtrace

 Chapter 10: Handling Errors 345

To use this class, download it and place the class files in your application directory.
Then, revise the preceding listing to use it, as follows:

<?php
// custom error handler
// prints a stack trace if an error occurs
function myHandler($type, $msg, $file, $line, $context) {
 global $debug;
 $debug->error($msg);
 echo '
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Error Page</title>
 <link rel="stylesheet" type="text/css" href="./PHP_Debug-1.0.0/
css/html_table.css" />
 </head>
 <body>
 ';
 $debug->display();
 echo '
 </body>
 </html>
 ';
 exit();
}

// add debug hooks to classes and functions
class Page {
 public function __construct($num1, $num2) {
 global $debug;
 $debug->add('Entering Page::__construct');
 $debug->dump($this);
 $debug->dump(func_get_args(), 'method args');
 $ex = new Example($num1, $num2);
 }
}

class Example {
 public function __construct($a, $b) {
 global $debug;
 $debug->add('Entering Example::__construct');
 $debug->dump($this);
 $debug->dump(func_get_args(), 'method args');
 $this->a = $a+1;

 346 PHP: A Beginner’s Guide

 $this->b = $b-1;
 $this->run();
 }

 public function run() {
 global $debug;
 $debug->add('Entering Example::run');
 $debug->dump($this);
 $debug->dump(func_get_args(), 'method args');
 return $this->a/$this->b;
 }
}

// configure and read PHP_Debug files
ini_set('include_path', './PHP_Debug-1.0.0/;');
include 'PHP_Debug-1.0.0/PHP/Debug.php';
include 'PHP_Debug-1.0.0/PHP/Debug/Renderer/HTML/TableConfig.php';
$options = array(
 'render_type' => 'HTML',
 'render_mode' => 'Table',
 'replace_errorhandler' => false,
);
$debug = new PHP_Debug($options);
set_error_handler('myHandler');

// start running code
$page = new Page(10,1);
echo 'Code execution successful';
?>

The PHP_Debug class provides an object with various facilities to help developers
debug a script. For instance, the object’s add() method can be used to trace script
execution by generating messages at user-defined points in the script, such as when
entering a function or a loop. Similarly, the dump() method may be used to log the value
of a variable at a given instant of time, while the display() method can be used to send
all the debugging output to the output device. In the preceding listing, this display()
method is used by the custom error handler if an error occurs, to automatically generate a
neatly formatted backtrace of all the calls leading up to the error.

Figure 10-10 illustrates the output of the preceding listing.
As Figure 10-10 illustrates, PHP_Debug can provide a much more sophisticated

record of the function calls leading up to an error than PHP’s vanilla debug_print_
backtrace() function.

 Chapter 10: Handling Errors 347

Summary
At the end of this chapter, you should have a much clearer idea of how PHP’s error-
handling framework works, as well as how you can customize it to suit the needs of your
particular application. This chapter discussed two models: the earlier error-based model,
and the newer exception model introduced with PHP 5. Ease of use and extensibility help
the PHP 5 exception model score over the earlier, less primitive techniques; however,
because it’s not as well supported in the core libraries, most application development
demands a judicious mix of the two approaches.

Figure 10-10 A backtrace generated by the PHP_Debug package

 348 PHP: A Beginner’s Guide

In addition to teaching you all about errors and exceptions, this chapter also introduced
you to some of PHP’s utility functions for error logging and debugging, and it demonstrated
a third-party tool, the PHP_Debug package, to obtain detailed backtrace information when
errors occur. Finally, two projects—a database error logger and a form input validator—
demonstrated how all this theory can be used in practice.

To learn more about the topics covered in this chapter, consider visiting the following
links:

● Exceptions, at www.php.net/exceptions

● Error handling functions, at www.php.net/errorfunc

● The official PHP_Debug Web site, at www.php-debug.com

 Chapter 10 Self Test
 1. Name two benefits of using the exception-based model.

 2. Which types of script errors cannot be caught with a custom error handler?

 3. What is an output buffer? How is it useful? Provide a working example that
demonstrates its usefulness.

 4. Which error handler will be active after the last line of each of the following code
blocks is executed:

<?php
set_error_handler('handlerA');
restore_error_handler();
?>

<?php
set_error_handler('handlerA');
set_error_handler('handlerB');
set_error_handler('handlerA');
restore_error_handler();
restore_error_handler();
?>

 5. Using a custom error handler, illustrate how PHP notices and warnings may be
converted to exceptions.

 6. Write a program to automatically e-mail every uncaught exception in a script to an
administrator.

✓

349

Chapter 11
Securing PHP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 350 PHP: A Beginner’s Guide

Key Skills & Concepts

● Become familiar with security issues around PHP applications

● Prevent common types of attacks by sanitizing input and output

● Increase the security of your application files, databases, and sessions

● Learn to validate strings, numbers, and dates

● Begin using regular expressions for input validation

● Learn about PHP’s security settings

Over the last few chapters, you’ve learned a great deal about getting and using data
from external sources in your PHP applications. You’ve successfully processed data

submitted through online forms, connected your Web pages to a database for dynamic
page generation, and retrieved information encoded in XML.

Now, while integrating with all these external data sources can make your PHP
applications more relevant and useful, there do remain some risks to be aware of.
Insecure PHP applications are vulnerable to attack by malicious users, while improperly
validated application input can cause calculations and reports to go wrong. Not only
can these vulnerabilities cause significant data corruption and loss, but they can also be
embarrassing in the extreme to the proud application developer.

That’s where this chapter comes in. Over the next few pages, it will introduce you to
various techniques that you can use to validate your application’s input, thereby making
it more secure and robust. Additionally, it will offer practical examples of input and
output sanitization, discuss some of the important security-related variables in the PHP
configuration file, and point you to various online resources where you can learn more
about PHP application security.

Sanitizing Input and Output
As a Web application developer, there’s one unhappy fact that you’ll have to learn to live
with: there are always going to be people out there who get their chuckles from finding
loopholes in your code and exploiting these loopholes for malicious purposes.

 Chapter 11: Securing PHP 351

Most of the time, these exploits consist of sending your application cleverly disguised
input that “tricks” it into doing something it really, really shouldn’t. A common example
of this type of exploit is the “SQL injection attack,” wherein an attacker remotely
manipulates your database with an SQL query embedded inside form input. Therefore,
one of the most important things a developer must do before using any input supplied by
the user, is “sanitize” it by removing any special characters or symbols from it.

In a similar vein, if your application will be using data retrieved from remote sources,
it’s necessary to always “clean” this data before displaying it to the user. A failure to do
this might allow attackers to embed malicious content in your Web pages without your
knowledge. A common example of this type of exploit is the “cross-site scripting attack,”
wherein an attacker is able to gain access to sensitive user data by piggybacking malicious
JavaScript code or HTML form code into your Web pages. With this in mind, it’s always
essential to pass output through a sanitization routine before making it available to the user.

Fortunately, PHP comes with various functions to assist developers in the twin tasks of
sanitizing input and output. Here’s a brief list:

● The addslashes() function escapes special characters (like quotes and backslashes)
in input so that it can be safely entered into a database. Alternatively, use MySQLi’s
real_escape_string() method to sanitize input before inserting it into a MySQL
database, or the sqlite_escape_string() function on input intended for an
SQLite database.

● The strip_tags() function enables developers to strip all the HTML and PHP
tags out of a string, returning only the ASCII content. This can be useful to remove
potentially malicious code from both user input and remote data.

● The htmlentities() function takes care of replacing special characters like ", &,
<, and > with their corresponding HTML entity values. By translating these special
characters and preventing them from being interpreted as HTML code by the client,
this function is very useful to “defang” data and render it incapable of affecting the
display or functionality of a Web page.

Here’s an example of using the real_escape_string() method and the strip_
tags() function to defang user input before saving to a MySQL database:

<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "music");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

 352 PHP: A Beginner’s Guide

// escape input values
if (isset($_POST['artist']) && !empty($_POST['artist'])) {
 $artist = $mysqli->real_escape_string(htmlspecialchars($_
POST['artist']));
}

if (isset($_POST['country']) && !empty($_POST['country'])) {
 $country = $mysqli->real_escape_string(htmlspecialchars($_
POST['country']));
}

// attempt query execution
// add a new record
// output: "New artist with id:7 added."
$sql = "INSERT INTO artists (artist_name, artist_country)
 VALUES ('$artist', '$country')";
if ($mysqli->query($sql) === true) {
 echo 'New artist with id:' . $mysqli->insert_id . ' added.';
} else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

And here’s an example of sanitizing form input with the htmlentities() function:

<?php
// define array of sanitized data
$sanitized = array();

// strip tags from POST input
if (isset($_POST['name']) && !empty($_POST['name'])) {
 $sanitized['name'] = htmlentities($_POST['name']);
}

// processing code //
?>

Finally, here’s an example of sanitizing potentially dangerous output before displaying
it to the user:

<?php
// define array of sanitized data
$sanitized = array();

// get remote data

 Chapter 11: Securing PHP 353

$out = 'He<script>document.location.href=
 "http://go.somewhere.bad.com/";</script>llo';

// convert all special characters to entities
// before using it
$sanitized['out'] = htmlentities($out);

echo $out; // unsafe
echo $sanitized['out']; // safe
?>

Securing Data
In addition to sanitizing input, it’s also important to ensure that your application does
not inadvertently allow users to view or manipulate its private files or databases. The
following sections discuss some techniques you can use to protect access to configuration
files and other data sources.

Securing Configuration Files
Unless you explicitly configure your Web server to deny access to certain file types,
any file located under the server’s document root can be accessed by a remote user. This
makes Web applications, which often store their configuration files with the rest of the
application code under the server’s document root, particularly vulnerable to unauthorized
remote access.

An easy way to plug this security hole is to always store sensitive configuration data
outside the Web server document root, and read it into your application as needed via
a call to require() or include(). Because both these functions accept file system
(rather than HTTP) paths, they can import files from directories that are not part of
the server’s document root, thereby making it harder for an attacker to gain access to
configuration data.

Here’s an example of how this might be done:

<?php
// server doc root is: /var/www/html/
// config file stored in: /var/www/apps/conf/

// your script can read this path
include_once '/var/www/apps/conf/myapp.conf'; // will work

// an attacker accessing the same path over HTTP cannot
file_get_contents('http://localhost/../apps/conf/myapp.conf'); // will fail
?>

 354 PHP: A Beginner’s Guide

NOTE
In order for this to work, the directory holding the configuration file must have its
permission bits set such that its files can be read or written by the user owning the Web
server process. This is particularly relevant on *NIX development systems.

Securing Database Access
A common reason for not securing database access is that it is “difficult” and “complicated.”
This is not strictly true. In most cases, there are some simple steps you can take to make it
harder for attackers to gain access to your database, dramatically reducing the risk to your
sensitive information. Because the database most commonly used with PHP is MySQL, the
following three suggestions are directly relevant to MySQL; however, they can be easily
applied to any other RDBMS as well.

● Give users only the level of access they need Most databases, including MySQL,
allow precise control over the level of access granted to individual users of the
database system. There’s a good reason to make use of this privilege system and only
grant users as much access as they need: if users are granted blanket permissions to
the entire database, a single compromised user account could result in significant data
loss or theft. MySQL offers the GRANT and REVOKE commands to control a user’s
privilege level; different commands are available for other database systems.

 The recommended approach here is to define a separate database user for each PHP
application, and grant this user access only to the database(s) used by that application.
This ensures that even if one application is compromised and its database access
credentials stolen by an attacker, the extent of damage that can be wrought as a result
will be limited and not affect other databases on the same server.

● Use secure passwords When MySQL is first installed, access to the database server
is restricted to the administrator ('root'). By default, this user account is initialized
with an empty password, allowing free access to anyone. It’s surprising how often this
obvious security hole is overlooked by novice developers, who remain unaware of
the dangers inherent in continuing with the default setting. With MySQL, the default
password can be changed using the mysqladmin tool; the procedure differs for other
database systems.

 To improve security, then, it’s a good idea to reset the database server’s default
administrator password at installation time, and then disseminate it to only the select
handful of people who really need to know it. An administrator password that’s widely
known is highly insecure; the old adage “loose lips sink ships” is at least as true in this
context as it was during World War II.

 Chapter 11: Securing PHP 355

● Disable remote access The most common configuration for a LAMP development
platform has the database server and Web server hosted on the same physical
system. In this case, it’s possible to significantly reduce the risk of a remote attack,
by allowing only “local” access to the database server and blocking all remote
connections. With MySQL, this can be done by using the --skip-networking
option at server startup; the procedure differs for other database systems.

Securing Sessions
You’ve already seen, in Chapter 9, how PHP’s built-in session management tools can be
used to protect Web pages, and restrict access only to users who have successfully logged
in to the system. However, this system is not foolproof: it’s always possible for an attacker
to “hijack” a session by gaining access to the unique session identifier and using it to
recreate a user session.

The PHP Security Guide by Chris Shiflett et al. at www.phpsec.org/projects/guide/
recommends various methods to make such a session hijack more cumbersome to the
attacker. One such suggestion involves the use of additional client-specific tokens for
client identity verification. Essentially, this technique consists of recording various
attributes of the client when it first requests a session-managed page—for example, the
'User-Agent' header identifying the client’s browser name—and then checking these
attributes on each subsequent visit. A mismatch would imply that the original client’s
session has been hijacked, and access may then be appropriately denied.

Here’s an illustration of how this might be used. The first step involves recording the
content of the client’s 'User-Agent' header as a session variable, when the session is
first initialized:

<?php
// start session
// record remote client name as session variable
session_start();
$_SESSION['verif_remote_agent'] = $_SERVER['HTTP_USER_AGENT'];
echo 'Session started. Your session ID is: ' . session_id();

// processing code here //
?>

Now, on all subsequent accesses, in addition to checking for the presence of a valid
session, the script should also check the 'User-Agent' header sent by the client.

<?php
// check session
// also check remote client name

 356 PHP: A Beginner’s Guide

session_start();
if (!isset($_SESSION['verif_remote_agent']) || $_SESSION['verif_
remote_agent'] != $_SERVER['HTTP_USER_AGENT']) {
 die('Session check failed.');
} else {
 echo 'Session verified.';
}

// processing code here //
?>

This method, though simple and quite effective, isn’t completely foolproof: it’s still
possible for a dedicated attacker to get around it by forging the 'User-Agent' header.
However, the additional test makes the task a little more difficult than it would otherwise
be (because the attacker has to first guess the correct header), offering a higher level of
security than otherwise.

A detailed discussion of the various techniques suggested by the PHP Security Guide
to make sessions more secure is beyond the scope of this chapter; however, you’ll find
numerous well-documented examples online, at www.phpsec.org/projects/guide/.

Validating User Input
Web forms are not the only way a PHP script can receive user input; however, they
remain the most common way. Before using this data, it’s important to verify its validity,
to cut down on instances of incorrect or incomplete data. This section discusses various
techniques you can use to validate user input, received either through a Web form or in
other contexts.

Working with Required Fields
One of the most common mistakes a novice programmer makes is forgetting to check
for required field values in a Web form. This can result in a database with numerous
empty records, and these empty records can, in turn, affect the accuracy of queries or
calculations.

A simple way to test if all the required fields in a form have been filled is to test each
corresponding key in $_POST or $_GET with PHP’s empty() function. This function
tests if the variable contains a non-empty and non-zero value. Here’s an example:

<?php
// define array of valid data
$valid = array();

 Chapter 11: Securing PHP 357

// check for username
if (!empty($_POST['username'])) {
 $valid['username'] = trim($_POST['username']);
} else {
 die ('ERROR: Username not present.');
}

// check for password
if (!empty($_POST['password'])) {
 $valid['password'] = trim($_POST['password']);
} else {
 die ('ERROR: Password not present.');
}

// processing code here //
?>

In this listing, the script first tests whether data was submitted for both username and
password fields. If both tests return true, then the script proceeds; if either one returns
false, the script terminates immediately, without even attempting to process the form
input.

Notice also the use of a $valid array in the preceding listing, which is used to
store data that has passed validation. This is a good programming practice to ensure
that you don’t inadvertently use data that hasn’t first been validated. By ensuring that
your processing code only uses data from $valid, you reduce the risk of invalid values
entering your database or calculations.

It should be noted that the empty() function is only suitable for use with form
variables for which zero is considered an invalid value. This is because empty() returns
false if the variable passed to it contains NULL, an empty string (''), or a zero value.
If zero is considered a valid value for your form variable, replace empty() with a
combination of the isset() and trim() functions, as in the next listing:

<?php
// define array of valid data
$valid = array();

// check for bid increment
if (isset($_POST['increment']) && trim($_POST['increment']) != '') {
 $valid['increment'] = trim($_POST['increment']);
} else {
 die ('ERROR: Increment value not present.');
}

// processing code here //
?>

 358 PHP: A Beginner’s Guide

The error check here is both simple and logical: the trim() function is used to trim
leading and trailing spaces from the field variable, which is then compared to an empty
string. If the match is true, it means the field was submitted without any data, and the
script dies with an error message.

