

	
Python	3

	
	The	Ultimate	Beginners	Guide	for	Python	3

Programming
	

Preface
You	have	taken	a	crucial	step	in	enriching	yourself.	Learning	a	new	language	is	always
difficult.	More	so,	if	it ’ s	a	computer	programming	language.	You	have	to	start	from
scratch	and	slowly	learn	the	basics.

However,	the	reward	for	your	effort	after	your	activity	would	be	numerous.	You	can
compare	this	experience	to	learning	how	to	ride	the	bicycle.	You	may	suffer	minor
accidents,	but	you	will	benefit	from	it	eventually.

I	have	simplified	the	language	and	the	explanations	in	this	book	-	as	much	as	possible	-	to
help	you,	the	beginner,	grasp	the	basics	of	Python	3	programming.	There	are	several
examples,	as	well,	to	allow	you	to	assimilate	the	concept.

Also,	your	correct	mental	attitude	and	optimism	can	help	in	providing	you	with	a	fun	and
fruitful	learning	experience.

Thanks	again	for	downloading	this	book,	I	hope	you	enjoy	it!

	Copyright	2017	by	Steve	Tale	All	rights	reserved.

	

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	 and	 issue	 covered.	 The	 publication	 is	 sold	with	 the	 idea	 that	 the	 publisher	 is	 not
required	 to	 render	 accounting,	 officially	 permitted,	 or	 otherwise,	 qualified	 services.	 If
advice	is	necessary,	 legal	or	professional,	a	practiced	individual	 in	 the	profession	should
be	ordered.

	

-	 From	 a	 Declaration	 of	 Principles	 which	 was	 accepted	 and	 approved	 equally	 by	 a
Committee	 of	 the	 American	 Bar	 Association	 and	 a	 Committee	 of	 Publishers	 and
Associations.

	

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

	

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

	

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

	

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All	 trademarks	 and	 brands
within	 this	 book	 are	 for	 clarifying	 purposes	 only	 and	 are	 the	 owned	 by	 the	 owners
themselves,	not	affiliated	with	this	document.

Table	of	content

	

Contents
Chapter	1:		Introduction	to	Python	3

How	to	Install	Python	3

Steps	in	running	Python	on	Windows:

Chapter	2:		Differences	of	Python	3	from	Python	2

Features	of	Python	3	that	are	different	from	Python	2

Name	Changes

Chapter	3:		Most	Common	Python	3	Data	Types

Python	3	data	types

Operations	for	sets

Chapter	4:		Using	Python	3	as	a	Calculator

Solving	simple	math	problems

Solving	for	the	square	of	numbers

Comparison	operations

Numeric	operations

Chapter	5:	Variables	in	Python	3

Steps	for	creating	variables

Storing	variables	in	other	variables

Local	variables

Illegal	names	for	variables

Chapter	6:		Manipulating	Strings

Escaping	quotes

Concatenating	strings

Creating	new	strings

Indexing	strings

Slicing	strings

Determining	the	length	of	the	string

Updating	strings

Chapter	7:		Modifying	Python	3	Lists

Indexing	lists

Methods	for	list	objects

Appending	a	list

Inserting	an	item	in	a	list

Counting	the	number	of	times	an	item	appears	in	a	list

Copying	a	list

Sorting	a	list

Extending	a	list

Removing	items	from	a	list

Chapter	8:		Using	Lists	as	Queues	and	Stacks

Lists	as	queues

Lists	as	stacks

List	comprehension

Parts	of	list	comprehension

Chapter	9:		Tuples	Definition	and	Purposes

Purposes	of	tuples

Updating	tuples

Slicing	indexes	of	tuples

Most	common	built-in	tuple	functions

Most	common	basic	tuple	operations

Chapter	10:		File	Management

Basic	codes

Reading	a	file

Closing	files

Writing	into	a	file

Creating	a	file

Pickle	module

Shelve	module

Reading	and	writing	binary	data

Struct	module

Chapter	11:		Debugging	and	Profiling

Debuggers

Most	common	debugger	commands

Profilers

Stats	Class

Chapter	12:		The	Significance	of	Python	Dictionaries

Maps

Creating	an	empty	dictionary

Deleting	an	entry	from	the	dictionary

Accessing	and	sorting	keys	from	the	dictionary

Finding	specific	keys

Chapter	13:		More	about	Loops

Using	loops	to	enumerate	values

Using	loops	to	retrieve	keys(k)	and	values(v)	from	dictionaries

Using	loops	simultaneously	over	two	or	more	sequences

Using	loops	with	‘while’	statements

Chapter	14:		Using	Control	Flow	Statements

range	()	function	statements

range	(),	len	()	statements

For	statements

if,	elif,	if-else	statements

break	and	continue	statements

Chapter	15:		Defining	Functions

General	code	syntax

Keyword	arguments

Default	argument	values

Arbitrary	argument	lists

Defining	or	creating	your	own	functions

Chapter	16:		Lambda	Function	in	Python	3

General	statement	for	lambda	function

Filter	function

Reduce	function

Chapter	17:		Modules	and	Packages	and	Their	Functions

What	are	modules?

What	are	packages?

Using	modules

Two	ways	in	importing	packages

Dates	and	Time

Classes	related	to	datetime	module

Time	module

Most	common	methods	used	for	time	module

Basic	codes	and	their	meanings

Chapter	18:		Creating	Input	Programs	in	Python

Steps	in	creating	the	input	program

Sample	codes

Python	coding	style

Chapter	19:		Practice	Questions	on	Coding

Chapter	20:		Answers	to	Practice	Questions	on	Coding

Chapter	21:		Basic	Tips	to	Remember	in	Python	3	Programming

Conclusion

Thank	you	again	for	reading	this	book!

Bonus:	Preview	Of	Hacking	with	Python

	

Chapter	1:		Introduction	to	Python	3
	
Python	is	a	programming	language	used	for	interactive,	portable	and	flexible	programs.	It
hasa	syntax	that	can	easily	interface	with	other	systems.		It ’ s	object-oriented,	meaning,	it
focuses	on	object-oriented	data,	modules	and	classes.	You	can	use	it	for	general	purposes
in	 programming.	 It	 has	 also	 a	 broad	 range	 of	 standard	 library	 that	 allows	 you	 to	work
quickly	and	more	reliably.

The	 first	 versions	 of	 Python	 are	 the	 2x	 series,	 which	 is	 still	 very	 useful	 even	with	 the
advent	 of	 the	 3x	 series,	 because	 its	 features	 are	 compatible	with	more	 applications	 and
systems.	 Because	 of	 some	 updates,	 the	 Python	 3	 series	 is	 still	 not	 accepted	 by	 other
devices.	There	are	some	systems	that	are	not	adjusted	to	Python	3.

Nevertheless,	Python	3	is	the	latest	series	of	the	Python	programming	language.	Just	like
Python	 2,	 it ’ s	 easier	 to	 learn	 than	most	 programming	 languages	 because	 its	 syntax	 is
clear	and	simple	and	not	difficult,	unlike	the	statically	typed	languages.

Python	has	also	an	interactive	interpreter,	such	as	IDLE	to	allow	learners	to	code	quickly
and	check	-at	the	moment	-	if	their	syntaxes	are	correct.

For	this	book,	we	will	be	focusing	on	the	Python	3	series.

	

How	to	Install	Python	3
	

You	 can	 easily	 install	 Python	 3,	 by	 visiting	 directly	 the	 Python	 official	 website,
www.python.org	and	download	from	there.

Find	the	corresponding	installer	to	your	device.	Click	download,	then	click	Save	File,	and
install	 your	 downloaded	 Python	 3	 in	 your	 computer.	 Be	 sure	 to	 remember	 where	 you
stored	it.

Click	on	your	saved	Python	3,	and	then	Run	it.	The	program	itself	will	guide	you	through
your	installation.

After	installation,	you	can	open	now	the	program	to	start	using	it.	Choose	the	interpreter
option	with	the	GUI	(Graphical	User	Interface).

This	will	open	a	shell,	where	you	can	start	typing	your	codes.	The	shell	is	a	small,	square
box,	where	you	can	input	your	Python	statements.

Some	computers	come	with	an	already	installed	Python	programming	language.	You	can
check	if	Python	is	installed	in	your	computer	or	device	through	your	search	box.

	

Steps	in	running	Python	on	Windows:
	

Step	#1	–	Start	your	interpreter

Before	you	can	execute	or	run	commands,	you	must	first	set	up	your	Python	interpreter.
You	 can	 quickly	 access	 your	 Python	 by	 typing	 Python	 in	 your	 command	window.	You
could	also	type	the	path	url	of	your	Python	file	directly.

	

Step	#2	–	Enter	your	commands

After	the	interpreter	shell	appears,	the	prompt	will	start	blinking.	These	are	three	arrows
found	at	 the	left	upper	hand	of	 the	shell.	You	can	now	start	 typing	your	commands,	and
then	wait	for	the	interpreter	to	compile	and	execute	them.	The	first	statement	is	executed
first	and	then	the	rest	follows	in	chronological	order.

	

Step	#3	–	Save	needed	files

You	can	start	saving	your	Python	files,	after	you	have	created	them.	The	Python	shell	will
not	save	your	data,	unless	you	purposely	save	them	as	 .py	files.	Double	check	that	your
files	are	.py	files	before	closing	your	shell.

	

Reminders:

The	 prompt,	 three	 arrows	 >>>,	 will	 indicate	 that	 you,	 as	 the	 user,	 has	 to	 input
something.	As	soon	as	you	press ‘ enter ’ ,	the	return	statement	appears,	so	use	the
editor	instead.

	

The	Python	interpreter	has	an	essential	role	in	interpreting	your	data.	If	your	syntax
is	incorrect,	it	will	return	an	error,	and	indicate	what	error	was	committed.

	

The	hash	tag,	#,	indicates	that	the	statement	following	it	is	a	comment,	and	is	not
part	 of	 the	 Python	 statement/code.	 This	 is	 used	 by	 coders	 to	 write	 their
observations	and	notations	for	a	particular	statement.

	

Python	statements	are	usually	enclosed	by	single	or	double	quotes,	and	strings	are
enclosed	in	single	or	double	quotes	too,	EXCEPT	integers	or	numbers.

	

The	items	inside	the	string	are	separated	by	commas.	The	commas	denote	that	they
are	different	from	each	other,	and	must	be	treated	individually.

	

You	 can	 access	 your	 strings	 by	 calling	 out	 their	 file	 names.	 But	 first,	 you	must
assign	variables	to	them,	so	they	can	be	tagged.	With	their	tags,	you	can	promptly
retrieve	them.

	

Working	 on	 your	 Python	 language	 is	 like	 studying	 your	English	 language,	 you	 have	 to
learn	the	correct	grammar,	to	be	able	to	construct	proper	Python	syntaxes.