From these examples, it should be clear that a simple conditional test is all that is
needed to ensure that required fields in your forms are never left empty. Failing such
validation, the user’s input will be processed without first checking that all required values
are present. This could lead to potentially dangerous situations: for example, a user might
be able to register himself or herself with the system with a blank password, a situation
that might have serious ramifications for the overall security of the application.

Q: I’m already validating form input with JavaScript. Why do I need to also validate it
through PHP?

A: It’s common practice to use client-side scripting languages like JavaScript or VBScript for
client-side form input validation. However, this type of validation is not foolproof. Two
simple cases make this point:

● Web page source code can be viewed in most browsers. It is possible for a user to
download the Web form, disable the client-side validation by editing the form’s
source code, and submit it back to the server with illegal values.

● If a user turns off JavaScript in his or her browser, client-side code will not execute.
Client-side form validation routines will now be bypassed entirely, again opening the
door for illegal values to enter the system.

PHP-based input validation resolves both these security issues, because PHP code
executes on the server and thus cannot be modified or disabled from the client system.

Ask the Expert

Working with Numbers
As you’ve seen, when defining a new database table, it’s also necessary to define the type of
data that will be entered into each field. However, different database systems differ in how
rigorously they enforce these data types. For example, SQLite allows string values to be
entered into fields marked NUMERIC, while MySQL automatically “corrects” these values to
0 before inserting them into INT or FLOAT fields. Given these differences in approach, it’s
usually a good idea to enforce data type checking within your PHP application, to prevent
incorrect or wrongly typed values from appearing in your database tables.

 Chapter 11: Securing PHP 359

One easy way to test if a variable contains a numeric value is with PHP’s is_
numeric() function, which returns true when called with a number as argument. The
following example illustrates it in use:

<?php
// define array of valid data
$valid = array();

// check if age is a number
if (is_numeric(trim($_POST['age']))) {
 $valid['age'] = trim($_POST['age']);
} else {
 die ('ERROR: Age is not a number.');
}

// processing code here //
?>

However, the is_numeric() function won’t distinguish between integer and
floating-point values. If you need this level of validation, an alternative is to first cast
the questionable variable to an integer or floating-point value, and then test it with the
strval() function. The following example illustrates:

<?php
// define array of valid data
$valid = array();

// check if age is an integer value
if (strval($_POST['age']) == strval((int)$_POST['age'])) {
 $valid['age'] = trim($_POST['age']);
} else {
 die ('ERROR: Age is not an integer value.');
}

// check if price is a floating-point value
if (strval($_POST['price']) == strval((float)$_POST['price'])) {
 $valid['price'] = trim($_POST['price']);
} else {
 die ('ERROR: Price is not a decimal value.');
}

// processing code here //
?>

The logic here is quite simple: if the variable contains an integer, the string value
returned by strval() after casting it to an integer will be the same as the raw string

 360 PHP: A Beginner’s Guide

value of the variable. If, on the other hand, the variable contains a non-numeric value, the
raw value of the variable will not match its post-casting value.

For an even more stringent test, use PHP’s ctype_digit() function. This function
checks every character of the value passed to it, and returns true only if every character is
a digit between 0 and 9. Here’s an example:

<?php
// define array of valid data
$valid = array();

// check if age is an integer value
if (ctype_digit($_POST['age'])) {
 $valid['age'] = trim($_POST['age']);
} else {
 die ('ERROR: Age is not an integer value.');
}

// processing code here //
?>

CAUTION
Be aware that ctype_digit()’s rigorousness can also hinder you in some cases: the
function will return false when passed decimal values, because the decimal point is not
a digit between 0 and 9.

In certain cases, you may wish to enforce a range constraint on the numeric values
that your application will accept. Testing this is as simple as using PHP’s comparison
operators, as shown here:

<?php
// define array of valid data
$valid = array();

// check if day is an integer value and between 1 and 31
if ((strval($_POST['day']) == strval((int)$_POST['day'])) &&
($_POST['day'] >= 1 && $_POST['day'] <= 31)) {
 $valid['day'] = trim($_POST['day']);
} else {
 die ('ERROR: Age is not an integer value.');
}

// processing code here //
?>

 Chapter 11: Securing PHP 361

Working with Strings
Many databases (including MySQL) will automatically truncate string values if they
exceed the length specified for the corresponding field. This is disturbing, because it
means that user input can easily (and silently) get corrupted without a notification being
raised. So, it’s usually a good idea to perform application-level input validation of string
values, to alert users if their input goes above the prescribed limit and to allow them to
modify it.

A good place to start for this kind of validation is the strlen() function, which
returns the length of a string. This can come in handy to make sure that form input doesn’t
exceed a particular length. Consider the following example, which illustrates:

<?php
// define array of valid data
$valid = array();

// check for username
if (!empty($_POST['username'])) {
 $username = trim($_POST['username']);
} else {
 die ('ERROR: Username not present.');
}

// check username length
if (strlen($username) <= 25) {
 $valid['username'] = $username;
} else {
 die ('ERROR: Username too long.');
}

// processing code here //
?>

If you need to be absolutely sure that a particular input field contains only alphabetic
characters—for example, first and last names—PHP offers the ctype_alpha() function.
Like the ctype_digit() function discussed in the preceding section, this function
returns true only if every character in the string is alphabetic. Here’s an example:

<?php
// define array of valid data
$valid = array();

// check for first name
if (isset($_POST['firstname']) && ctype_alpha($_POST['firstname'])) {
 $valid['firstname'] = trim($_POST['firstname']);

 362 PHP: A Beginner’s Guide

} else {
 die ('ERROR: First name not present or invalid.');
}

// processing code here //
?>

TIP
PHP also offers the ctype_alnum() function for alphanumeric characters, the
ctype_space() function for whitespace, and the ctype_print() function for
printable characters. For a complete list, visit www.php.net/ctype.

Matching Patterns
For more complex string validation, PHP supports regular expressions, a powerful tool for
matching and validating string patterns. Commonly associated with the *NIX platform,
a regular expression lets you define patterns using a set of special metacharacters. These
patterns can then be compared with text in a file, data entered into an application, or
input from a Web form. Depending on whether or not the patterns match, the data can be
considered valid or invalid.

A regular expression, following the Perl standard, is enclosed within forward slashes
and usually looks something like this:

/fo+/

The + in this expression is a metacharacter: it means “match one or more occurrences of
the preceding character.” In the context of the preceding example, the regular expression
translates to “a pattern containing the character f followed by one or more occurrences of
the character o.” Therefore, it would match the words “fool,” “football,” and “four-seater,”
but not “friar” or “flipper.”

Similar to the + metacharacter are the * and ? metacharacters. These are used to match
zero or more occurrences of the preceding character, and zero or one occurrence of the
preceding character, respectively. So, the regular expression /eg*/ would match “easy,”
“egocentric,” and “egg,” while the expression /Wil?/ would match “Winnie,” “Wimpy,”
“Wilson,” and “William,” though not “Wendy” or “Wolf.”

You can also specify a range for the number of matches. For example, the regular
expression /jim{2,6}/ would match “jimmy” and “jimmmmmy!,” but not “jim.” The
numbers in the curly braces represent the lower and upper values of the range to match;
you can leave out the upper limit for an open-ended range match.

 Chapter 11: Securing PHP 363

Table 11-1 lists a few other useful metacharacters.
To see how regular expressions work, consider a Web form that requires the user to

enter a username, password, and Social Security number. When validating this input, the
developer needs to enforce the following constraints:

● The username must be between three and eight characters long, containing only
alphabetic characters.

● The password must be between five and eight characters long, containing at least one
number.

● The Social Security number must consist of nine digits, with a hyphen after the third
and fifth digits.

Functions like strlen() and ctype_alnum() are typically much too simplistic
for this kind of validation. Instead, a better approach is to define a pattern for each input
value, and compare the actual input against the pattern to decide whether it is valid or not.
Here’s an illustration of how this may be done with regular expressions:

<?php
// define array of valid data
$valid = array();

Metacharacter What It Means
^ Beginning of string

$ End of string

. Any character except a newline character

\s A single whitespace character

\S A single non-whitespace character

\d A digit between 0 and 9

\w An alphabetic or numeric character, or underscore

[A-Z] An uppercase alphabetic character

[a-z] A lowercase alphabetic character

[0-9] A digit between 0 and 9

| OR logical operator

(?= Positive conditional test

(?! Negative conditional test

Table 11-1 Regular Expression Metacharacters

 364 PHP: A Beginner’s Guide

// check username
if (isset($_POST['username']) && preg_match('/^([a-zA-Z]){3,8}$/',
$_POST['username'])) {
 $valid['username'] = trim($_POST['username']);
} else {
 die ('ERROR: User name not present or invalid.');
}

// check password
if (isset($_POST['password']) && preg_match('/^(?=.*\d).{5,8}$/',
$_POST['password'])) {
 $valid['password'] = trim($_POST['password']);
} else {
 die ('ERROR: Password not present or invalid.');
}

// check SSN
if (isset($_POST['ssn']) && preg_match('/^([0-9]){3}-([0-9]){2}-([0-9])
{4}$/', $_POST['ssn'])) {
 $valid['ssn'] = trim($_POST['ssn']);
} else {
 die ('ERROR: SSN not present or invalid.');
}

// processing code here //
?>

This listing uses PHP’s preg_match() function to test if the input conforms to the
pattern defined for it. This preg_match() function requires two compulsory arguments:
a pattern, and the value to test against the pattern. It returns true if a match is found, and
false otherwise.

Coming to the regular expressions themselves, it shouldn’t be too hard to decode them
after reviewing the material in Table 11-1. They specify the allowed range of characters
for each input value and the minimum and maximum lengths for each character subset.
Only if the input matches the specified pattern will it be considered valid.

Here’s another example, this one validating international telephone numbers:

<?php
// define array of valid data
$valid = array();

// check telephone number
if (isset($_POST['tel']) && preg_match("/^(\+|00)[1-9]{8,14}$/",
$_POST['tel'])) {
 $valid['tel'] = trim($_POST['tel']);
} else {
 die ('ERROR: Telephone number not present or invalid.');
}
?>

 Chapter 11: Securing PHP 365

If you play with this a bit, you’ll see that it’ll accept the numbers +441865123456 and
0091112345678, even though each is formatted differently. This is because the regular
expression uses the | metacharacter, which functions as logical OR and makes it possible
to create a pattern that internally supports alternatives. You can, obviously, tighten or
loosen the pattern, depending on the exact requirements of your application.

Thus, regular expressions provide a powerful and flexible way to validate input
according to custom rules . . . even if the syntax takes a little getting used to!

Validating E-Mail Addresses and URLs
A common task when working with user input involves checking e-mail addresses and
URLs to ensure that they are in the correct format. There are various ways to do this;
perhaps the most common method involves regular expressions, as in the following
example:

<?php
// function to validate
// an e-mail address
function validateEmailAddress($str) {
 return preg_match("/^([a-z0-9_-])+([\.a-z0-9_-])*@([a-z0-9-])+(\
.[a-z0-9-]+)*\.([a-z]{2,6})$/", strtolower($str));
}

// check e-mail address
// output: 'valid'
echo validateEmailAddress("joe@some.domain.com") ? "valid" : "invalid";

// check e-mail address
// output: 'invalid'
echo validateEmailAddress("joe@dom.") ? "valid" : "invalid";
?>

Finding a regular expression to use for e-mail address validation isn’t difficult; a large
number of options can be found online, ranging from relaxed to restrictive. The preceding
listing uses one of the more stringent patterns, restricting the range of characters in both
the username and domain parts and requiring the length of the top-level domain to be
between two and six characters.

It’s possible to write a similar function to validate URLs. Here’s an example:

<?php
// function to validate a URL
function validateUrl($str) {
 return preg_match("/^(http|https|ftp):\/\/([a-z0-9]([a-z0-9_-]*
[a-z0-9])?\.)+[a-z]{2,6}\/?([a-z0-9\?\._-~&#=+%]*)?/", strtolower($str));
}

 366 PHP: A Beginner’s Guide

// check URLs
// output: "valid"
echo validateUrl("http://www.example.com/html/index.php") ? "valid" :
"invalid";

// output: "invalid"
echo validateUrl("http://examplecom") ? "valid" : "invalid";
?>

URLs come in all shapes and sizes, and as with e-mail addresses, you can be generous
or strict in how you choose to validate them. The regular expression used here restricts the
protocol to HTTP, HTTPS, or FTP; requires the top-level domain to be between two and
six characters long; and supports trailing path/filenames or anchors.

An alternative, perhaps simpler way of accomplishing the same task is to use PHP’s
filter_var() function, which provides built-in validation rules for common input
types, including e-mail addresses and URLs. Here’s a revision of the previous example for
e-mail address validation:

<?php
// function to validate
// an e-mail address
function validateEmailAddress($str) {
 return filter_var($str, FILTER_VALIDATE_EMAIL);
}

// check e-mail address
// output: 'valid'
echo validateEmailAddress("joe@some.domain.com") ? "valid" : "invalid";

// check e-mail address
// output: 'invalid'
echo validateEmailAddress("joe@dom.") ? "valid" : "invalid";
?>

Here, the filter_var() function tests the supplied variable to see if it is a valid e-mail
address, returning true or false as the result. The constant FILTER_VALIDATE_EMAIL
tells filter_var() to test the variable against the expected pattern for an e-mail address.
Similarly, there’s also FILTER_VALIDATE_URL, which can be used to test URLs for
validity (although it uses a less stringent test than the regular expression shown previously):

<?php
// function to validate a URL
function validateUrl($str) {
 return filter_var($str, FILTER_VALIDATE_URL);
}

 Chapter 11: Securing PHP 367

// check URLs
// output: "valid"
echo validateUrl("http://www.example.com/html/index.php") ? "valid" :
"invalid";

// output: "invalid"
echo validateUrl("http:/examplecom") ? "valid" : "invalid";
?>

Working with Dates
Validating dates is another important aspect of input validation. It’s all too easy, in the
absence of proper validation, for a user to enter invalid dates like 29 February 2009 or
31 June 2008. It’s important, therefore, to ensure that date values provided by the user are
genuine before using them in a calculation.

In PHP, this task is significantly simpler than in other languages, because of PHP’s
checkdate() function. This function accepts three arguments—month, day, and year—
and returns a Boolean value indicating whether or not the date is valid. The following
example demonstrates it in action:

<?php
// define array of valid data
$valid = array();

// check for day
 if (!empty($_POST['day']) && ctype_digit($_POST['day'])) {
 $valid['day'] = trim($_POST['day']);
} else {
 die ('ERROR: Day not present.');
}

// check for month

if (!empty($_POST['month']) && ctype_digit($_POST['month'])) {
 $valid['month'] = trim($_POST['month']);
} else {
 die ('ERROR: Month not present.');
}

// check for year
 if (!empty($_POST['year']) && ctype_digit($_POST['year'])) {
 $valid['year'] = trim($_POST['year']);
} else {
 die ('ERROR: Year not present.');
}

 368 PHP: A Beginner’s Guide

Try This 11-1

// check for date validity
if (!checkdate($valid['month'], $valid['day'], $valid['year'])) {
 die ('ERROR: Invalid date.');
}

// processing code here //
?>

CAUTION
If you’re storing dates in a MySQL DATE, DATETIME, or TIMESTAMP field, be aware
that MySQL does not perform any rigorous date verification of its own. Therefore,
the onus of checking a date before saving it to a MySQL table rests entirely with the
application developer. The most that MySQL will do, if it encounters an obviously illegal
date value, is replace it with a series of zeros . . . not necessarily the best solution! Read
more about MySQL’s handling of date and time values at http://dev.mysql.com/doc/
mysql/en/datetime.html.

 Validating Form Input
Now that you know the basics of input sanitization and validation, let’s apply this learning
to a practical project. This next example presents a Web form that asks users to enter
various details for a book: the title, author, ISBN number, and price. It then validates this
data using a mix of the techniques discussed in previous sections and, once validated,
saves it to an SQLite database.