	

	

	

	

	

Chapter	2:		Differences	of	Python	3	from	Python	2
	
There	are	some	differences	of	Python	2	from	Python	3.	If	you	want	to	know	which	one	is
recommended	 for	 you,	 you	will	 have	 to	 consider	 your	 purpose	 for	 using	 it,	 and	which
among	the	two	Python	versions	can	work	well	with	your	device.

Python	3	is	recommended	because	it	has	solved	the	problems	encountered	in	Python	2.

To	 help	 you	 more	 in	 working	 with	 your	 Python	 3,	 here	 are	 some	 differences	 you	 can
expect.

Features	of	Python	3	that	are	different	from	Python	2
	

1.	 Print	function

	

In	Python	3,	print	 is	a	 function.	So,	when	 the	print	 function	 is	called,	 the	object
must	be	enclosed	in	parentheses.	If	not,	it	will	return	an	error.

	

Example:

	

>>>print	“Hi,	I’m	Dave.”

Syntax	Error:	invalid	syntax

	

You	have	to	use	parentheses	for	the	correct	command	to	be	executed.

	

Example:

	

>>>print	(“Hi,	I’m	Dave.”)

Hi,	I’m	Dave.

	

This	is	not	true	with	Python	2.	Even	without	the	parentheses,	Python	2	will	execute
the	command.	Thus,	you	can	also	use	the	parentheses	in	Python	2,	and	it	will	still
print	 the	 values	 or	 items.	 You	 can	 say	 that	 in	 this	 case,	 Python	 2	 has	 the
advantage,because	it ’ s	not	sensitive	to	the	absence	or	presence	of	the	parentheses.

	

Nonetheless,	Python	3	wins	with	regards	to	shorter	codes,	easier	manipulations	of
data,	and	more	relevant	programs.

	

Example:

	

>>>print	“Hi,	I’m	Dave.”	#This	is	not	enclosed	in	parentheses,	but	Python	2
will	print	it.	See	result	below:

	

Hi,	I’m	Dave.

	

	

2.	 super()

	

You	can	now	call	super()	without	arguments.	This	facilitates	the	process	of	single-
inheritance,	 significantly.	 Python	 has	 this	 significant	 feature	 that ’ s	 a	 huge
advantage	over	Python	2.

	

3.	 Byte	classes/Unicode

	

In	Python	3,	there	are	2	byte	classes	(bytearrays	and	byte),	while	in	Python	2,	there
are	no	byte	types.

	

In	Python	3,	text	and	binary	data	is	used.	This	is	a	change	that	can	confuse	coders.
Although,	 the	 text	 is	Unicode,	 the	 representation	 is	 in	 binary	 data.	 It	may	 seem
laborious,	at	first,	but	 it	becomes	easier	as	you	get	used	to	it.	On	the	other	hand,
Python	2,	uses	a	separate	Unicode	and	an	ASCH	string.

	

4.	 “Look	up”	feature

	

In	 Python	 3,	 the ‘ Look	 up ’	 feature	 operates	 faster	 with	 integers	 than	 that	 of
Python	 2.	 If	 you ’ re	 pressed	 for	 time,	 this	 is	 one	major	 advantage	 that	 you	 can
benefit	from.	This	does	not	apply	to	floats,	however.

	

Also,	 with	 regards	 to	 Python	 3 ’ s	 range	 and	 Python	 2 ’ s	 xrange	 for	 iterable
objects	 that	 has	 to	 be	 run	 once,	 Python	 3,	 typically,	 has	 the	 inclination	 to	 run
slower.	Nonetheless,	for	more	than	one,	or	for	infinite	iterations,	Python	3	has	the
advantage.

	

	

5.	 New	features

	

Python	3	has	some	new	featuresthat	are	not	present	in	Python	2.	If	you ’ re	using
Python	2,	you	have	to	import	the	features	to	your	Python	2.	This	is	done	through
the	_future_	module.

	

These	new	Python	3	features	include:

1.	 ‘ with’	 statement	 (with_statement)	 –	 there	 will	 be	 times	 you	 will	 need
thisstatement,	so	it ’ s	advantageous	that	Python	3	has	provided	it.

	

2.	 Unicode	 literals	 (unicode_literals)	 -	 this	 is	one	of	 the	 significant	 features	 for
Python	3.

	

3.	 2to3	utility	–	the	2to3	utility	regularly	comes	with	the	Python	3	interpreter.	This
is	useful	in	converting	Python	2	codes	into	functional	Python	3	codes.

	

4.	 Simple	generators	(generators)	–	you	can	use	these	simple	generators	to	create
correct	syntax	for	your	Python	codes.	The	process	is	simplified	and	quick.

	

5.	 Raw_input	function	–	in	Python	3,	this	function	was	rendered	useless	in	a	sense
that	the	inputs	are	treated	as	strings.

	

6.	 Statistically	nested	 scopes	 (nested_scopes)	 –	at	 times	you	will	have	 to	create
nested	scopes,	depending	on	your	data.

	

7.	 Create	 a	 print	 function	 (print_function)	 –	 as	 discussed	 earlier,	 in	 Python
3, ‘ print ’	 is	 now	 a	 function.	 So,	 when	 using	 the	 function,	 enclose	 your
statements	 with	 parentheses.	 You	 may	 also	 want	 to	 create	 your	 own	 print
function	that	you	can	use	whenever	necessary.

	

8.	 Integer	division	–	Python	3	gives	 the	answer	 to	divisions,	automatically,	 in	a
floating	 number	 form.	 Unlike	 Python	 2,	 which	 has	 to	 round	 fractions	 into
whole	 numbers,	 unless	 the	 numerator	 and	 denominator	 are	 expressed
specifically	as	floating	numbers.	This	makes	math	easier	in	Python	3.

	

9.	 Exception	 arguments	 –	 Python	 3	 exception	 arguments	 must	 be	 enclosed	 in
parentheses	 to	 avoid	SyntaxErrors,	 and	 should	be	 stated	with ‘ as ’ ;	while	 in
Python	2,	the	parentheses	may	or	may	not	be	included.	So,	except	is	expressed
as	exc	as	var,	instead	of	exc,	var.

	

10.	 Imports	absolute	relative	and	multi-line	(absolute_import)	–	this	can	be	useful
in	 preparing	 your	 codes.	But	 it	 can	 become	 a	 problem	 if	 you	 have	 duplicate
files.

	

11.	 Changing	 the	 division	 operator	 (division)	 –	 you	 can	 easily	 change	 your
division	operator.

If	you ’ re	using	Python	2,	and	you	want	to	import	these	features	you	can	use	the
command:

future

Let ’ s	say	you	want	to	import	unicode	iterals,	you	can	use	this	statement:

>>>from_future_import	unicode_literals

	

6.	 Iterable	objects

	

Python	 3	 returns	 iterable	 objects,	 instead	 of	 lists,	 which	 Python	 2	 usually	 does.
But,	you	can	also	convert	 the	object	 to	a	 list,	whenever	necessary.	Using	objects
instead	of	list	can	save	space	in	your	device.

	

7.	 Rounding	numbers

	

In	rounding	0.5,	Python	3	rounds	off	0.5	by	adding	one	to	the	preceding	number	-
only	-	when	the	number	can	be	rounded	to	an	even	number.

	

Examples	for	Python	3:

	

>>>round	(20.5)

20

	

>>>round	(21.5)

22

	

>>>round	(13.5)

14

	

Examples	for	Python	2:

	

>>>round	(20.5)

21

>>>round	(21.5)

22

>>>round	(13.5)

14

	

In	Python	2,	0.5	will	be	rounded	to	1	point,	no	matter	what	the	type	of	number	is
obtained	in	the	preceding	number.

	

8.	 No	returns	in	Python	3	for	some	functions

	

There	 are	 certain	 functions	 that	 no	 longer	 return	 a	 list.	 These	 are:	 the	methods,
such	as	.values	(),	.keys	()	and	.items	()	from	the	dictionary;	the	map	(),	the	filter
(),	and	the	zip().

	

9.	 Users’	inputs

	

Python	3	has	now	the	ability	to	store	users ’	inputs	as	strings,	thereby	preventing
error	problems	that	had	occurred	in	the	earlier	Python	versions.	This	is	convenient
for	fast-track	coders,	who	want	things	to	be	done	quickly	but	properly.

	

	

10.	 	‘Next’()	function

	

In	Python	3,	the	next()	function	is	used	and	not	the	.next()	method,	unlike	Python
2.	If	you	use	the	.next	method	in	Python	3,	an	AttributeError	results.	This	is	one
important	fact	that	you	must	prioritize	in	your	memory.

	

11.	 		Syntactic	changes

	

In	Python	3,	use	this:

	

class	C	(metaclass=M):

…

	

instead	of	the	old	code:

class	C:

__metaclass__	=	M

	

In	Python	3,	ellipsis	should	now	be	spelled	as … .	(instead	of …),	and	can	now
be	used	anywhere,	even	outside	the	slices.
Python	3	uses	the	list	comprehension	syntax,	wherein	the	items	are	enclosed	in
parentheses.

	

Here’s	a	table	of	syntaxes	that	were	removed	from	Python	3

	

Removed/changed
syntax

New	 Python	 3
syntax

<> !=

def	foo	(a,	(b,	c))	:
…

def	foo	(a,	b_c)	:	b,
c	=	b_c

raise_stmt:	‘raise’
[test	[‘,’	test	[‘,’
test]]]

raise_stmt:	‘raise’
[test]

exec()	 (removed	 as
a	keyword)

exec()	remains	as	a
function

backticks repr

classic	classes 	

Trailing	 l	 or	 L	 (for
integers)

	

Leading	u	or	U	(for
string	literals)

	

	

	

Unpacking	 of	 tuple	 parameter	 is	 removed.	 This	 lessens	 some	 of	 the	 trivial
procedures	that	you	have	to	do	with	the	old	Python	versions.

	

For	relative	imports	in	Python	3,	this	code	must	be	used:

	

from.	[module]	import	name

	

Also,	 the	code	below	is	used	only	on	 the	module	 level,	and	not	on	 the	 inside
functions:

	

from	module	import*

	

	

12.	 There	are	slight	changes	in	the	modules ’	names	too:

	

Name	Changes
	

New	Name Old	Name

configparser ConfigParser

copyreg copy_reg

_markupbase markupbase

queue Queue

reprlib repr

socketserver SocketServer

test.support Test.test_support

Changes	in	the	Library

hashlib	replaced	gopherlib

There	are	new	modules	for	the	Standard
Library,	such	as:	enum.	(enumeration),
statistics:,	unittest.mock	(for	mock	tests),
pathlib	(file	system	paths	that	are	object-
oriented)	,	asyncio	(asynchronous	IO),	venv
(virtual	environment),	faulthandler
(debugging),

	

Take	note	that	even	a	slight	change	in	the	lowercase	and	uppercase	letters	can	spell	a
significant	result.	You	can	have	return	errors	in	the	process.	Therefore,	be	careful	with
your	capitalizations.