To begin, create an SQLite database and table to store the records entered by the user:

shell> sqlite books.db
SQLite version 3.3.17
Enter ".help" for instructions
sqlite> CREATE TABLE books (
 ...> id INTEGER PRIMARY KEY,
 ...> title TEXT,
 ...> author TEXT,
 ...> isbn INTEGER,
 ...> price REAL
 ...>);

Next, write the PHP code to validate the data entered by the user through a Web form,
and save it to a database. Here’s the script (books.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>

 <title>Project 11-1: Validating Form Input</title>

 <style type="text/css">

 div.error {

 Chapter 11: Securing PHP 369

 color:red;

 font-weight: bolder;

 }

 div.success {

 color:green;

 font-weight: bolder;

 }

 </style>

 </head>

 <body>

 <h2>Project 11-1: Validating Form Input</h2>

 <h3 style="background-color: silver">Enter Book Details</h3>

<?php

 // display input validation error

 function getInputError($key, $errArray) {

 if (in_array($key, $errArray)) {

 return "<div class=\"error\">ERROR: Invalid data for field '$key'</div>";

 } else {

 return false;

 }

 }

 $inputErrors = array();

 $submitted = false;

 // if form submitted

 // validate form input

 if (isset($_POST['submit'])) {

 $submitted = true;

 $valid = array();

 // validate title

 if (!empty($_POST['title'])) {

 $valid['title'] = htmlentities(trim($_POST['title']));

 } else {

 $inputErrors[] = 'title';

 }

 // validate author name

 if (!empty($_POST['author']) && preg_match("/^[a-zA-Z\s.\-]+$/",

$_POST['author'])) {

 $valid['author'] = htmlentities(trim($_POST['author']));

 } else {

 $inputErrors[] = 'author';

 }

 // validate ISBN

 if (!empty($_POST['isbn']) && preg_match('/^(97(8|9))?\d{9}(\d|X)$/',

$_POST['isbn'])) {

 $valid['isbn'] = htmlentities(trim($_POST['isbn']));

 } else {

 $inputErrors[] = 'isbn';

 }

(continued)

 370 PHP: A Beginner’s Guide

 // validate price

 if (!empty($_POST['price']) && is_numeric($_POST['price']) && $_POST['price'] > 0)

{

 $valid['price'] = htmlentities(trim($_POST['price']));

 } else {

 $inputErrors[] = 'price';

 }

 }

 // if form not submitted

 // or if validation errors exist

 // (re)display form

 if (($submitted == true && count($inputErrors) > 0) || $submitted == false) {

?>

 <form method="post" action="books.php">

 Title:

 <input type="text" size="25" name="title"

 value="<?php echo isset($_POST['title']) ? $_POST['title'] : '';?>" />

 <?php echo getInputError('title', $inputErrors); ?>

 <p>

 Author:

 <input type="text" size="25" name="author"

 value="<?php echo isset($_POST['author']) ? $_POST['author'] : '';?>" />

 <?php echo getInputError('author', $inputErrors); ?>

 <p>

 ISBN:

 <input type="text" size="25" name="isbn"

 value="<?php echo isset($_POST['isbn']) ? $_POST['isbn'] : '';?>" />

 <?php echo getInputError('isbn', $inputErrors); ?>

 <p>

 Price:

 <input type="text" size="6" name="price"

 value="<?php echo isset($_POST['price']) ? $_POST['price'] : '';?>" />

 <?php echo getInputError('price', $inputErrors); ?>

 <p>

 <input type="submit" name="submit" value="Submit" />

 </form>

<?php

 // if form submitted with no errors

 // write the input to the database

 } else {

 // open SQLite database file

 try {

 $pdo = new PDO('sqlite:books.db');

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 } catch (PDOException $e) {

 die("ERROR: Could not connect: " . $e->getMessage());

 }

 // create and execute INSERT query

 Chapter 11: Securing PHP 371

 try {

 $title = $pdo->quote($valid['title']);

 $author = $pdo->quote($valid['author']);

 $isbn = $pdo->quote($valid['isbn']);

 $price = $pdo->quote($valid['price']);

 $sql = "INSERT INTO books (title, author, isbn, price) VALUES ($title, $author,

$isbn, $price)";

 $ret = $pdo->exec($sql);

 echo '<div class="success">SUCCESS: Record saved!</div>';

 } catch (Exception $e) {

 echo '<div class="error">ERROR: ' . $e->getMessage() . '</div>';

 }

 // close connection

 unset($pdo);

 }

?>

 </body>

</html>

Figure 11-1 illustrates what the Web form looks like.

Figure 11-1 A Web form to enter book details
(continued)

 372 PHP: A Beginner’s Guide

When this form is submitted, the script goes to work validating the input provided
by the user. In addition to checking that all the fields contain values, the script also uses
regular expressions to test the author name and ISBN number, and the is_numeric()
function to check that the price entered is a number. Fields that fail validation are flagged,
by adding them to the $inputErrors array. Valid fields are sanitized by passing them
through htmlentities() and then added to the $valid array.

Once the validation/sanitization phase is complete, the script first checks if any input
validation errors occurred. Assuming no errors, a PDO connection is opened to the SQLite
database, and the values from the $valid array are formulated into an INSERT query
and saved to the database. If, however, one or more validation errors occurred, the form
is redisplayed with prompts to correct the invalid values. Notice the user-defined function
getInputError(), which checks and displays the error status of each input value, thus
providing a convenient way to notify the user of all the input errors at once, instead of singly.

Figure 11-2 illustrates the output when some of the input values fail validation. And
Figure 11-3 illustrates the output when the input is successfully validated and saved.

Figure 11-2 The output when form input fails validation

 Chapter 11: Securing PHP 373

Configuring PHP Security
In addition to the techniques discussed in previous sections, there are also various PHP
configuration directives you can set, to reduce the risk of attackers gaining unauthorized
access to your application. All these directives can be set in the PHP configuration file,
php.ini, or at run time with PHP’s ini_set() function. Here’s a brief list:

● 'disable_functions' The 'disable_functions' directive allows
developers to disable certain built-in PHP functions for security reasons. Examples of
these are functions that allow remote execution of shell commands, like exec() and
passthru(), or functions that display internal PHP or Web server information, like
phpinfo().

● 'disable_classes' Like 'disable_functions', the 'disable_classes'
directive allows developers to disable certain PHP classes that pose a security risk.

● 'allow_url_fopen' The 'allow_url_fopen' directive determines whether
a PHP script can read data from remote URLs as though they were files, with file
functions such as file_get_contents(), include(), or fopen(). Unless your
PHP application needs to obtain data from a remote URL over HTTP or FTP, this
function should be disabled.

Figure 11-3 The output when form input is successfully validated and saved

 374 PHP: A Beginner’s Guide

● 'open_basedir' The 'open_basedir' directive allows developers to restrict
all file operations taking place within a PHP script to a particular directory and its
children. When this directive is enabled, a PHP script will not be able to “see” outside
the top-level directory named in this directive. This directive is useful to restrict an
application to a defined directory tree, and reduce the possibility of its accessing or
manipulating sensitive system files.

● 'error_reporting' You’ve already seen the error_reporting() function
in the preceding chapter. The 'error_reporting' directive performs the same
function: it allows the developer to control the error reporting level. The PHP Security
Guide suggests that in most cases, this should be set to E_ALL, so that all errors
(notices and warnings) are reported to the developer.

● 'display_errors' The 'display_errors' directive controls whether the
errors reported by a script are actually displayed in script output. The PHP manual
recommends enabling this directive in development environments, but disabling it
in production environments, as attackers can often use the diagnostic information
displayed in an error message to locate and exploit vulnerabilities in your PHP code.

● 'log_errors' Just because errors aren’t displayed, that doesn’t mean they should
be completely ignored. The 'log_errors' directive specifies whether errors
occurring in a PHP script should be written to a log file for later analysis. In most
cases, this directive should be enabled, especially if 'display_errors' is turned
off, so that there exists some record of the errors generated by an application.

● 'expose_php' The 'expose_php' directive determines whether PHP adds
information about itself to the Web server context. The PHP manual recommends
that this directive be disabled, to avoid providing potential attackers with additional
information about the server’s capabilities.

● 'max_input_time' The 'max_input_time' directive determines the maximum
amount of time a PHP script has to receive and parse input data, including data passed
via GET and POST. A limit on this time interval reduces the time available to an
attacker attempting to interactively construct and transmit a POST or GET request.

● 'session.name' The 'session.name' directive controls the name of the
session cookie used by PHP to track user sessions. By default, this cookie is named
PHPSESSID. It’s a good idea to change this cookie name from the default value, again
to make it more difficult for attackers to identify it and view its contents.

Table 11-2 lists where each of these directives can be set.

 Chapter 11: Securing PHP 375

NOTE
It is necessary to restart the Web server in order to activate changes made to the PHP
configuration file, php.ini.

Summary
This chapter focused specifically on security, discussing various techniques you can use
to reduce the risk of damage (whether intended or accidental) to your PHP application. It
showed you the basics of input and output sanitization, explained how to escape database
input and defang third-party output, and offered tips on securing your application files,
databases, and sessions. It also gave you a crash course in input validation, showing you
how regular expressions, character type functions, and conditional tests may be used to
check the validity of user input before using it in a calculation or database operation.

While this chapter covered a lot of ground, it’s still only the tip of the iceberg: PHP
security is a vast topic, and building a robust, attack-resistant application requires both
experience and sound technical knowledge. Fortunately, acquiring expertise in this subject
isn’t difficult; there are numerous resources available online to help you learn about
potential attacks and plug loopholes in your application code. You’re encouraged to visit
these to learn more about the topics discussed in this chapter:

● An overview of PHP security issues, at www.php.net/security

● The PHP Security Guide, at www.phpsec.org/projects/guide/

Directive Can Be Set in php.ini
Can Be Set at Run Time with
ini_set()

'disable_functions' Yes No

'disable_classes' Yes No

'allow_url_fopen' Yes Yes

'open_basedir' Yes Yes

'error_reporting' Yes Yes

'display_errors' Yes Yes

'log_errors' Yes Yes

'expose_php' Yes No

'max_input_time' Yes No

'session.name' Yes Yes

Table 11-2 PHP Security Directives

 376 PHP: A Beginner’s Guide

● Articles and discussions on PHP security by the PHP Security Consortium, at
www.phpsec.org/

● Regular expression functions, at www.php.net/pcre

● Character type functions, at www.php.net/ctype

● A discussion of cross-site scripting attacks, at
http://en.wikipedia.org/wiki/Cross-site_scripting

● A discussion of SQL injection attacks, at http://en.wikipedia.org/wiki/SQL_injection

● Examples of cross-site scripting attacks, at http://ha.ckers.org/xss.html

● Examples of regular expressions, at www.regexlib.com

● Tutorials on regular expressions, at www.melonfire.com/community/columns/trog/
article.php?id=2 and www.regular-expressions.info/tutorial.html

● Tutorials on client-side input validation, at www.sitepoint.com/article/client-side-
form-validation and http://home.cogeco.ca/~ve3ll/jstutor5.htm

 Chapter 11 Self Test
 1. Name and explain any two attacks discussed in this chapter. Also indicate how to

protect your application from these attacks.

 2. Name and illustrate two functions you would use to escape output.

 3. Demonstrate the use of a regular expression to validate U.S. postal codes, in the format
ddddd-dddd.

 4. Why should error display be disabled in production environments?

 5. Explain what each of the following functions do:

● ctype_alnum()

● addslashes()

● filter_var()

● htmlentities()

● sqlite_escape_string()

● preg_match()

● strval()

✓

377

Chapter 12
Extending PHP

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 378 PHP: A Beginner’s Guide

Key Skills & Concepts

● Learn about the PEAR and PECL code repositories

● Understand how to install a PEAR or PECL package

● Communicate with a POP3 server using a PEAR package

● Dynamically create a Zip archive using a PECL package

As an open-source language, PHP has the support of thousands of developers across
 the world. This community support, coupled with the language’s ease of use, has

produced hundreds of widgets and extensions that can be used to add new capabilities
to the core engine. These widgets and extensions form a robust, stable code base that is
invaluable to developers, as it allows them to create high-quality Web applications quickly
and efficiently, and with minimal “hand coding.”

Two of the largest online repositories for these PHP add-ons are PEAR, the PHP
Extension and Application Repository, and PECL, the PHP Extension Community Library.
This chapter will introduce you to both these repositories, using practical examples to
demonstrate how they can make your PHP development simpler and more effective.

Using PEAR
PEAR is the PHP Extension and Application Repository, available on the Web at http://
pear.php.net/. Its purpose is to provide PHP developers with a library of reusable PHP
classes (also called packages), that can easily be integrated into any PHP application and
that follow a standard coding style and file structure. PEAR packages are distributed as
compressed TAR archives and can be installed to any PHP development system using the
PEAR installer (included with every PHP distribution).

PEAR packages cover a diverse array of categories. Some of these are

● User authentication (Auth, Auth_HTTP)

● Database integration (MDB, DB_DataObject, DB_QueryTool, Query2XML, and
Structures_DataGrid)

● Form processing (HTML_QuickForm, Validate, and Text_CAPTCHA)

● Network protocols (Net_SMTP, Net_POP3, NET_LDAP, and Net_FTP)

● File formats (File_PDF, Archive_TAR, and Spreadsheet_Excel_Writer)

 Chapter 12: Extending PHP 379

● Application localization (I18N)

● Benchmarking, logging, and unit testing (Benchmark, Log, PHPUnit)

Installing PEAR Packages
PHP comes with an automated installer for PEAR packages. This installer has the
capability to automatically connect to PEAR’s central server, download the requested
package, and install it to your PHP development environment.

NOTE
Windows users must first configure the PEAR installer by manually executing the go-pear
.bat batch file, located in their PHP installation directory. This file will configure the PEAR
installer, generate the necessary registry entries, and place installer files in the correct
locations on the file system. For more details, review the Windows-specific installation
notes in the PEAR manual, at http://pear.php.net/manual/en/installation.getting.php.

To install a PEAR package using the installer, simply issue the following command at
the shell prompt:

shell> pear install package-name

The PEAR installer will now connect to the PEAR package server, download the
package, and install it to the appropriate location on your system. Figure 12-1 has an
example of installing the Net_POP3 package.

Figure 12-1 Installing a PEAR package on UNIX

 380 PHP: A Beginner’s Guide

Try This 12-1

TIP
If you’re not able to get the PEAR installer to work correctly, try adding the -v option to
the installation command line, to display additional debugging information.

 Accessing POP3 Mailboxes with PEAR
To illustrate PEAR’s usefulness in real life, consider a simple application: a mailbox
checker, which accepts a user’s credentials and connects to his or her mail server to
retrieve the corresponding mailbox data. To do this in PHP, a developer would need to
either recompile PHP with support for its IMAP extension or use socket programming to
directly communicate with the mail server, manually sending requests and interpreting
responses. The first option is time-consuming (and often impractical on shared or
production servers), while the second is both time-inefficient and resource-intensive.

PEAR, however, offers a third, much simpler option: the Net_POP3 package at http://
pear.php.net/package/Net_POP3, which provides a ready-made API to connect to, and
interact with, a POP3-compliant mail server. Using this package offers two important
benefits: first, it can be immediately used within a PHP script, with no server-side changes
necessary; and second, it provides a high-level API that already encompasses all required
functionality, including error handling, significantly reducing the total development time
required for the project.

Here’s what the code would look like (pop3.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 12-1: Accessing POP3 Mailboxes with PEAR</title>
 </head>
 <body>
 <h2>Project 12-1: Accessing POP3 Mailboxes with PEAR</h2>
 <?php
 // if form submitted
 if (isset($_POST['submit'])) {

 // create exceptions
 class InputException extends Exception { }
 class ConnException extends Exception { }

 // get form input
 $host = $_POST['host'];
 $port = $_POST['port'];
 $user = $_POST['user'];
 $pass = $_POST['pass'];

 try {

 Chapter 12: Extending PHP 381

 // validate form input
 if (empty($host)) {
 throw new InputException('Host name missing');
 }
 if (empty($port)) {
 throw new InputException('Port missing');
 }
 if (empty($user)) {
 throw new InputException('User name missing');
 }
 if (empty($pass)) {
 throw new InputException('Password missing');
 }

 // create object
 require_once 'Net/POP3.php';
 $pop3 =& new Net_POP3();

 // connect to host
 if(PEAR::isError($ret = $pop3->connect($host, $port))){
 throw new ConnException($ret->getMessage());
 }

 // log in
 if(PEAR::isError($ret = $pop3->login($user, $pass, 'USER'))){
 throw new ConnException($ret->getMessage());
 }

 // get number of messages and mailbox size
 echo $pop3->numMsg() . ' message(s) in mailbox, ' . $pop3->getSize() . '
bytes <p/>';

 // get headers for most recent message
 if ($pop3->numMsg() > 0) {
 $msgData = $pop3->getParsedHeaders($pop3->numMsg());
 echo 'Most recent message from ' . htmlentities($msgData['From']) . ',
subject \'' . htmlentities($msgData['Subject']) . '\'';
 }

 // disconnect
 $pop3->disconnect();

 } catch(InputException $e) {
 die('Input validation error: ' . $e->getMessage());
 } catch(ConnException $e) {
 die('Connection error: Server said ' . $e->getMessage());
 } catch(Exception $e) {
 die('ERROR: ' . $e->getMessage());
 }

 } else {
 ?>
 <form method="post" action="pop3.php">
 Server name:

 <input type="text" size="20" name="host" />

(continued)

 382 PHP: A Beginner’s Guide

 <p>
 Server port:

 <input type="text" size="4" name="port" value="110" />
 <p>
 User name:

 <input type="text" size="20" name="user" />
 <p>
 Password:

 <input type="password" size="10" name="pass" />
 <p>
 <input type="submit" name="submit" value="Submit" />
 </form>
 <?php
 }
 ?>
 </body>
</html>

This script begins by generating a simple Web form for the user’s mail server and
access information (Figure 12-2). Once this form is submitted, the data entered into the

Figure 12-2 A Web form to enter mail server information

 Chapter 12: Extending PHP 383

form is validated, and exceptions are thrown if any of it is found to be invalid. Next, the
Net_POP3 class file is loaded, and an instance of the Net_POP3 class is initialized. The
class exposes a connect() method; when passed the POP3 server name and port as
arguments, this method attempts to open a connection to the specified POP3 server. Once
a connection is made, the class’ login() method is then used to log in to the server and
access the user’s mailbox, using the supplied credentials as input.