	

13.	 In	Python	3,	numerous	modules	are	improved	and	simplified.	Some	of	these	are:
cmath,	 idlelib	 and	 IDLE,	 pprint,	 zipfile,	 code,	 pydoc,	 xml,	 poplib,	 math,	 pdb,
logging,	pickle,	shelve,	and	many	more.

	

	

The	 changes	may	 seem	 enormous,	 but	 in	 the	 long	 run,	 as	 you	 prepare	 your	 codes,	 the
builtin	support	systems	will	assist	you.

There	 are	 still	 numerous	 small	 changes,	 as	 the	 Python	 3	 is	 updated	 to	 more	 advanced
versions.	Nonetheless,	Python	will	always	find	a	way	to	make	users	adjust	easily	through
helpful	modules,	functions	or	methods.

	

	

Chapter	3:		Most	Common	Python	3	Data	Types
	
Python	uses	data	extensively.	There	are	various	data	types	that	are	commonly	used	in	the
Python	 versions.	 The	 data	 types	 have	 not	 changed,	 but	 the	 manner	 they	 are	 treated	 in
Python	3	have	some	differences.

Python	3	data	types
	

1.	 Numbers

	

As	previously	 stated,	Python	3	supports	all	 types	of	numbers:	 floating,	complex,
integers,	exponents,	and	fractions.

	

Usually,	 floating	 point	 numbers	 are	 used	 for	 Python	 3.	 Since	 numbers	 are
immutable,	 they	 are	 used	 extensively	 in	 various	 ways,	 such	 as	 in	 indices,
arithmetic,	expressing	positions,	and	in	manipulating	strings,	lists	and	tuples.

	

In	 the	 next	 chapter,	 you	will	 learn	 how	 to	make	 use	 of	 Python	 3	 as	 a	 powerful
calculator.

	

2.	 Strings

	

Strings	are	letters,	numbers	or	symbols	that	are	enclosed	in,	either,	double	quotes
or	single	quotes.	These	enclosed	characters	can	be	constants	or	variables,	such	as
numbers,	texts	and	letters.

	

In	Python	3,	the	string	must	be	enclosed	in	quotes,	or	a	return	error	will	occur.

	

Example	#1:

	

>>>“Hello,	I’m	Dave	and	this	is	my	Python	statement.”

	

Example	#2:

	

>>>“Python	3	is	cool!”

	

Example	#3:

	

>>>“I	want	to	learn	more	about	the	Python	language.”

You	can	print	your	strings,	if	you	want	to,	just	call	on	the ‘ print ’	function.

Example	#1:

>>>print	(“Hello,	I’m	Dave	and	this	is	my	Python	statement.”)

Hello,	I’m	Dave	and	this	is	my	Python	statement.

	

Example	#2:

>>>print	(“Python	3	is	cool!”)

‘Python	is	cool.’		#output	from	interpreter.

	

Example	#3:

>>>print	(“I	want	to	learn	more	about	the	Python	language.”)

‘I	want	to	learn	more	about	Python	language.’	#output	from	interpreter

	

Reminder:

	

Always	enclose	your	strings	with	parentheses	to	identify	that	these	are	strings.

	

Numbers	can	be	converted	to	strings,	if	you	want	to	use	them	as	strings.

	

	

3.	 Tuples

	

Tuples	 are	 like	 strings.	 This	 is	 because	 they	 contain	 the	 same	 type	 of	 items	 as
strings,	only,	these	are	enclosed	by	parentheses,	instead	of	brackets.	The	values	of
the	 variables	 in	 tuples	 cannot	 be	 changed	 –	 just	 like	 the	 strings;	 they	 are
immutable.	 On	 the	 other	 hand,	 the	 values	 of	 the	 variables	 in	 the	 lists	 can	 be
changed;	they	are	mutable.

	

Tuples	 can	 also	 be	 a	 combination	 of	 integers	 (numbers)	 or	 letters,	 which	 are
generally,	homogenous

	

Example	#1:

>>>tuple1	=	(‘Leila’,	‘Well’,	34,	‘New	York’,	1021)

Example	#2:

>>>tuple2	=	(467,	‘Lena’)

	

Example	#3:

>>>tup3	=	(87,	“New	York”,	“Arts”)

	

4.	 Booleans

	

These	values	represent	two	constant	values –	True	or	False.	They	determine	if	the
value	is	 true	or	not.	The	builtin	function	bool	()	 is	used	to	convert	non-Boolean
values	to	Boolean	values.

	

	

Example	#1

	

>>>2<5

True

	

Example	#2

	

>>>15==12

False

	

Example	#3

	

>>>4*2	!=10

True

	

	

5.	 Dictionaries

	

These	 data	 come	 from	 builtin	 (built-in)	 or	 created	 dictionaries.	 The	 keys	 for
dictionaries	must	 not	 be	 changed.	 So,	 strings,	 tuples	 or	 numbers	 can	 be	 used	 as
keys	because	these	are	all	immutable.

	

Python	 3	 dictionaries	 will	 be	 discussed	 more	 in	 the	 upcoming	 chapter.	 The
associated	punctuation	mark	or	symbol	for	dictionaries	are	the	curly	brackets.

	

	
6.	 Lists

	

When	there	are	more	than	one	string,	they	comprise	a	list.	The	values	and	variables
of	a	list	can	be	sliced,	concatenated,	or	modified.	It	can	contain	various	data	types
or	the	same	data	types.