After a successful login, a number of utility methods become available to interact
with the mailbox: for example, the numMsg() method returns the number of messages
in the mailbox, while the getSize() method returns the mailbox size in bytes. Where
possible, the subject and sender of the most recent message are also retrieved using the
getParsedHeaders() method, which returns an array of message headers. Once all
this information has been collected and displayed, the disconnect() method is used to
cleanly terminate the connection to the server.

Figure 12-3 displays the results of a successful connection.

Figure 12-3 Retrieving mailbox information with Net_POP3

 384 PHP: A Beginner’s Guide

Using PECL
PECL is the PHP Extension Community Library, available on the Web at http://pecl.php.net/.
PECL seeks to extend PHP’s capabilities through low-level language modules, which
are written in the C programming language and must be integrated directly into the PHP
engine (usually through compilation). PECL extensions are distributed as compressed
TAR archives and can be installed to any PHP development system either through a
manual compile-and-install process or with the PECL installer (included with every PHP
distribution).

Installing PECL Extensions
The procedure for installing a PECL extension differs on UNIX and Windows. To
download, compile, and install a PECL extension on UNIX, all in one fell swoop, issue
the following command at the shell prompt:

shell> pecl install extension-name

The PECL installer will now connect to the PECL server, download the source code,
compile it, and install it to the appropriate location on your system. Figure 12-4 has an
example of installing the Zip extension, available from http://pecl.php.net/package/zip.

Figure 12-4 Installing a PECL extension on UNIX

 Chapter 12: Extending PHP 385

Alternatively, download the package source code and manually compile it into a
loadable PHP module:

shell# cd zip-1.8.10
shell# phpize
shell# ./configure
shell# make
shell# make install

This process should generate a loadable PHP module named zip.so and copy it to the PHP
extension directory. It will now need to be enabled in the php.ini configuration file.

Windows users have a much easier time of it: they need to simply download a
precompiled PECL extension, copy it into PHP’s extension directory, and then activate the
extension in the php.ini configuration file. Precompiled PECL extensions for Windows are
freely available on the Web, at http://pecl4win.php.net/.

Once the extension has been correctly installed and activated, restart the Web server
and check the output of the phpinfo() command. If the extension has been correctly
installed, phpinfo() will display an entry for the extension, as in Figure 12-5.

Figure 12-5 The output of the phpinfo() command, showing the new PECL extension

 386 PHP: A Beginner’s Guide

Try This 12-2

TIP
You can find more information on installing PECL extensions in the PHP manual, at
www.php.net/manual/install.pecl.php.

 Creating Zip Archives with PECL
Let’s consider another example: creating a compressed Zip archive. This isn’t something
you can normally do with PHP, because the default PHP build doesn’t include Zip file
support. PECL comes to the rescue with its Zip extension, which provides a full-featured
API for reading and writing Zip archives.

Here’s an example of it in action (zip.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 12-2: Creating Zip Archives with PECL</title>
 </head>
 <body>
 <h2>Project 12-2: Creating Zip Archives with PECL</h2>
 <?php
 // increase script timeout value
 ini_set('max_execution_time', 300);

 // create object
 $zip = new ZipArchive();

 // open archive
 if ($zip->open('my-archive.zip', ZIPARCHIVE::CREATE) !== TRUE) {
 die ("ERROR: Could not open archive file.");
 }

 // initialize an iterator
 // pass it the directory to be processed
 $iterator = new RecursiveIteratorIterator(new RecursiveDirectoryIterator(
"app/"));

 // iterate over the directory
 // add each file found to the archive
 foreach ($iterator as $key=>$value) {
 $zip->addFile(realpath($key), $key) or die ("ERROR: Could not add file:
$key");
 echo "Adding file $key...
";
 }

 // close and save archive

 Chapter 12: Extending PHP 387

 $zip->close();
 echo "Archive created successfully.";
 ?>
 </body>
</html>

This listing illustrates how PECL’s Zip extension can be used to add Zip archive
support to PHP. The script begins by instantiating a ZipArchive object; this object serves
as the entry point to all of the Zip extension’s functions. Next, the object’s open()
method is used to create a new archive file, and the addFile() method is then used, in
combination with a RecursiveDirectoryIterator, to iterate over the app/ directory and its
children, adding all the files found to the archive. Once all the files have been added, the
object’s close() method takes care of compressing and writing the final archive to disk.

Figure 12-6 demonstrates the result.

Figure 12-6 Dynamically creating a Zip archive with PHP

 388 PHP: A Beginner’s Guide

Summary
Although you’ve reached the final chapter in this book, it should be clear that your
PHP journey is far from over . . . if anything, it’s only just beginning! Both PEAR and
PECL are popular repositories of high-quality, stable PHP add-ons and widgets, and new
packages are constantly being added to them. This chapter demonstrated just two of the
many hundreds of packages currently available: a POP3 client library, and a Zip format
compression module.

If you ever come across a particularly knotty development problem, spare a few
moments to search these repositories, and chances are high you’ll find a ready-made
solution that will save you hours of development time. In the meanwhile, the following
links will help you learn more about the topics covered in this chapter:

● The PEAR Web site, at http://pear.php.net

● The PECL Web site, at http://pecl.php.net

● PEAR installation notes, at http://pear.php.net/manual/en/installation.php

● PECL installation notes, at http://php.net/manual/install.pecl.php

● Documentation for the Net_POP3 package, at
http://pear.php.net/manual/en/package.networking.net-pop3.php

● Documentation for the PECL Zip extension, at www.php.net/zip

You’ve now reached the end of this book. I hope you enjoyed it and found it useful,
and that you now have the grounding necessary to go out there and begin creating your
own high-quality PHP applications. Good luck, and happy coding!

 Chapter 12 Self Test
 1. What is the difference between PEAR and PECL?

 2. Describe the steps to install a PECL extension in a Windows development environment.

 3. Review the documentation for the Net_POP3 package used in this chapter, and rewrite
the worked example to display the complete contents of the most recent message.

 4. Download and install PECL’s ID3 extension for working with MP3 files, and then write
a PHP application to process a directory of MP3 files, printing the track title and artist
name for each. (Hint: The PECL package is available at http://pecl.php.net/package/id3,
and the documentation can be found at www.php.net/id3.)

✓

Part IV
Appendixes

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

391

Appendix A
Installing and
Configuring Required
Software

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 392 PHP: A Beginner’s Guide

Key Skills & Concepts

● Learn to obtain and install MySQL, SQLite, PHP, and Apache software
from the Internet

● Perform basic testing to ensure that the applications are working correctly

● Find out how to automatically activate all required components on system
startup

● Take basic steps to safeguard the security of your MySQL installation

In this book, you learned about the PHP programming language and how it can be
used to build sophisticated Web applications. Some of the examples in this book also
involved using PHP with third-party components, such as XML, MySQL, and SQLite.
This appendix shows you how to install and configure these components on your
workstation, and create a development environment that can be used to run the code
examples in this book.

CAUTION
This appendix is intended to provide an overview and general guide to the process of
installing and configuring MySQL, SQLite, PHP, and Apache on UNIX and Windows.
It is not intended as a replacement for the installation documentation that ships with
each software package. If you encounter difficulties installing or configuring the various
programs described here, visit the respective program’s Web site or search the Web for
detailed troubleshooting information and advice (some links are provided at the end of
this chapter).

Obtaining the Software
The first step is to make sure that you have all the software you need. Here’s a list:

● PHP PHP provides an application development framework for both Web and
console applications. It can be downloaded from www.php.net/. Here too, both source
and binary versions are available for Windows, UNIX, and Mac OS X platforms.
UNIX users should download the latest source archive, while Windows users should
download the latest binary release. At the time of going to press, the most current
version of PHP is PHP 5.3.0 alpha 1.

 Appendix A: Installing and Configuring Required Software 393

● Apache Apache is a feature-rich Web server that works well with PHP. It can be
downloaded free of charge from http://httpd.apache.org/ in both source and binary
forms, for a variety of platforms. UNIX users should download the latest source
archive, while Windows users should download a binary installer appropriate for their
version of Windows. At the time of going to press, the most current version of the
Apache server is Apache 2.2.9.

● MySQL The MySQL database server provides robust and scalable data storage/
retrieval. It is available in both source and binary versions from www.mysql.com/.
Binary distributions are available for Linux, Solaris, FreeBSD, Mac OS X, Windows,
HP-UX, IBM AIX, SCO OpenUNIX, and SGI Irix, and source distributions are
available for both Windows and UNIX platforms. The binary version is recommended,
for two reasons: it is easier to install, and it is optimized for use on different platforms
by the MySQL development team. At the time of going to press, the most current
version of the MySQL database server is MySQL 5.0.67.

● SQLite SQLite is a self-contained database library file that is significantly smaller
than MySQL. It is available in both source and binary versions from www.sqlite.org/,
for Windows, UNIX, and Mac OS X platforms. Windows and UNIX users should both
download the binary version (a download link is available on this book’s companion
Web site). At the time of going to press, the most current version of SQLite is SQLite
3.6.1. However, because SQLite 3.x support in PHP 5.3 is still experimental at the
time of writing, this book makes use of SQLite 2.x.

In addition to these four basic components, UNIX users may also require some
supporting libraries. Here’s a list:

● The libxml2 library, available from www.xmlsoft.org/

● The zlib library, available from www.gzip.org/zlib/

Finally, users on both platforms will need a decompression tool capable of dealing
with TAR (Tape Archive) and GZ (GNU Zip) files. On UNIX, the tar and gzip utilities are
appropriate, and they are usually included with the operating system. On Windows, a good
decompression tool is WinZip, available from www.winzip.com/.

NOTE
The examples in this book have been developed and tested on SQLite 2.8.17, MySQL
5.0.67, with Apache 2.2.9 and PHP 5.2.5 and 5.3.0 alpha1.

 394 PHP: A Beginner’s Guide

Installing and Configuring the Software
Once the required software has been obtained, the next step is to install the various pieces
and get them talking to each other. The following sections outline the steps for both
Windows and UNIX platforms.

NOTE
If you use an Apple workstation, you can find instructions for installing PHP on Mac OS X
in the PHP manual, at www.php.net/manual/en/install.macosx.php.

Installing on UNIX
The installation process for UNIX involves a number of distinct steps: installing MySQL
from a binary distribution; compiling and installing PHP from a source distribution; and
compiling and configuring Apache to properly handle requests for PHP Web pages. These
steps are described in greater detail in the following subsections.

Installing MySQL
To install MySQL from a binary distribution, use the following steps:

 1. Ensure that you are logged in as the system’s “root” user.

[user@host]# su - root

 2. Extract the content of the MySQL binary archive to an appropriate directory on your
system—for example, /usr/local/.

[root@host]# cd /usr/local
[root@host]# tar -xzvf /tmp/mysql-5.0.67-linux-i686.tar.gz

 The MySQL files should get extracted into a directory named according to the format
mysql-version-os-architecture—for example, mysql-5.0.67-linux-i686.

 3. For ease of use, set a shorter name for the directory created in the preceding step, by
creating a soft link named mysql pointing to this directory in the same location.

[root@host]# ln -s mysql-5.0.67-linux-i686 mysql

 4. For security reasons, the MySQL database server process should never run as the
system superuser. Therefore, it is necessary to create a special “mysql” user and group
for this purpose. Do this with the groupadd and useradd commands, and then
change the ownership of the MySQL installation directory to this user and group:

[root@host]# groupadd mysql
[root@host]# useradd –g mysql mysql
[root@host]# chown -R mysql /usr/local/mysql
[root@host]# chgrp -R mysql /usr/local/mysql

 Appendix A: Installing and Configuring Required Software 395

 5. Initialize the MySQL tables with the mysql_install_db initialization script, included in
the distribution.

[root@host]# /usr/local/mysql/scripts/mysql_install_db --user=mysql

 Figure A-1 demonstrates what you should see when you do this.

 As the preceding output suggests, this initialization script prepares and installs the
various MySQL base tables, and also sets up default access permissions for MySQL.

 6. Alter the ownership of the MySQL binaries so that they are owned by “root”:

[root@host]# chown -R root /usr/local/mysql

 and ensure that the “mysql” user created in Step 4 has read/write privileges to the
MySQL data directory.

[root@host]# chown -R mysql /usr/local/mysql/data

 7. Start the MySQL server by manually running the mysqld_safe script.

[root@host]# /usr/local/mysql/bin/mysqld_safe --user=mysql &

 MySQL should now start up normally.

Once installation has been successfully completed and the server has started up, move
down to the section entitled “Testing MySQL” to verify that it is functioning as it should.

Figure A-1 The output of the mysql_install_db script

 396 PHP: A Beginner’s Guide

Installing Apache and PHP
PHP can be integrated with the Apache Web server in one of two ways: as a dynamic
module that is loaded into the Web server at run time, or as a static module that is
integrated into the Apache source tree at build time. Each alternative has advantages and
disadvantages:

● Installing PHP as a dynamic module makes it easier to upgrade your PHP build at a
later date, as you only need to recompile the PHP module and not the rest of the Apache
Web server. On the flip side, with a dynamically loaded module, performance tends to
be lower than with a static module, which is more closely integrated with the server.

● Installing PHP as a static module improves performance, because the module is
compiled directly into the Apache source tree. However, this close integration has
an important drawback: if you ever decide to upgrade your PHP build, you will need
to re-integrate the newer PHP module into the Apache source tree and recompile the
Apache Web server.

This section shows you how to compile PHP as a dynamic module that is loaded into
the Apache server at run time.

 1. Ensure that you are logged in as the system’s “root” user.

[user@host]# su - root

 2. Extract the contents of the Apache source archive to your system’s temporary directory.

[root@host]# cd /tmp
[root@host]# tar -xzvf /tmp/httpd-2.2.9.tar.gz

 3. To enable PHP to be loaded dynamically, the Apache server must be compiled with
Dynamic Shared Object (DSO) support. This support is enabled by passing the
--enable- so option to the Apache configure script, as shown here:

[root@host]# cd /tmp/httpd-2.2.9
[root@host]# ./configure --prefix=/usr/local/apache --enable-so

 You should see a few screens of output (Figure A-2 has a sample) as configure
configures and sets up the variables needed for the compilation process.

 4. Now, compile the server using make, and install it to the system using make install.

[root@host]# make
[root@host]# make install

 Figure A-3 illustrates what you might see during the compilation process. Apache
should now have been installed to /usr/local/apache/.

 Appendix A: Installing and Configuring Required Software 397

Figure A-2 Configuring the Apache source tree

Figure A-3 Compiling Apache

 398 PHP: A Beginner’s Guide

 5. Next, proceed to compile and install PHP. Begin by extracting the contents of the PHP
source archive to your system’s temporary directory.

[root@host]# cd /tmp
[root@host]# tar -xzvf /tmp/php-5.3.0.tar.gz

 6. This step is the most important in the PHP installation process. It involves sending
arguments to the PHP configure script to configure the PHP module. These command-
line parameters specify which PHP extensions should be activated, and also tell PHP
where to find the supporting libraries needed by those extensions.

[root@host]# cd /tmp/php-5.3.0
[root@host]# ./configure --prefix=/usr/local/php --with-apxs2=/usr/
local/apache/bin/apxs --with-zlib --with-mysqli=mysqlnd --with-pdo-
mysql=mysqlnd

 Here is a brief explanation of what each of these arguments does:

● The --with-apxs2 argument tells PHP where to find Apache’s APXS (APache
eXtenSion) script. This script simplifies the task of building and installing loadable
modules for Apache.