	

Example	#1:

	

>>>[‘cabbages’,	‘potatoes’,	‘eggplants’,	‘carrots’]

	

	

Example	#2:

	

>>>[‘pencil’,	‘paper’,	‘notebook,	‘book’]

	

	

If	you	want	to	name	your	lists,	you	can	do	so	by	assigning	names	that	are	related	to
their	contents.

	

>>>myVeggies	=	[‘cabbages’,	‘potatoes’,	‘eggplants’,	‘carrots’]

	

>>>mySchoolMaterials	=	[‘pencil’,	‘paper’,	‘notebook,	‘book’]

	

Or:

>>>list1	=	[‘cabbages’,	‘potatoes’,	‘eggplants’,	‘carrots’]

>>>list2	=	[‘pencil’,	‘paper’,	‘notebook,	‘book’]

	

It ’ s	 up	 to	 you	 to	 name	 your	 lists	 in	 a	 manner	 that	 would	 make	 you	 remember	 them
easily.														This	is	because	you	can	use	them	later	on	just	by ‘ calling ’	out	their	names.

You	can	then	print	these	lists	by	calling	outthe ‘ print ’	function.

	

Example	#1:

If	you	want	to	print	my	veggies,	you	can	create	your	Python	3	statement	this	way:

>>>print	[‘ cabbages ’ , ‘ potatoes ’ , ‘ eggplants ’ , ‘ carrots ’]

‘cabbages’,	‘potatoes’,	‘eggplants’,	‘carrots’ 	#This	is	the	returns	of	the	interpreter

or

>>>print	[myVeggies]

‘cabbages’,	 ‘potatoes’,	 ‘eggplants’,	 ‘carrots’ 	 #you	 will	 be	 obtaining	 the	 same
returns.

	

Example	#2:

>>>[‘pencil’,	‘paper’,	‘notebook,	‘book’]

‘pencil’,	‘paper’,	‘notebook’,	‘book’

	

7.	 Sets

	

These	 are	 data	 types	 composed	 of	 unorganized	 elements	 that	 have	 no	 duplicate
values	found	in	the	same	set.

	

The	function	keyword	set()	or	set{}	is	used	to	create	sets	or	empty	sets.	The	curly
brackets	is	also	used	in	creating	a	dictionary,	thus,	the	function	keyword,	set(),	is
preferable.

	

Python	set	objects	support	words,	numbers,	letters,	names	and	anything	that	can	be
inputted	into	your	data	files.

	

Example	#1:

	

>>>set1	=	{“eggplants”,	“carrots”,	“beans”,	“cabbage”,	“beans”}

>>>print	(set1)

{“eggplants”,	“carrots”,	“beans”,	“cabbage”}

	

Notice	 that	 “beans”	 has	 been	 duplicated,	 and	was	 removed	 from	 the	 list.	 If	 you

want	to	do	it	more	quickly,	you	can	apply	the	membership	function.

	

Example	#1:

>>>“beans”	in	set1

True

Example	#2:

	

>>>”celery”	in	set1

False

	

	

Frozen	sets

	

These	are	sets	that	are	immutable.	Typically	sets	are	mutable	although	they	contain
immutable	objects.

	

Example:

	

>>>subjects	 =	 frozenset	 ([“geometry”,	 “physics”,	 “astronomy”,
“science”])

	

Operations	for	sets
clear()	–	this	function	will	clear	all	elements	of	the	set.

	

Example:

>>>subjects	=	{“geometry”,	“physics”,	“astronomy”,	“science”}

>>>subjects.clear()

set()

difference()	 –	 this	method	or	 function	will	 return	 the	difference	between	 two	or
more	sets.	There	are	times	you	need	to	know	the	data	from	this	method,	especially
with	integers.

Example:

>>>a	=	{“a”,	“b”,	“c”,	“d”,	“e”}

>>>b	=	{“a”,	“b”,	“c”}

>>>a.difference(b)

{“d”,	“e”}

	

You	can	also	do	this:

>>>a-b	#this	will	show	the	elements	in	set	a	that	are	not	present	in	set	b

	

You	will	obtain	the	same	return/output.

{“d”,	“e”}

	

If	you	want	 to	know	the	elements	 in	either	set	a	or	set	b,	use:	a|b.	This	will	also
return	the	unduplicated	elements	in	either	of	the	sets.

Example:

>>>a|b

{“a”,	“b”,	“c”,	“d”,	“e”}

If	you	want	to	access	the	elements	found	in	both	set	a	and	set	b,	you	can	use:	a	&
b.

Example:

>>>a	&	b

{“a”,	“b”,	“c”}

	

If	you	want	to	access	unduplicated	elements	found	in	set	a	and	set	b,	use:

a	^	b.

Example:

>>>a	^	b

{“d”,	“e”}

add(element)

This	method	adds	an	immutable	element	to	a	set.

Example:

>>>Names	=	{“Dixon”,	“Johnson”,	“White”}

>>>names.add(“Leonard”}

>>>names

{“Leonard”	“Dixon”,	“Johnson”,	“White”}

	

discard(element)

You	 can	 discard	 any	 element	 in	 the	 set	 by	 using	 the	 method	 or	 function
discard(element).	You	can	also	use	remove(element).	A	KeyError	is	returned	if	the
specified	element	is	not	found.

Example:

>>>a	=	{“a”,	“b”,	“c”,	“d”,	“e”}

>>>a.discard(“b”)

>>>a

{“a”,	“c”,	“d”,	“e”}

All	 of	 these	 methods	 are	 useful	 in	 manipulating	 your	 data	 and	 organizing	 them	 into
meaningful	files.

You	don’t	have	to	memorize	all	of	them,	you	can	always	refer	to	these	methods,	when	you
want	to	use	them.