● The --with-zlib argument tells PHP to activate compression (Zip) features,
which are used by different PHP services.

● The --with-mysqli argument activates PHP’s MySQLi extension and tells PHP
to use the MySQL Native Driver (mysqlnd).

● The --with-pdo-mysql argument activates the MySQL PDO driver and tells
PHP to use the MySQL Native Driver (mysqlnd).

 Figure A-4 illustrates what you will see during the configuration process.

TIP
The PHP configuration process is extremely sophisticated, allowing you to control many
aspects of PHP‘s behavior. To see a complete list of available options, use the command
configure --help, and visit www.php.net/manual/en/configure.php for detailed
explanations of what each option does.

 7. Next, compile and install PHP using make and make install:

[root@host]# make
[root@host]# make install

 Figure A-5 illustrates what you might see during the compilation process. PHP should
now have been installed to /usr/local/php/.

 Appendix A: Installing and Configuring Required Software 399

Figure A-4 Configuring the PHP source tree

Figure A-5 Compiling PHP

 400 PHP: A Beginner’s Guide

 8. The final step in the installation process consists of configuring Apache to correctly
recognize requests for PHP pages. This is accomplished by opening up the Apache
configuration file, httpd.conf (which can be found in the conf/ subdirectory of the
Apache installation directory), in a text editor and adding the following line to it.

AddType application/x-httpd-php .php

 Save the changes to the file. Also, check to make sure that the following line appears
somewhere in the file:

LoadModule php5_module libexec/libphp5.so

 9. Start the Apache server by manually running the apachectl script.

[root@host]# /usr/local/apache/bin/apachectl start

 Apache should start up normally.

Once installation has been successfully completed and the server has successfully
started, move down to the section entitled “Testing PHP” to verify that all is functioning
as it should.

Q: Why do I need to manually activate the PDO MySQL driver, but not the PDO SQLite
driver when configuring PHP?

A: In PHP 5, both the SQLite extension and the PDO SQLite driver are activated by default.
Therefore, there is no need to manually activate the PDO SQLite driver during the
configuration process. However, all other PDO drivers, including those for MySQL,
PostgreSQL, and ODBC, require manual activation.

Ask the Expert

Installing SQLite
To install SQLite from a binary distribution, use the following steps.

 1. Ensure that you are logged in as the system’s “root” user.

[user@host]# su - root

 2. Unzip the compressed SQLite binary to an appropriate directory on your system—for
example, /usr/local/bin—and make the binary executable (Figure A-6).

[root@host]# cd /usr/local/bin
[root@host]# gunzip sqlite2-2.8.17.bin.gz
[root@host]# chmod +x sqlite2-2.8.17.bin
[root@host]# ln -s sqlite2-2.8.17.bin sqlite

 Appendix A: Installing and Configuring Required Software 401

The SQLite binary is now installed and ready for use. To test it, skip ahead to the
section entitled “Testing SQLite.”

Installing on Windows
Compiling applications on Windows is a challenging process, especially for novice
developers. With this in mind, it is advisable for Windows users to focus instead on
installing and configuring prebuilt binary releases of MySQL, SQLite, PHP, and
Apache, instead of attempting to compile them from source code. These releases can be
downloaded from the Web sites listed in the preceding section and are to be installed one
after another, as outlined in the following subsections.

Installing MySQL
The binary distribution of MySQL for Windows comes with an automated installer, which
allows you to get MySQL up and running on your Windows system in just a few minutes.

 1. Log in as an administrator (if you’re using Windows NT/2000/XP/Vista) and unzip the
distribution archive to a temporary directory on your system.

 2. Double-click the setup.exe file to begin the installation process. You should see a
welcome screen (Figure A-7).

 3. Select the type of installation required (Figure A-8).

 Most often, a Typical Installation will do; however, if you’re the kind who likes
tweaking default settings, or if you’re just short of disk space, select the Custom
Installation option, and decide which components of the package should be installed.

 4. MySQL should now begin installing to your system (Figure A-9).

 5. Once installation is complete, you should see a success notification. At this point, you
will have the option to launch the MySQL Server Instance Config Wizard, to complete
configuration of the software. Select this option, and you should see the corresponding
welcome screen (Figure A-10).

Figure A-6 SQLite installation

 402 PHP: A Beginner’s Guide

Figure A-7 Beginning MySQL installation on Windows

Figure A-8 Selecting the MySQL installation type

 Appendix A: Installing and Configuring Required Software 403

Figure A-9 MySQL installation in progress

Figure A-10 Beginning MySQL configuration on Windows

 404 PHP: A Beginner’s Guide

 6. Select the type of configuration (Figure A-11). In most cases, the Standard
Configuration will suffice.

 7. Install MySQL as a Windows service, such that it starts and stops automatically with
Windows (Figure A-12).

 8. Enter a password for the MySQL administrator (“root”) account (Figure A-13).

 9. The server will now be configured with your specified settings, and automatically
started. You will be presented with a success notification once all required tasks are
completed (Figure A-14).

You can now proceed to test the server as described in the section “Testing MySQL,”
to ensure that everything is working as it should.

Installing Apache
Once MySQL is installed, the next step is to install the Apache Web server. On Windows,
this is a point-and-click process, similar to that used when installing MySQL.

 1. Begin by double-clicking the Apache installer to begin the installation process. You
should see a welcome screen (Figure A-15).

Figure A-11 Selecting the configuration time

 Appendix A: Installing and Configuring Required Software 405

Figure A-12 Setting up the MySQL service

Figure A-13 Setting the administrator password

 406 PHP: A Beginner’s Guide

Figure A-14 MySQL configuration successfully completed

Figure A-15 Beginning Apache installation on Windows

 Appendix A: Installing and Configuring Required Software 407

Figure A-16 Entering Apache server information

 2. Read the license agreement, and accept the terms to proceed.

 3. Read the descriptive information, and proceed to enter basic server information and the
e-mail address to be displayed on error pages (Figure A-16).

 4. Select the type of installation required (Figure A-17).

 You can select the Custom Installation option to decide which components of the
package should be installed.

 5. Select the location to which Apache should be installed—for example, c:\program files\
apache group\ (Figure A-18).

 6. Apache should now begin installing to the specified location (Figure A-19). The
installation process takes a few minutes to complete, so this is a good time to get
yourself a cup of coffee.

 7. Once installation is complete, the Apache installer will display a success notification
and also start the Apache Web server.

 408 PHP: A Beginner’s Guide

Figure A-17 Selecting the Apache installation type

Figure A-18 Selecting the Apache installation location

 Appendix A: Installing and Configuring Required Software 409

Installing PHP
There are two versions of the PHP binary release for Windows: a Zip archive that contains
all the bundled PHP extensions and requires manual installation, and an automated
Windows Installer version that contains only the PHP binary with no extra extensions.
This section outlines the installation process for the PHP Zip archive.

 1. Log in as an administrator (if you’re using Windows NT/2000/XP/Vista) and unzip
the distribution archive to a directory on your system—for example, c:\php\. After
extraction, this directory should look something like Figure A-20.

 2. Next, rename the file php.ini-recommended in your PHP installation directory to php.ini.
This file contains configuration settings for PHP, which can be used to alter the way it
works. Read the comments within the file to learn more about the available settings.

 3. Within the php.ini file, locate the line

extension_dir = "./"

and alter it to read

extension_dir = "c:\php\ext\"

Figure A-19 Apache installation in progress

 410 PHP: A Beginner’s Guide

 This tells PHP where to locate the extensions supplied with the package. Remember to
replace the path “c:\php\” with the actual location of your PHP installation.

 4. Next, look for the following lines and remove the semicolon at the beginning of each
line (if present) so that they read:

extension=php_pdo.dll
extension=php_sqlite.dll
extension=php_mysqli.dll
extension=php_pdo_sqlite.dll
extension=php_pdo_mysqli.dll

 This takes care of activating PHP’s MySQLi, SQLite, and PDO extensions.

Figure A-20 The directory structure created on unpackaging a PHP binary distribution
for Windows

 Appendix A: Installing and Configuring Required Software 411

 5. Open the Apache configuration file, httpd.conf (which can be found in the conf/
subdirectory of the Apache installation directory), in a text editor, and add the
following lines to it.

AddType application/x-httpd-php .php
LoadModule php5_module "c:\php\php5apache2_2.dll"
SetEnv PHPRC C:\php\

 These lines tell Apache how to deal with PHP scripts, and where to find the php.ini
configuration file. Remember to replace the path c:\php\ with the actual location of
your PHP installation.

 6. When the Apache server is installed, it adds itself to the Start menu. Use this Start
menu group to stop and restart the server, as in Figure A-21.

PHP is now installed and configured to work with Apache. To test it, skip down to the
section entitled “Testing PHP.”

Figure A-21 Apache server controls on Windows

 412 PHP: A Beginner’s Guide

Installing SQLite
Because SQLite is a self-contained executable, installing it under Windows is a snap:
Simply log in as an administrator (if you’re using Windows NT/2000/XP/Vista) and unzip
the distribution archive to a directory in your system path. For ease of use, rename the
sqlite2.exe binary to sqlite.exe.

The SQLite binary is now installed and ready for use. To test it, skip ahead to the
section entitled “Testing SQLite.”

Testing the Software
Once the software has been successfully installed and the various servers have been
started, you can verify that all is working as it should via some simple tests.

Testing MySQL
First, start up the MySQL command-line client, by changing to the bin/ subdirectory of
your MySQL installation directory and typing the following command:

prompt# mysql -u root

You should be rewarded with a prompt, as shown here:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 26288
Server version: 5.0.51a-community MySQL Community Edition (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

At this point, you are connected to the MySQL server and can begin executing SQL
commands or queries to test whether the server is working as it should. Here are a few
examples, with their output:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.13 sec)
mysql> USE mysql;

 Appendix A: Installing and Configuring Required Software 413

Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
17 rows in set (0.01 sec)
mysql> SELECT COUNT(*) FROM user;
+----------+
| count(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

If you see output similar to this, your MySQL installation is working as it should. Exit
the command-line client by typing the following command, and you’ll be returned to your
command prompt:

mysql> exit

If you don’t see output like that shown, or if MySQL throws warnings and errors at
you, review the installation procedure in the preceding section, as well as the documents
that shipped with your version of MySQL, to see what went wrong.

Testing PHP
Once you’ve successfully installed PHP as an Apache module, you should test it to ensure
that the Web server can recognize PHP scripts and handle them correctly.

 414 PHP: A Beginner’s Guide

To perform this test, create a PHP script in any text editor containing the following
lines:

<?php
phpinfo();
?>

Save this file as test.php in your Web server document root (the htdocs/ subdirectory
of your Apache installation directory), and point your browser to http://localhost/test.php.
You should see a page containing information on the PHP build, as in Figure A-22.

Eyeball the list of extensions to make sure that the SimpleXML, MySQLi, and PDO
extensions are active. If they aren’t, review the installation procedure, as well as the
installation documents that shipped with the software, to see what went wrong.

Figure A-22 Viewing the output of the phpinfo() command

 Appendix A: Installing and Configuring Required Software 415

Testing SQLite
Once you’ve installed SQLite, you can test it by changing to the directory it was installed
into and executing the SQLite binary at the command prompt, as shown here:

prompt# sqlite

You should be rewarded with a prompt, like this:

SQLite version 2.8.17
Enter ".help" for instructions
sqlite>

At this point, you can try executing SQL commands or internal SQLite commands to
test whether things are working as they should. Here are some examples:

sqlite> .show
 echo: off
 explain: off
 headers: off
 mode: list
nullvalue: ""
 output: stdout
separator: "|"
 width:
sqlite> CREATE TABLE test (
 ...> fld1 INTEGER PRIMARY KEY,
 ...> fld2 TEXT
 ...>);
sqlite> INSERT INTO test (fld2) VALUES ('Hello');
sqlite> SELECT * FROM test;
1|Hello

If you see output similar to the preceding, your SQLite installation is working as it
should. Exit the command-line client by typing the following command, and you’ll be
returned to your command prompt.

sqlite> .quit

Performing Post-Installation Steps
Once testing is complete, you may wish to perform the following two tasks.

 416 PHP: A Beginner’s Guide

Setting the MySQL Super-User Password
On UNIX, when MySQL is first installed, access to the database server is restricted to
the MySQL administrator, aka “root.” By default, this user is initialized with a blank
password, which is generally considered a Bad Thing. You should therefore rectify this as
soon as possible by setting a password for this user via the included mysqladmin utility,
using the following syntax in UNIX:

[root@host]# /usr/local/mysql/bin/mysqladmin -u root password 'new-password'

In Windows, you can use the MySQL Server Instance Config Wizard, which allows
you to set or reset the MySQL administrator password (see the section entitled “Installing
on Windows” for more details).

This password change goes into effect immediately, with no requirement to restart the
server.

Q: Does changing the MySQL “root” password affect the UNIX system’s “root”
account?

A: No. The MySQL “root” user is not the same as the system superuser (“root”) on UNIX.
So, altering one does not affect the other.

Configuring MySQL and Apache
to Start Automatically
On UNIX, both MySQL and Apache servers come with startup/shutdown scripts, which
can be used to start and stop them. These scripts are located within the installation
hierarchy for each program. Here’s an example of how to use the MySQL server control
script:

[root@host]# /usr/local/mysql/support-files/mysql.server start
[root@host]# /usr/local/mysql/support-files/mysql.server stop

And here’s an example of how to use the Apache control script:

[root@host]# /usr/local/apache/bin/apachectl start
[root@host]# /usr/local/apache/bin/apachectl stop

Ask the Expert

 Appendix A: Installing and Configuring Required Software 417

● To have MySQL and Apache start automatically at boot time on UNIX, simply invoke
their respective control scripts with appropriate parameters from your system’s bootup
and shutdown scripts in the /etc/rc.d/* hierarchy.

● To start MySQL and Apache automatically on Windows, simply add a link to the
mysqld.exe and apache.exe server binaries to your Startup group. You can also start
MySQL automatically by installing it as a Windows service (see the section entitled
“Installing on Windows” for instructions).

Summary
As popular open-source applications, MySQL, SQLite, Apache, and PHP are available
for a wide variety of platforms and architectures, in both binary and source forms. This
chapter demonstrated the process of installing and configuring these software components
to create a PHP development environment on the two most common platforms, UNIX and
Windows. It also showed you how to configure your system to launch these components
automatically every time the system starts up, and offered some tips on basic MySQL
security.

To read more about the installation processes outlined in this chapter, or for detailed
troubleshooting advice and assistance, consider visiting the following pages:

● MySQL installation notes, at
http://dev.mysql.com/doc/refman/5.0/en/installing-binary.html

● General guidelines for compiling Apache on UNIX, at
http://httpd.apache.org/docs/2.2/install.html

● Windows-specific notes for Apache binary installations, at
http://httpd.apache.org/docs/2.2/platform/windows.html

● Installation instructions for PHP on Windows, at
www.php.net/manual/en/install.windows.php

● Installation instructions for PHP on UNIX, at
www.php.net/manual/en/install.unix.php

● Installation instructions for PHP on Mac OS X, at
www.php.net/manual/en/install.macosx.php

● SQLite frequently asked questions, at www.sqlite.org/faq.html

This page intentionally left blank

419

Appendix B
Answers to Self Test

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 420 PHP: A Beginner’s Guide

Chapter 1: Introducing PHP
 1. The four components of the LAMP framework are the Linux operating system, the

Apache Web server, the MySQL database server, and the PHP programming language.

 2. PHP is superior to client-side languages such as JavaScript because all PHP code runs
on the server and hence is impervious to client-side security risks as well as to browser-
specific quirks.

 3. The echo statement produces one or more lines of output.

 4. The PHP parser ignores whitespace or blank lines in a PHP script.

 5. A semicolon. However, this semicolon terminator may be omitted for the very last line
of a PHP script.

 6. An escape sequence is a sequence of characters that is replaced by a single “special”
character. For example, \t is an escape sequence that is replaced by a tab character. Other
commonly used escape sequences are \n (for line feeds) and \r (for carriage returns).

 7. A. Today looks
bright and sunny

B. Ours not to question why;Ours but to do and die

 8. A. The syntax of the comment block is incorrect.

B. No error.

C. The echo statement is missing the closing quotation mark.

Chapter 2: Using Variables and Operators
 1. The gettype() function

 2. $24 and $^b are invalid variable names. Variable names cannot begin with a numeric
character, nor can they contain punctuation characters or special symbols.