	

	

	

Chapter	4:		Using	Python	3	as	a	Calculator
	
Similar	to	Python	2,	you	can	also	use	Python	3	to	compute	or	calculate	math	equations	and
to	solve	problems.Yes,	Virginia,	it ’ s	also	a	calculator!

You	can	add,	subtract,	divide	or	multiply	usingPython ’ s	interactive	interpreter.	The	math
operators	 are	 the	 common	 ones	 you	 use	 every	 day;	 therefore,	 you	would	 not	 have	 any
problem	working	with	them.

Set	up	the	calculator	by	clicking	on	the	interpreter	and	then	use	the	math	symbols,	just	like
you	use	them	in	your	simple	calculator.

When	 the	 three	 arrow	signs	 appear	>>>,	you	can	 start	 typing	your	numbers.	When	you
press	enter,	the	answer	will	appear	in	the	next	line.

Solving	simple	math	problems
	

Examples:

>>>3	+	12

15

>>>56 –	13

43

>>>8*12

96

>>>36/3

12

	

Based	on	the	example	above,	you	can	conclude	the	following	meanings:

+	sign	for	addition

-	sign	for	subtraction

/	sign	for	division

*	sign	for	multiplication

	

For	division,	 if	you	want	 to	compute	 for	 the	 remainder,	you	can	use	 the	percent	sign	%
(modulus).

If	you	want	to	round	off	an	answer	with	fractions,	you	can	use	the	sign	//.	This	is	because
the	sign	/	will	always	give	an	answer	in	a	floating	number	form.

Floating	 numbers	 are	 numbers	 expressed	 with	 decimal	 points.	 Examples	 are:	 4.5,	 6.0,
3.10,	and	8.0.

The	other	types	of	numbers	are	the	integers	(int)	Examples	are:	1,	2,	3,	4,	and	5.

	

Solving	for	the	square	of	numbers
	

To	solve	for	the	square	of	numbers,	you	can	use	the	sign	**.

Example:

43

>>>4**3

64

	

53

>>>5**3

125

	

The	use	of	the	equal	sign	=

The	 equal	 sign	 =	 is	 used	 when	 assigning	 values	 to	 variables.	 It ’ s	 not	 used	 to	 show
equality.	 Again,	 in	 Python	 2	 and	 3,	 the	 =	 sign	 does	 not	 mean	 the	 values	 are	 equal.	 It
indicates	the	values	of	the	variable.

Examples:

>>>var	mystring

>>>mystring	=	(“grapes”,	“bananas”,	“apples”)

	

When	values	are	not	assigned	to	variables,	the	interpreter	will	return	an	error.

The	double	equal	sign	=	=	indicates	equal	values.	This	is	the	symbol	of	equality.

Examples:

>>>4	*	4	==16

>>>5	*	10	==	50

>>>8*2	==16

>>>6/3==2

	

You	can	use	the	name	of	the	variable	instead	of	the	actual	numbers.

Examples:

	>>>myvariable1==5

>>>myvariable2==10	-	2

	

Instead	of	adding	5	+	(10	-2),	you	can	simply	type:

>>>myvariable1	+	myvariable2

Then	press	enter	or	run.	The	answer	will	appear	in	the	next	line.	The	answer	will	be	13.

13

	

You	can	prioritize	what	the	Python	3	interpreter	will	solve	first	by	using	the	parentheses.

Example:

>>>(3*8)+	(19-5)	#3*8	will	be	solved	first,	then	19-5,	before	they	are	added

Thus,	the	answer	will	be:

>>>(3*8)	+	(19-5)

278

	

The	 #	 sign	 indicates	 that	 the	 succeeding	 statement	 is	 a	 comment	 and	 is	 not	 part	 of	 the
equation.

In	the	absence	of	a	parentheses,	the	computation	will	apply	the	common	MDAS	rule.	The
order	 in	 which	 the	 problem	 is	 solved	 is ”	 multiplication,	 division,	 addition	 and	 then
subtraction.

If	parentheses	are	present,	the	numbers	inside	the	parentheses	are	prioritized,	and	if	there
are	number	with	exponents,	they	are	next	to	be	computed.	Then	the	MDAS	follow.

MDAS	stands	for	Multiplication,	Division,	Addition	and	Subtraction.

When	a	part	of	the	math	equation	is	imaginary,	instead	of	x,	the	letter	j	or	J	is	assigned	as
a	suffix.

Examples:

10j	+	240

9	+	2j

Python	 3	 recognizes	 these	 types	 of	 numbers:	 integers,	 floating,	 fractions,	 decimals,	 and
complex	numbers.

When	numbers	are	used	as	strings,	they	are	not	enclosed	in	quotes.

	

Comparison	operations
	

These	comparison	operations	are	typically	built-in	into	interpreters,	so	you	can	proceed	in
interpreting	 your	 data.	 The	 operators	 are	 straightforward	 like	 the	 symbols	 that	 you	 are
familiar	with:

1.	 ==	indicates	equality

	

Examples:

	

3==3

2*3==6

4/2==2*1

	

2.	 !=	indicates	non-equality

	

Examples:

	

3!=4

2*3!=8

8/4!=6

	

	

3.	 <	indicates	less	than

	

Examples:

	

8<12

7<10

	

4.	 >	indicates	more	than

	

Examples:

	

10>8

4>5

	

5.	 <=	indicates	less	than	or	equal

	

Example:

	

‘ a ’ <= ’ b ’

‘ b ’ <= ’ c ’

	

6.	 >=	indicates	greater	than	or	equal

	

Example:

	

‘ a ’ >= ’ b ’

‘ b ’ >= ’ c ’

	

7.	 is	indicates	object	identity

	

8.	 is	not	indicates	a	negated	object	identity

	

Take	 note	 that	 the	 objects	 compared	 should	 be	 of	 the	 same	 types	 for	 you	 to	 be	 able	 to
compare	them	reliably.

Numeric	operations
	

The	 numeric	 operations	 are	 prioritized	 more	 than	 the	 comparison	 operations.	 These
operations	are	vital	when	using	integers,	complex	numbers	and	floating	point	numbers	to
create	specific	numbers.

1.	 x	+	y

	

This	denotes	the	sum	of	x	and	y.

	

Example:

	

>>>x=4

>>>y=5

>>>	x	+	y

9

	

	

2.	 x –	y

	

This	denotes	the	difference	between	x	and	y.

	

	

Example:

>>>x=10

>>>y=6

>>>x-y

4

	

3.	 x	*	y

	

This	denotes	the	product	of	x	and	y.

	

Example:

	

>>>x	=6

>>>y=3

>>>x*y

16

	

4.	 x	/	y

	

This	denotes	the	quotient	of	x	divided	by	y.

	

Example:

	

>>>x=12

>>>y=4

>>>x/y

3

	

5.	 x	//	y

	

This	denotes	the	floored	quotient	of	x	and	y.

	

Example	#1:

	

>>>x=13

>>>y=4

>>>x//y

3

	

Example	#2:

	

>>>x=15

>>>y=6

>>>x//y

2

	

	

6.	 x	%	y

	

This	denotes	the	remainder,	when	x	is	divided	by	y.

	

Example	#1:

	

>>>x=17

>>>y=5

>>>x	%	y

4

	

Example	#2:

	

>>>x	=12

>>>y	=	5

>>>x	%	y

4

	

7.	 -x

	

This	denotes	that	the	x	value	is	negated	or	was	proven	untrue.

	

8.	 +x

	

This	denotes	that	the	x	value	remained	unchanged.

	

9.	 abs	(x)	or	abs()

	

This	denotes	the	absolute	value	of	x.

	

	

10.	 int	(x)	or	int()

	

This	denotes	that	x	will	be	converted	to	an	integer	(number).

	

11.	 float	(x)	or	float	()

	

This	denotes	that	x	will	be	converted	to	a	floating	point	number

	

12.	 complex(re,		im)	or	complex()

	

This	denotes	the	real	(re)	and	imaginary	(im)	values	of	a	complex	number.

	

13.	 c.conjugate()

	

This	denotes	the	conjugate	of	c	(complex	number).

	

14.	 divmod	(x,		y)	or	divmod()

	

This	denotes	the	pair	(x	//	y,	x	%	y)

	

15.	 pow(x,		y)	or	pow()

	

This	denotes	that	x	is	raised	to	the	power	y.

	

16.	 x**y

	

This	is	another	method	of	expressing	exponents.	It ’ s	the	same	as	#15,	which	is	x
to	the	power	y.

	

Versions	 of	 Python	 3	 may	 have	 minor	 changes,	 but	 don ’ t	 worry,	 you	 will	 be	 fully

informed	of	future	changesby	Python ’ s	official	website.

	

	

	

	

	

Chapter	5:	Variables	in	Python	3
	

Variables	are	considered	as	storage	locations	of	values.	Variables	are	given	specific	names
related	to	the	values	they	contain.	They	act	as	labels	for	these	values.	Variables	allow	easy
storage	and	retrieval	of	files	from	your	computer	or	device,	because	all	you	have	to	do	to
access	them,	is	to	‘call’	them	out	using	their	labels	or	names.

Steps	for	creating	variables
	

Step	#1	–	Name	your	variable

The	 first	 thing	 that	 you	must	 do	 is	 to	 name	 your	 variable	 in	 a	 manner	 that	 you	 could
identify	the	values	it	contains	without	difficulty.

Example:

If	 you	 have	 a	 variable	 contain	 your	 grocery	 list,	 you	 may	 want	 to	 name	 it,	 ‘groc’,	 or
‘groclist’,	or	simply	‘groceries’.

	

Step	#2	–	Use	the	assignment	operator	(equal	sign	=)	to	assign	the	values

You	 can	 now	 assign	 the	 values	 of	 your	 variable	 by	 using	 =	 ,	 which	 is	 the	 assignment
operator.

Example	#1:

>>>var1	=	(“Welcome”)

>>>print	(“Welcome’)

Welcome

	Example	#2:

>>>myVar	=	10

>>>print	(myVar)

10

Example	#3:

>>>myVar	+	3

13

Example	#4:

>>>myVar	*	5

50

Example	#5:

>>>print	(var1,	“to	my	world”)

Welcome	to	my	world

	

Step	#3	–	Use	your	variable

Now	that	you	have	assigned	values	to	your	variable,	you	can	now	use	it.	The	name	of	the
variable	can	be	used	in	calculations,	just	by	using	the	variable	name,	if	the	assigned	value
is	an	integer.

Example	#1:

>>>myVar	=	10

>>>myVar	–	5

5

This	means	that	you	can	use	the	name	of	the	variable	in	any	way	you	can.	The	value	of
your	variables	will	be	the	value	that	will	be	considered	in	the	Python	statements.													

But,	before	you	use	your	variable	in	any	statement,	you	have	to	define	it	first	to	assign	its
value/s.

	

Storing	variables	in	other	variables
	