 3. <?php
define ('FLAVOR', 'strawberry');
?>

 4. <?php
$x = 6;
$x += 3;
?>

 Appendix B: Answers to Self Test 421

 5. Answers to true/false questions:

 A. True

 B. False

 C. False

 D. False

 E. False

 F. True

 G. True

 H. False

 6. $x = 179; ABC = 90

 7. As both variables are of the integer type and hold the same value, the comparison
returns 1 (true).

 8. The constant NUM is a string (notice the single quotes), which is then assigned to the
variable $a. Therefore, $a is also a string.

 9. The relevant form code is

<form method="post" action="convert.php">
 Exchange rate:

 <input type="text" name="rate" /> <p />
 Dollar amount:

 <input type="text" name="dollars" /> <p />
 <input type="submit" />
</form>

And the PHP processing code is

<?php
$dollars = $_POST['dollars'];
$rate = $_POST['rate'];
$euros = $dollars * $rate;
echo "$dollars USD is equivalent to: $euros EUR";
?>

 10. The relevant form code is

<form method="post" action="convert.php">
 Temperature in Celsius:

 <input type="text" name="c" /> <p />
 <input type="submit" />
</form>

 422 PHP: A Beginner’s Guide

And the PHP processing code is

<?php
$c = $_POST['c'];
$f = (9/5) * $c + 32;
echo "$c deg. Celsius is equivalent to: $f deg. Fahrenheit";
?>

 11. The relevant form code is
<form method="post" action="display.php">
 Text input:

 <input type="text" name="dsc" /> <p />
 Password input:

 <input type="password" name="password" /> <p />
 Text area:

 <textarea cols="10" rows="5" name="comment"></textarea> <p />
 Selection list:

 <select name="color">
 <option>red</option>
 <option>yellow</option>
 <option>green</option>
 </select> <p />
 Radio buttons:

 <input type="radio" name="sex" value="male">Male</input>
 <input type="radio" name="sex" value="female">Female</input> <p />
 Checkboxes:

 <input type="checkbox" name="phone">Phone</input>
 <input type="checkbox" name="fax">Fax</input> <p />
 <input type="hidden" name="referral" value="XYZ" />
 <input type="submit" />
</form>

And the PHP processing code is

<?php
var_dump($_POST);
?>

Chapter 3: Controlling Program Flow
 1. An if-else statement allows you to define actions for two possibilities: a true

condition and a false condition. An if-elseif-else statement allows you to define
actions for multiple possibilities.

 2. The relevant conditional statement is

<?php
if ($city == 'Minneapolis') {
 echo 'Welcome to Minneapolis';
}
?>

 Appendix B: Answers to Self Test 423

 3. A while loop checks the conditional expression at the beginning of each loop iteration,
while a do-while loop checks the conditional expression at the end of each loop
iteration. Thus, if the conditional expression evaluates to false on the first iteration, the
while loop will never run, but the do-while loop will run once.

The following code illustrates the difference:

Code Output
<?php
$a = 10;
while ($a < 10) {
 echo 'Hello';
}
?>

No output

<?php
$a = 10;
do {
 echo 'Hello';
} while ($a < 10);
?>

'Hello'

 4. The relevant PHP code is

<?php
$num = 1;
while ($num <= 10) {
echo "8 times $num is: " . ($num*8) . "
";
$num++;
}
?>

 5. The relevant PHP code is

<?php
for ($num=1; $num<=10; $num++) {
 echo "8 times $num is: " . ($num*8) . "
";
}
?>

 6. The function matching each task is listed in the following table:

Task Function
Decode HTML entities html_entity_decode()

Uppercase a string strtoupper()

Round a number down floor()

Remove whitespace from a string trim()

Generate a random number rand()

 424 PHP: A Beginner’s Guide

Task Function
Reverse a string strrev()

Count words in a string str_word_count()

Count characters in a string strlen()

Terminate script processing with a custom message die()

Compare two strings strcmp()

Calculate the exponent of a number exp()

Convert a decimal number to a hexadecimal value dechex()

 7. The output is 7402.404200.

 8. The required PHP code is

<?php
$str = 'Mark had a nice day';
$newStr = substr($str,0,9) . substr($str,12,3) .
$str{13} . $str{2} . $str{14} .
$str{1} . strtolower($str{0});
echo $newStr;
?>

Chapter 4: Working with Arrays
 1. The two types of PHP arrays are numerically indexed arrays and string-indexed arrays

(also known as associative arrays). With the former, numbers are used to identify array
elements; with the latter, unique string labels (keys) are used.

 2. The function matching each task is listed in the following table:

Task Function
Remove duplicate elements from an array array_unique()

Add an element to the beginning of an array array_unshift()

Sort an array in reverse rsort()

Count the number of elements in an array count()

Search for a value in an array in_array()

Display the contents of an array print_r() or var_dump()

Shuffle the contents of an array shuffle()

Combine two arrays into one array_merge()

Find the common elements between two arrays array_intersect()

Convert a string to an array explode()

Extract a segment of an array array_slice()

 Appendix B: Answers to Self Test 425

 3. The output will be

Array
(
 [0] => f
 [1] => g
 [2] => i
)

 4. The relevant PHP code is

<?php
$days = array(
 'Monday',
 'Tuesday',
 'Wednesday',
 'Thursday',
 'Friday',
 'Saturday',
 'Sunday'
);
foreach ($days as $day) {
 echo "$day \r\n";
}
?>

 5. The relevant PHP code is

<?php
$arr = array(23,45,2,67,17,12,5,68,14,78,192,4);
foreach ($arr as $n) {
 echo ($n < 15) ? "$n " : null;
}
?>

 6. The relevant PHP code is

<?php
$arr = array(23,45,'apple','fig',17,12,5,'fig',14,2,78,192,45);
if ($arr == array_unique($arr)) {
 echo 'Array has only unique values';
} else {
 echo 'Array has some duplicate values';
}
?>

Chapter 5: Using Functions and Classes
 1. Functions

● Permit modularization and reusability

● Reduce duplication of program code

 426 PHP: A Beginner’s Guide

● Allow you to change code from a single central location

● Simplify debugging

 2. An argument is an input to a function, while a return value is an output of a function.

 3. The relevant PHP code is

<?php
function getDistance($speed, $time) {
 return $speed * $time;
}

// time diff = 4.5 hrs
// total time in the air = 13-5 - 4.5 = 9
echo 'The distance between Bombay and London is: ' .
getDistance(910, 9) . ' km.';
?>

 4. The relevant PHP code is

<?php
// function definition
// get LCM of arbitrary set of numbers using GCF
function getLCMOfSet() {
 $nums = func_get_args();
 if (count($nums) < 2) {
 die('ERROR: You must provide at least 2 values');
 }

 $lcm = 1;
 for ($x=0; $x<count($nums); $x++) {
 $lcm = getLCM($lcm, $nums[$x]);
 }
 return $lcm;
}

// output: 160
echo getLCMOfSet(4,8,16,32,10);
?>

 5. A constructor is a method of a class that is automatically executed when an instance of
that class is created.

 6. Private methods of a class are visible only within that class and are not accessible from
child classes or child class instances. Attempting to access a private method of a parent
class from a child class will generate a fatal error.

 7. The get_class() function returns the name of the class from which it was
instantiated—in this case, the Baby class.

 Appendix B: Answers to Self Test 427

 8. The relevant class definition is
<?php
class DateSelect {
 public $day;
 public $month;
 public $year;

 public function __construct() {
 // create day list
 $this->day = new Select;
 $this->day->setName('dd');
 $this->day->setLabel('Day');
 foreach (range(1,31) as $d) {
 $this->day->setOption(new Option($d,$d));
 }
 // create month list
 $this->month = new Select;
 $this->month->setName('mm');
 $this->month->setLabel('Month');
 foreach (range(1,12) as $m) {
 $mon = date('F', mktime(0,0,0,$m));
 $this->month->setOption(new Option($mon,$mon));
 }
 // create year list
 $this->year = new Select;
 $this->year->setName('yy');
 $this->year->setLabel('Year');
 foreach (range(1950,2050) as $y) {
 $this->year->setOption(new Option($y,$y));
 }
 }

 public function render() {
 $this->day->render();
 echo '
';
 $this->month->render();
 echo '
';
 $this->year->render();
 }
}
?>

And a usage example is
<form method="post" action="date.php">
 <?php
 $datebox = new DateSelect;
 $datebox->render();
 ?>
 <p />
 <input type="submit" name="submit" value="Submit" />
</form>

 9. Monday 17 November 2008 12:15 pm

 428 PHP: A Beginner’s Guide

Chapter 6: Working with Files and Directories
 1. The function matching each task is listed in the following table:

Task Function
Obtain the absolute path to a file realpath()

Delete a file unlink()

Retrieve the size of a file filesize()

Read the contents of a file into an array file()

Check if a file is writable is_writable()

Check if a directory exists file_exists()

Read the contents of a directory into an array scandir()

Write a string to a file file_put_contents()

Create a new directory mkdir()

Delete a directory rmdir()

Create a pointer to a directory opendir()

Check if a directory entry is a file is_file()

 2. The flock() function is used to prevent multiple simultaneous processes from
accessing a file, thereby reducing the risk of data corruption.

 3. The relevant PHP code is

<?php
echo count(file('example.txt')) . ' line(s) in file.';
?>

 4. The relevant PHP code is
<?php
file_put_contents('reversed.txt', strrev(file_get_contents('example.txt')))
?>

 5. The relevant PHP code is

<?php
// create directory pointer
$dp = opendir('.') or die ('ERROR: Cannot open directory');

// read directory contents
// print filenames found
while ($file = readdir($dp)) {
 $fileData = pathinfo($file);

 Appendix B: Answers to Self Test 429

 if ($fileData['extension'] == 'txt') {
 rename($file, $fileData['filename'] . '.xtx') or die('ERROR:
Cannot rename file ' . $file);
 }
}

// destroy directory pointer
closedir($dp);
?>

 6. The relevant PHP code is

<?php
// function definition
// copy a directory and its contents
function copyTree($source, $destination) {
 if (file_exists($source)) {
 // create source pointer
 $dp = opendir($source) or die ('ERROR: Cannot open directory');

 // if destination directory does not exist
 // create it
 if (!file_exists($destination)) {
 mkdir($destination) or die('ERROR: Cannot create directory '
. $destination);
 }

 // read source contents
 // if file, copy to destination
 // if directory, call recursively
 while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 if (is_file("$source/$file")) {
 copy("$source/$file", "$destination/$file")
 or die('ERROR: Cannot copy file ' . "$source/$file");
 } else if (is_dir("$source/$file")) {
 copyTree("$source/$file", "$destination/$file");
 }
 }
 }

 // close source pointer
 closedir($dp);
 }
}
?>

 430 PHP: A Beginner’s Guide

And here’s a usage example:

<?php
if (file_exists('mydir')) {
 copyTree('mydir', '../../../mycopy');
 echo 'File(s) copied.';
}
?>

 7. The relevant PHP code is

<?php
// create directory pointer
$dp = opendir('.') or die ('ERROR: Cannot open directory');

// read directory contents
// add files to array with mtime
while ($file = readdir($dp)) {
 if ($file != '.' && $file != '..') {
 $fileList[$file] = filemtime($file);
 }
}

// destroy directory pointer
closedir($dp);

// reverse sort by mtime
// print list
arsort($fileList);
foreach ($fileList as $file => $mtime) {
 echo $file . ' ' . date('d-M-y H:i', $mtime) . "\n";
}
?>

Chapter 7: Working with Databases and SQL
 1. The answers are

 A. False. SQL permits tables to be joined on any of their fields.

 B. False. PHP has included MySQL support for many years.

 C. True.

 D. False. Primary keys uniquely identify table records and so cannot be empty.

 E. True.

 F. False. Prepared statements can be used for any SQL operation, including SELECT,
UPDATE, and DELETE.

 Appendix B: Answers to Self Test 431

 2. The relevant SQL commands are

 A. DROP DATABASE

 B. UPDATE

 C. DELETE

 D. CREATE TABLE

 E. USE

 3. Database normalization is the process of identifying and eliminating redundancies and
unwanted dependencies between the tables of a database. This ensures that a given
piece of information appears only once in the database, to avoid cross-referencing
errors and to make changes easier.

 4. The advantage of using a database abstraction library like PDO is that it uses generic
functions that are internally translated to a database’s native API; this makes it possible
to switch from one database back end to another with limited impact to application
code. The disadvantage is that such internal translation of API calls requires additional
processing cycles and so may end up being performance-inefficient.

 5. The relevant PHP code is
<?php
// attempt database connection
try {
 $pdo = new PDO('mysql:dbname=music;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// if form not yet submitted
// display form
if (!isset($_POST['submit'])) {

 // get artists
 $artists = array();
 $sql = "SELECT artist_id, artist_name FROM artists ORDER BY artist_name";
 if ($result = $pdo->query($sql)) {
 while($row = $result->fetchObject()) {
 $artists[$row->artist_id] = $row->artist_name;
 }
 }

 // get ratings
 $ratings = array();
 $sql = "SELECT rating_id, rating_name FROM ratings ORDER BY rating_id";
 if ($result = $pdo->query($sql)) {

 432 PHP: A Beginner’s Guide

 while($row = $result->fetchObject()) {
 $ratings[$row->rating_id] = $row->rating_name;
 }
 }
?>
 <form method="post" action="pdo-music.php">
 Name:

 <input type="text" name="name" />
 <p>
 Artist:

 <select name="artist">
 <?php
 foreach ($artists as $k => $v) {
 echo "<option value=\"$k\">$v</option>\n";
 }
 ?>
 </select>
 <p>
 Rating:

 <select name="rating">
 <?php
 foreach ($ratings as $k => $v) {
 echo "<option value=\"$k\">$v</option>\n";
 }
 ?>
 </select>
 <p>
 <input type="submit" name="submit" value="Save" />
 </form>

<?php
// if form submitted
// validate input and save record
} else {
 $name = $_POST['name'];
 $artist_id = (int)$_POST['artist'];
 $rating_id = (int)$_POST['rating'];

 // check input
 if (empty($name)) {
 die('ERROR: Please enter a name');
 }

 if (empty($artist_id)) {
 die('ERROR: Please select an artist');
 }

 if (empty($rating_id)) {
 die('ERROR: Please select a rating');
 }

 Appendix B: Answers to Self Test 433

 // escape special characters in input
 $name = $pdo->quote($name);
 $artist_id = $pdo->quote($artist_id);
 $rating_id = $pdo->quote($rating_id);

 // insert record
 $sql = "INSERT INTO songs (song_title, fk_song_artist, fk_song_rating)
VALUES ($name, $artist_id, $rating_id)";
 $ret = $pdo->exec($sql);
 if ($ret === false) {
 echo "ERROR: Could not execute $sql. " . print_r($pdo->errorInfo());
 } else {
 echo 'New song added.';
 }
}

// close connection
unset($pdo);
?>
 </body>
</html>

 6. The relevant PHP code for MySQL is
<?php
// attempt database connection
$mysqli = new mysqli("localhost", "user", "pass", "test");
if ($mysqli === false) {
 die("ERROR: Could not connect. " . mysqli_connect_error());
}

// attempt query execution
// add a new table
$sql =
 "CREATE TABLE grades (
 id int(4) NOT NULL PRIMARY KEY AUTO_INCREMENT,
 subj_a INT(4) NOT NULL,
 subj_b INT(4) NOT NULL,
 subj_c INT(4) NOT NULL
)";
if ($mysqli->query($sql) === true) {
 echo 'New table created.';
} else {
 echo "ERROR: Could not execute query: $sql. " . $mysqli->error;
}

// close connection
$mysqli->close();
?>

 434 PHP: A Beginner’s Guide

The relevant PHP code for SQLite is
<?php
// attempt database connection
$sqlite = new SQLiteDatabase('test.db') or die ("Could not open database");

// attempt query execution
// add a new table
$sql = "CREATE TABLE grades (
 id INTEGER PRIMARY KEY,
 subj_a INTEGER NOT NULL,
 subj_b INTEGER NOT NULL,
 subj_c INTEGER NOT NULL
)";
if ($sqlite->queryExec($sql) == true) {
 echo 'New table created.';
} else {
 echo "ERROR: Could not execute $sql. " . sqlite_error_string($sqlite-
>lastError());
}

// close connection
unset($sqlite);
?>

 7. The relevant PHP code is
<?php
// attempt a connection
try {
 $mysql = new PDO('mysql:dbname=test;host=localhost', 'user', 'pass');
 $sqlite = new PDO('sqlite:a.db');
} catch (PDOException $e) {
 die("ERROR: Could not connect: " . $e->getMessage());
}

// prepare INSERT statement for SQLite
$sql_1 = "INSERT INTO grades (id, subj_a, subj_b, subj_c) VALUES (?, ?, ?,
?)";
if ($stmt = $sqlite->prepare($sql_1)) {

 // create and execute SELECT query for MySQL
 $sql_2 = "SELECT id, subj_a, subj_b, subj_c FROM grades";
 if ($result = $mysql->query($sql_2)) {

 // for each record
 // bind to prepared statement and insert into SQLite
 while($row = $result->fetch()) {
 $stmt->bindParam(1, $row[0]);
 $stmt->bindParam(2, $row[1]);
 $stmt->bindParam(3, $row[2]);

 Appendix B: Answers to Self Test 435

 $stmt->bindParam(4, $row[4]);
 $stmt->execute();
 }
 echo 'Record(s) successfully migrated.';

 } else {
 echo "ERROR: Could not execute $sql_2. " . print_r($mysql->errorInfo());
 }

} else {
 echo "ERROR: Could not prepare query: $sql_1. " . print_r($sqlite-
>errorInfo());
}

// close connection
unset($mysql);
unset($sqlite);
?>

Chapter 8: Working with XML
 1. The two methods of parsing an XML document are the Simple API for XML (SAX)

and the Document Object Model (DOM). SAX steps through the document, calling
different user-defined functions to process different types of nodes. DOM reads the
entire document into memory, generates a tree structure to represent it, and provides
methods to move through the tree.

 2. A well-formed XML document has a single root element, correctly nested elements,
and valid element and attribute syntax.

 3. The relevant PHP code is

<?php
// load XML file
$xml = simplexml_load_file('email.xml') or die ("Unable to load
XML!");

// loop over XML <person> elements
// get <email> child nodes and print
foreach ($xml->person as $p) {
 echo $p->email . "\n";
}
?>

 4. The relevant PHP code is
<?php
// initialize new DOMDocument
$doc = new DOMDocument();

 436 PHP: A Beginner’s Guide

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('tree.xml');

// output: 'John'
echo $doc->firstChild->childNodes->item(2)->childNodes
 ->item(2)->childNodes->item(0)->childNodes->item(0)
 ->childNodes->item(0)->nodeValue;

// output: 'John'
echo $doc->getElementsByTagName('name')->item(0)->nodeValue;

// output: 'John'
echo $doc->getElementsByTagName('person')->item(4)
 ->childNodes->item(0)->nodeValue;
?>

 5. The relevant PHP code is
<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get all elements
// print size of collection
echo $doc->getElementsByTagName('*')->length . ' element(s) found.';
?>

 6. The relevant PHP code is
<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// loop over XML <book> elements
// increase each rating by 1
foreach ($xml->book as $b) {
 $b['rating'] = $b['rating'] + 1;
}

// print the revised XML
header('Content-Type: text/xml');
echo $xml->asXML();
?>

 Appendix B: Answers to Self Test 437

 7. The relevant PHP code is

<?php
// connect to database
try {
 $pdo = new PDO('mysql:dbname=test;host=localhost', 'user', 'pass');
} catch (PDOException $e) {
 echo "Error: Could not connect. " . $e->getMessage();
}

// set error mode
$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {
 // execute SELECT query
 $sql = "SELECT * FROM countries";
 $stmt = $pdo->query($sql);
 if ($stmt->rowCount() > 0) {
 // create a new DOM tree
 $doc = new DOMDocument('1.0');

 // create and attach root element <resultset>
 $root = $doc->createElement('resultset');
 $resultset = $doc->appendChild($root);

 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 // loop over result set
 // set up <record> element for each row
 $record = $doc->createElement('record');
 $resultset->appendChild($record);

 foreach ($row as $name => $value) {
 // attach fields and values as <field>value</field>
 $field = $doc->createElement($name);
 $text = $doc->createTextNode($value);
 $record->appendChild($field);
 $field->appendChild($text);
 }
 }
 }
} catch (Exception $e) {
 echo "Error: Could not execute query \"$sql\". " . $e->getMessage();
 unset($pdo);
}

// close connection
// output XML string
unset($pdo);
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

 438 PHP: A Beginner’s Guide

Chapter 9: Working with Cookies,
Sessions, and Headers
 1. With a cookie, user-specific information is stored on the user’s system in a text file. With

a session, this information is stored on the server in a text file or SQL database, and only
a unique identifier referencing this information is stored on the user’s system as a cookie.

 2. To remove a previously set cookie, set the cookie’s expiry date to a date in the past.

 3. To register a session variable, save it as a key-value pair in the special $_SESSION
associative array. This associative array is available in the global scope, so the session
variable can then be accessed on any other page by referencing $_SESSION[key],
after calling session_start().

 4. HTTP headers must be sent before any output is generated by the script. Because the
example script generates one line of output before sending the 'Location:' header, it
will generate a fatal error.

 5. The relevant PHP code is

 A. Within the same session:
<?php
session_start();
if (!isset($_SESSION['count'])) {
 $_SESSION['count'] = 0;
}
echo 'You have visited this page ' . $_SESSION['count'] . ' time(s).';
$_SESSION['count']++;
?>

 B. Over different sessions:
<?php
if (!isset($_COOKIE['count'])) {
 $count = 0;
} else {
 $count = $_COOKIE['count'];
}
setcookie('count', ($count+1), mktime()+2592000, '/');
echo 'You have visited this page ' . $count . ' time(s).';
?>

 6. The relevant PHP code is
<?php
session_start();
session_destroy();
header('Location:login.php');
?>

 Appendix B: Answers to Self Test 439

Chapter 10: Handling Errors
 1. The exception-based model:

● Allows for different treatment of different error types.

● Produces cleaner, simpler code.

● Forces better analysis of error conditions.

● Allows for handling of unforeseen errors.

 2. Fatal errors, startup errors, compile-time errors, and run-time parsing errors.

 3. An output buffer is a temporary storage area in memory for script output. It is useful
because it provides a “catchment area” for script output to be preprocessed before the
user sees it. It comes in handy when working with PHP functions like setcookie(),
header(), and session_start(), because it allows these functions to be invoked
even after the script has generated some output.

The following example illustrates:

<?php
// open output buffer
ob_start();

// send some output
// this gets stored in the buffer
echo 'Here is some output';

// send some headers
header('Content-Type: text/plain');
session_start();

// now display the output
ob_end_flush();
?>

 4. For the first snippet, PHP’s default error handler. For the second, handlerA()

 5. The relevant PHP code is

<?php
class Warning extends Exception { }
class Notice extends Exception { }
error_reporting(E_ALL);
set_error_handler('myHandler');

// custom error handler
function myHandler($type, $msg, $file, $line, $context) {

 440 PHP: A Beginner’s Guide

 switch($type) {
 case E_NOTICE:
 throw new Notice($msg);
 break;

 case E_WARNING:
 throw new Warning($msg);
 break;

 }
}

try {
 echo 45/0;
} catch (Notice $e) {
 echo 'NOTICE: ' . $e->getMessage();
} catch (Warning $e) {
 echo 'WARNING: ' . $e->getMessage();
} catch (Exception $e) {
 echo 'ERROR: ' . $e->getMessage();
}
?>

 6. The relevant PHP code is

<?php
// define exception
class OtherException extends Exception { }
class YetAnotherException extends Exception { }

// set custom handler
set_exception_handler('myHandler');

// custom error handler
function myHandler($e) {
 $body = "Uncaught exception: " . $e->getMessage() . " at line " .
$e->getLine() . " of " . $e->getFile();
 @mail('admin@domain', 'Uncaught exception', $body, 'From:
bounce@domain');
}

try {
 throw new OtherException('Catch me if you can.');
} catch (YetAnotherException $e) {
 echo $e->getMessage();
}
?>

 Appendix B: Answers to Self Test 441

Chapter 11: Securing PHP
 1. An SQL injection attack involves attackers manipulating your application database

using input containing SQL statements. Proper input sanitization and validation can
help prevent such an attack.

 A cross-site scripting attack involves attackers embedding rogue JavaScript or HTML
code into your Web pages. Output sanitization can help prevent such an attack.

 A session hijack involves attackers intercepting and using a client session to gain access
and privileges not normally available to them. Adding additional client-specific tokens
to your session security system can help prevent such an attack.

 2. The relevant PHP code is

<?php
$str = '<div>
 <form action="http://www.evildomain.com/evilscript.php">
 <input type="hidden" name="op" value="add" />
 <input type="hidden" name="user" value="me" />
 <input type="hidden" name="pass" value="guessme" />
 </form>
';

// using strip_tags()
$sanitized['str'] = strip_tags($str);

// using htmlentities()
$sanitized['str'] = htmlentities($str);
?>

 3. The relevant PHP code is

<?php
// function to validate a U.S. postal code
// test if input is of the form ddddd-dddd
function validatePostalCode($str) {
 return preg_match("/^\d{5}(-\d{4})?$/" ,$str);
}
?>

 4. Error messages can contain valuable information about your application’s database
schema, file naming conventions, file system structures, and data persistence
mechanisms. This information could be used by attackers to find vulnerable areas
in your application and craft more focused attacks. For this reason, error display in
production environments should be disabled (although errors should still be logged to a
separate file or database).

 442 PHP: A Beginner’s Guide

 5. The following table lists what each function does:

Function What It Does
ctype_alnum() Tests if input contains only alphabetic and numeric characters

addslashes() Escapes special characters in input with slashes

filter_var() Tests if input matches a specified pattern

htmlentities() Automatically converts special characters in input to the
corresponding HTML entity

sqlite_escape_string() Escapes input with quotes before inserting it into an SQLite
database

preg_match() Tests if input matches a specified regular expression

strval() Returns the string value of input

Chapter 12: Extending PHP
 1. PEAR packages consist of PHP classes that can be directly loaded and used in a PHP

script. PECL packages consist of language modules that must be compiled into the PHP
engine.

 2. The steps to install a PECL extension in a Windows development environment are

 A. Visit the PECL4WIN Web site and download a precompiled .DLL file for the extension.

 B. Copy this precompiled file into PHP’s extension directory.

 C. Activate the extension by placing a line such as extension=ext.dll in the
php.ini configuration file.

 D. Restart the Web server to load the new extension.

 3. The relevant PHP code is
<?php
// create object
require_once 'Net/POP3.php';
$pop3 =& new Net_POP3();

// connect to host
if(PEAR::isError($ret = $pop3->connect($host, $port))){
 die($ret->getMessage());
}

// log in
if(PEAR::isError($ret = $pop3->login($user, $pass, 'USER'))){
 die($ret->getMessage());
}

 Appendix B: Answers to Self Test 443

// get number of messages and mailbox size
echo $pop3->numMsg() . ' message(s) in mailbox, ' . $pop3->getSize() .
' bytes <p/>';

// get content of most recent message
if ($pop3->numMsg() > 0) {
 echo '<pre>' . $pop3->getMsg($pop3->numMsg()) . '</pre>';
}

// disconnect
$pop3->disconnect();
?>

 4. The relevant PHP code is
<?php
// initialize an iterator
// pass it the directory to be processed
$iterator = new RecursiveIteratorIterator(new RecursiveDirectoryIterator
("music/"));

// iterate over the directory
// get ID3 tag information for each file
foreach ($iterator as $key=>$value) {
 $tag = id3_get_tag(realpath($key));
 echo trim($tag['artist']) . ' - ' . trim($tag['title']);
 echo "
";
}
?>

This page intentionally left blank

445

Index

$ (dollar) symbol, 87
$_GET variable, 41, 89
$_POST variable, 40–41, 89
&& operator, 59
// (backslashes), 15
| | operator, 59
= (assignment operator), 23
=== operator, 33
=> connector, 88
? (question mark), 52

A
abs() function, 74
addition-assignment operator, 34
address.xml, 258
addslashes() function, 71
age calculator, 116–118
agecalc.php, 116–117
applications, samples, 16–18
app.php, 325–327
arguments, 123, 124–125

dynamic argument lists, 127–128
setting default argument values, 126–127

arithmetic operators, 30–31
array functions, 100

adding and removing array elements, 103
comparing arrays, 107
converting between strings and arrays,

100–101
extracting array segments, 102
merging arrays, 106
randomizing and reversing arrays, 104
removing duplicate array elements,

103–104
searching arrays, 104–105
sorting arrays, 105–106

array_diff() function, 107
array_intersect() function, 107
array_key_exists() function, 104–105
array_merge() function, 106
array_pop() function, 103
array_push() function, 103
array_reverse() function, 104
array_shift() function, 103
array_slice() function, 102
array_unique() function, 103–104
array_unshift() function, 103
ArrayIterator, 94–95

Copyright © 2009 by The McGraw-Hill Companies. Click here for terms of use.

 446 PHP: A Beginner’s Guide

arrays, 86–87
assigning values, 87–89
associative, 87
automatically assigning the next available

index, 88
limits on elements included in, 91
modifying array values, 89–90
nesting, 91–92
processing with loops and iterators,

92–96
removing elements from, 90
retrieving array size, 90–91
using with forms, 96–99

art.php, 335–338
asort() function, 105–106
assigning scouts to tents, 57–58
assignment operators, 23, 34–35
associative arrays, 87
auto-increment and auto-decrement operators,

35–36
averaging the grades of a class, 95–96

B
backslashes, 15
binary files, reading and writing, 164
bindec() function, 75
blank lines, 11
books.php, 368–371
Boolean data type, 26

C
calculus functions, 73–74
car.php, 39–40
case sensitivity, 25, 174
casting variables, 28
catch blocks, 330–332
ceil() function, 73–74
checkdate() function, 114, 367–368
checking prime numbers, 107–110
choose.html, 39
classes, 135

defining and using, 135–138
encrypting and decrypting text, 139–143

extending, 144–147
methods, 135
and objects, 135
properties, 135
reflection API, 138

closedir() function, 170
color

HTML color sampler, 42–44
RGB color combinations, 44

color.html, 42
comments, 12
community support, 6
comparison operators, 32–33, 51
concatenation operators, 31–32
conditional statements, 50

combining, 58–59
if statements, 50–51
if-else statements, 51–52
if-elseif-else statements, 55
switch-case statements, 55–56

configuration directives, 373–375
configuration files

reading and writing, 165–168
reading and writing XML, 284–289
securing, 353–354

configure.php, 165–167, 284–287
config.xml, 287
constants, 29

when to use, 30
constructors, 143–144
converting between number bases, 75
convert.php, 37–38
cookies, 294–295

attributes, 295–296
headers, 296
reading, 297
reading cookies stored on your

system, 296
removing, 298
saving and restoring user preferences,

298–301
setting, 297

copy() function, 176
count() function, 90–91
cross-site scripting attacks, 351
ctype_alpha() function, 361–362
ctype_digit() function, 360

 Index 447

D
Data Control Language (DCL), 190
Data Definition Language (DDL), 190
Data Manipulation Language (DML), 190
data types, 26

functions to test variable data
types, 29

MySQL, 193
setting and checking variable data types,

27–29
SQLite, 218

databases, 186–187
adding employees, 209–216
adding or modifying data, 205–208
adding tables, 192–193
CREATE DATABASE statement, 192
CREATE TABLE statement,

192–193
creating and populating a database,

191–200
encrypted passwords, 246
error handling, 209
field types, 200
fields, 187
foreign keys, 188–189
joining tables, 198–199
normalization, 189
overview, 187–188
prepared statements, 206–208,

239–240
primary key, 188
queries, 188, 194–196
records, 187, 193–194, 199–200
relationships, 188–189
result sets, 188, 196–197
securing database access, 354–355
switching to a different database,

246–247
tables, 187, 198–199
wildcards, 197–198, 200
See also MySQLi extension; PHP Data

Objects (PDO) extension; SQL;
SQLite extension

date() function, 112–113, 115
dates and times

calculating GMT time, 115
checking date validity, 114

converting strings to timestamps,
114–115

formatting, 112–113
functions, 113
generating, 111–112
mapping day and month numbers to

names, 115
UNIX timestamp, 111

debugging errors, 342–347
See also error handling

decbin() function, 75
dechex() function, 75
decoct() function, 75
decrypting and encrypting text, 139–143
define() function, 29
delimiters, 7
destructors, 143–144
development

basic concepts, 7–9
components, 9

die() function, 81
directories

checking if a directory exists,
172–173

creating, 175–176
file and directory functions, 172
processing, 169–171
removing, 177–179
renaming, 176–177

display.php, 42–43
dollar ($) symbol, 87
dollars-to-euros converter, 37–38
DOM extension, 270

altering element and attribute values,
279–280

attributes, 275–276
converting between DOM and

SimpleXML, 283–284
creating new XML documents,

281–283
elements, 270–275
empty text nodes, 272
recursively processing an XML document

tree, 276–279
double quotes, 16
doubles, 26
do-while loops, 60–61
dynamic argument lists, 127–128

 448 PHP: A Beginner’s Guide

E
ease of use, 6
e-mail, adding a custom header to messages

through PHP, 81
e-mail addresses, validating, 365–367
employee.php, 210–211
empty() function, 66–67, 80
encrypted passwords, 246
encrypting and decrypting text, 139–143
error categories, 320
error handling, 12–13, 209, 225, 240, 318–320

custom error handlers, 322–324, 330
debugging errors, 342–347
generating a clean error page, 325–329
logging errors, 341–342
restoring default error handling, 325

error levels, 320
E_STRICT error level, 321–322

error messages, “undefined variable,” 25
error reporting, controlling, 321
escape sequences, 15, 16
exceptions, 330–333

custom exceptions, 334–335
methods of the Exception object, 331
uncaught exceptions generating fatal

errors, 335
validating form input, 335–340

exec() method, 238
exp() function, 74
explode() function, 101
extensibility, 144–147
Extensible Markup Language. See XML
external files, reading and evaluating, 179
eZ Publish, 18

F
factorial calculator, 64–66
factorial.php, 64–65
fetch() method, 236
fgets() function, 161, 162
file() function, 161
file_exists() function, 164
file_get_contents() function, 160–161,

163–164
file_put_contents() function, 163–164

files
calculating file size, 173
case sensitivity, 174
checking if a file exists, 172–173
copying, 176
file and directory functions, 172
finding the absolute file path, 173–174
removing, 177–179
renaming, 176–177
retrieving file attributes, 174–175

filter_var() function, 366–367
flight-prefs.php, 298–300
floating-point values, 26
floats, 26
flock() function, 164
floor() function, 73–74
fopen() function, 162
for loops, 61–62
foreach loops, 93–94
form input, 39–41

validating, 368–373
format specifiers, 76–77
forms, using arrays with, 96–99
fseek() function, 162
functions

to test variable data types, 29
user-defined functions, 122–131

fwrite() function, 164

G
Gallery, 17
gallery.php, 180–181
getdate() function, 111–112
gettype() function, 28
gmdate() function, 115
grades.php, 95–96
greatest common factor (GCF), calculating,

132–134
Gutmans, Andi, 4

H
headers, 306–308
hexadecimal notation, 27
hexdec() function, 75
horse.php script, 10

 Index 449

HTML
mixing PHP with, 13–15
strings, 71–72

HTML color sampler, 42–44
html_entity_decode() function, 72
htmlentities() function, 72
htmlspecialchars() function, 72
htmlspecialchars_decode() function, 72
HTTP, 294

headers, 306–308

I
if statements, 50–51
if-else statements, 51–52
if-elseif-else statements, 55
implode() function, 101
in_array() function, 104
include() function, 179
input, sanitizing, 350–353
integers, 26

limits on, 31
interpreted languagse, 7
inventory.xml, 260, 276–277
is_numeric() function, 359
iterators

ArrayIterator, 93–94
iterators, 94–95

J
jumbler.php, 139–142

K
key() function, 95
keys, 87
ksort() function, 106

L
LAMP

framework, 8
platform, 9

least common multiple (LCM), calculating,
132–134

Lerdorf, Rasmus, 4
library.xml, 256
list.php, 229–231
local files, reading, 160–161
log() function, 74
logging errors, 341–342
logical operators, 33–34, 59
login form, 241–245, 308–313
login.php, 242–243, 309–310
loops, 59–60

combining, 62–63
do-while loops, 60–61
foreach loops, 93–94
interrupting and skipping, 63–64
for loops, 61–62
processing arrays with, 92–96
while loops, 60

M
mail() function, 80–81
main.php, 311–312
Mantis, 18
mark.php, 232–233
matching patterns, 362–365
max() function, 101–102
member registration form, 77–81
metacharacters, 362–363
methods, 135
min() function, 101–102
mixing PHP with HTML, 13–15
mkdir() function, 175–176
mktime() function, 111
MySQL data types, 193
MySQLi extension, 200–201

adding employees to a database, 209–216
adding or modifying data, 205–208
error handling, 209
prepared statements, 206–208
retrieving data, 201–205
returning records as arrays and objects,

203–205

N
nesting arrays, 91–92
next() function, 95

 450 PHP: A Beginner’s Guide

normal forms, 189
NULL data type, 26, 27
number ranges, 101–102
number_format() function, 75–76
numeric functions, 73

calculus functions, 73–74
converting between number bases, 75
formatting numbers, 75–77
generating random numbers, 74–75

O
objects, 135

encrypting and decrypting text, 139–143
reflection API, 138

octal notation, 27
octdec() function, 75
oddeven.php, 53–54
OOP

constructors and destructors, 143–144
extending classes, 144–147
generating form selection lists, 148–153
visibility settings, 147–148

opcode cache, 6
open source, 6
opendir() function, 170
operators, 30

addition-assignment, 34
arithmetic, 30–31
assignment, 23, 34–35
auto-increment and auto-decrement,

35–36
comparison, 32–33, 51
concatenation, 31–32
logical, 33–34
precedence, 36–37
ternary, 52

output, sanitizing, 350–353

P
padding specifiers, 76
passwords, encrypted, 246
pathinfo() function, 174
PDO Extension. See PHP Data Objects (PDO)

extension

PEAR, 6, 378–379
accessing POP3 mailboxes with, 380–383
installing, 379–380

PECL, 6, 384
creating Zip archives, 386–387
installing, 384–386

performance, 5–6
photo gallery, creating, 180–182
PHP

features, 5–7
history of, 4–5
mixing with HTML, 13–15

PHP Data Objects (PDO) extension, 186,
200–201, 234

adding and modifying data, 237–240
building a login form, 241–245
calculating the number of records in a

result set, 236
common DSN strings, 235
error handling, 240
prepared statements, 239–240
retrieving data, 234–237

PHP Extension and Application Repository.
See PEAR

PHP Extension Community Library. See PECL
PHP Hypertext Preprocessor. See PHP
PHP Security Guide, 355, 356
phpBB, 17
PHP/FI, 4
phpinfo() command, 385
phpMyAdmin, 17
pizza.html, 98
pizza.php, 98
PoMMo, 17
pop3.php, 380–382
portability, 6
pow() function, 74
precedence rules, 36–37
precision specifiers, 76
preg_match() function, 364
prepared statements, 206–208, 239–240
primes.php, 107–109
print_r() function, 92
printDir() function, 171
printf() function, 76–77
printValues() function, 131
processing directories, 169–171
properties, 135

 Index 451

Q
question mark, 52
quotes, 16

R
rand() function, 74–75
random numbers, 74–75
range() function, 101
readBlock() function, 162–163
readdir() function, 170, 171
reading files

binary files, 164
configuration files, 165–168
external files, 179
local files, 160–161
remote files, 161–162
specific segments of a file,

162–163
realpath() function, 173
recursive functions, 129–131
reflection API, 138
register.html, 77–78
register.php, 79–80
regular expressions, 362–365
relational databases, 187
remote files, reading, 161–162
rename() function, 176–177
require() function, 179
required fields, 356–358
return statements, 123, 124–125
rewind() function, 95
rmdir() function, 177–179
RSS feeds, reading, 266–269

S
sample applications, 16–18
sanitizing input and output, 350–353
save.php, 226–228
scandir() function, 170
scientific notation, 27
script

backslashes, 15
blank lines, 12

comments, 12
handling errors, 12–13
quotes, 16
semi-colon, 11
understanding, 11–12
writing and running your first

script, 10
security

configuration files, 353–354
configuring PHP security, 373–375
database access, 354–355
dates, 367–368
numbers, 358–360
sanitizing input and output,

350–353
sessions, 355–356
strings, 361–367
validating form input, 368–373
validating user input, 356–358

selecting pizza toppings, 98–99
selection lists, 148–153
select.php, 152–153
self-test answers

Chapter 1, 390
Chapter 2, 390–392
Chapter 3, 392–394
Chapter 4, 394–395
Chapter 5, 395–397
Chapter 6, 398–400
Chapter 7, 400–405
Chapter 8, 405–407
Chapter 9, 408
Chapter 10, 409–410
Chapter 11, 411–412
Chapter 12, 412–413

self-tests
Chapter 1, 19–20
Chapter 2, 45–47
Chapter 3, 83
Chapter 4, 119–120
Chapter 5, 154–155
Chapter 6, 183–184
Chapter 7, 248
Chapter 8, 290–291
Chapter 9, 314
Chapter 10, 348
Chapter 11, 376
Chapter 12, 388

 452 PHP: A Beginner’s Guide

semi-colon, omitting, 11
sessions, 302

creating sessions and session variables,
302–303

removing sessions and session
variables, 304

saving session variables, 303–304
securing, 355–356
tracking previous visits to a page,

305–306
Shiflett, Chris, 355
shuffle() function, 104
SimpleXML extension, 257

adding new elements and attributes,
263–264

altering element and attribute values, 262
attributes, 259–260
converting between DOM and

SimpleXML, 283–284
converting XML to SQL, 260–261
creating new XML documents, 264–266
elements, 257–259
reading RSS feeds, 266–269
See also XML

single quotes, 16
Smarty, 18
sort() function, 105
sprintf() function, 76–77
SQL, 187

converting XML to SQL, 260–261
SQL statements, 189–190
support for, 191
syntax for common statements, 190

SQL injection attacks, 351
SQLite extension, 216–220

adding or modifying data, 224–225
creating a personal to-do list, 226–234
data types, 218
error handling, 225
retrieving data, 220–224
retrieving records as arrays and objects,

221–224
switching to a different database,

246–247
Squirrelmail, 18
str_repeat() function, 68
str_replace() function, 70
str_word_count() function, 70

strcmp() function, 70
string data type, 26
string functions, 66, 67

checking for empty strings, 66–67
comparing strings, 70
counting strings, 70
formatting, 70–71
HTML strings, 71–72
replacing strings, 70
reversing and repeating strings, 68
security, 361–367
substrings, 68–69

strip_tags() function, 72
stripslashes() function, 72
strlen() function, 68, 361
strtolower() function, 71
strtotime() function, 114–115
strtoupper() function, 71
strval() function, 359–360
substr() function, 68–69
Suraski, Zeev, 4
switch-case statements, 55–56

T
tags, 7
tent.php, 57–58
ternary operator, 52
testing odd and even numbers, 53–54
third-party application support, 6–7
times and dates

calculating GMT time, 115
checking date validity, 114
converting strings to timestamps,

114–115
formatting, 112–113
functions, 113
generating, 111–112
mapping day and month numbers to

names, 115
UNIX timestamp, 111

to-do list, 226–234
tracking previous visits to a page, 305–306
trim() function, 70–71
try blocks, 330–331
try-catch blocks, 330
type juggling, 27–29

 Index 453

U
ucfirst() function, 71
ucwords() function, 71
underscore character, 87
UNIX timestamp, 111
unlink() function, 177
unset() function, 24–25, 28, 90
URLs, validating, 365–367
user input, validating, 356–358
user-defined functions, 122–123

arguments, 123, 124–125
calculating GCF and LCM, 132–134
creating and invoking, 123–124
dynamic argument lists, 127–128
function body, 123
recursive functions, 129–131
return values, 123, 124–125
setting default argument values, 126–127
variable scope, 128–129

user-defined strings, 87

V
valid() function, 95
validating dates, 367–368
validating e-mail addresses and URLs, 365–367
validating form input, 335–340, 368–373
validating user input, 356–358
var_dump() function, 25–26, 28, 92
variable scope, 128–129
variable-length argument lists, 127–128
variables

assigning values to, 23
case sensitivity, 25
casting, 28
comparing, 32–33
data types, 26–29
defined, 22
destroying, 24–25
inspecting contents, 25–26
manipulating with operators, 30–37
naming conventions, 22–23
naming dynamically, 24
“undefined variable” error message, 25
when to use, 30

visits.php, 305

W
while loops, 60
Wordpress, 18
writing files, 163–164

binary files, 164
configuration files, 165–168

X
XML

anatomy of an XML document, 251–253
attributes, 252, 255
basic concepts, 250–251
character data, 252
converting XML to SQL, 260–261
creating XML documents, 255–257
document element, 252
document prolog, 252
elements, 252, 253, 255
Encryption, 255
MathML, 255
parsing methods, 253–254
programs to use with XML, 251
Query, 255
reading and writing configuration files,

284–289
root element, 252
Schemas, 254
Signature, 255
SOAP, 255
SVG, 255
valid documents, 253
well-formed documents, 253
XForms, 254
XHTML, 254
XLink, 254
XPointer, 254
XSL, 254
See also DOM extension; SimpleXML

extension
xml2sql.php, 261

Z
Zip archives, 386–387
zip.php, 386–387

	Copyright © 2009 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Foreword:
	Acknowledgments:
	Introduction:
	Part I: Understanding PHP Basics:
	1 Introducing PHP:
	History:
	Unique Features:
	Basic Development Concepts:
	Creating Your First PHP Script:
	Try This 1-1: Mixing PHP with HTML:
	Sample Applications:
	2 Using Variables and Operators:
	Storing Data in Variables:
	Understanding PHP€s Data Types:
	Setting and Checking Variable Data Types:
	Using Constants:
	Manipulating Variables with Operators:
	Try This 2-1: Building a Dollars-to-Euros Converter:
	Handling Form Input:
	Try This 2-2: Building an Interactive HTML Color Sampler:
	Summary:
	3 Controlling Program Flow:
	Writing Simple Conditional Statements:
	Try This 3-1: Testing Odd and Even Numbers:
	Writing More Complex Conditional Statements:
	Try This 3-2: Assigning Boy Scouts to Tents:
	Repeating Actions with Loops:
	Try This 3-3: Building a Factorial Calculator:
	Working with String and Numeric Functions:
	Try This 3-4: Processing a Member Registration Form:
	4 Working with Arrays:
	Storing Data in Arrays:
	Processing Arrays with Loops and Iterators:
	Try This 4-1: Averaging the Grades of a Class:
	Using Arrays with Forms:
	Try This 4-2: Selecting Pizza Toppings:
	Working with Array Functions:
	Try This 4-3: Checking Prime Numbers:
	Working with Dates and Times:
	Try This 4-4: Building an Age Calculator:
	5 Using Functions and Classes:
	Creating User-Defined Functions:
	Try This 5-1: Calculating GCF and LCM:
	Creating Classes:
	Try This 5-2: Encrypting and Decrypting Text:
	Using Advanced OOP Concepts:
	Try This 5-3: Generating Form Selection Lists:
	Part II: Working with Data from Other Sources:
	6 Working with Files and Directories:
	Reading Files:
	Writing Files:
	Try This 6-1: Reading and Writing Configuration Files:
	Processing Directories:
	Performing Other File and Directory Operations:
	Try This 6-2: Creating a Photo Gallery:
	7 Working with Databases and SQL:
	Introducing Databases and SQL:
	Try This 7-1: Creating and Populating a Database:
	Using PHP€s MySQLi Extension:
	Adding or Modifying Data:
	Handling Errors:
	Try This 7-2: Adding Employees to a Database:
	Using PHP€s SQLite Extension:
	Try This 7-3: Creating a Personal To-Do List:
	Using PHP€s PDO Extension:
	Try This 7-4: Building a Login Form:
	8 Working with XML:
	Introducing XML:
	Try This 8-1: Creating an XML Document:
	Using PHP€s SimpleXML Extension:
	Try This 8-2: Converting XML to SQL:
	Try This 8-3: Reading RSS Feeds:
	Using PHP€s DOM Extension:
	Try This 8-4: Recursively Processing an XML Document Tree:
	Try This 8-5: Reading and Writing XML Configuration Files:
	9 Working with Cookies, Sessions, and Headers:
	Working with Cookies:
	Try This 9-1: Saving and Restoring User Preferences:
	Working with Sessions:
	Try This 9-2: Tracking Previous Visits to a Page:
	Using HTTP Headers:
	Try This 9-3: Building a Better Login Form:
	Part III: Security and Troubleshooting:
	10 Handling Errors:
	Handling Script Errors:
	Try This 10-1: Generating a Clean Error Page:
	Using Exceptions:
	Try This 10-2: Validating Form Input:
	Logging Errors:
	Debugging Errors:
	11 Securing PHP:
	Sanitizing Input and Output:
	Securing Data:
	Validating User Input:
	Try This 11-1: Validating Form Input:
	Configuring PHP Security:
	12 Extending PHP:
	Using PEAR:
	Try This 12-1: Accessing POP3 Mailboxes with PEAR:
	Using PECL:
	Try This 12-2: Creating Zip Archives with PECL:
	Part IV: Appendixes:
	A: Installing and Configuring Required Software:
	Obtaining the Software:
	Installing and Configuring the Software:
	Testing the Software:
	Performing Post-Installation Steps:
	B: Answers to Self Test:
	Index:

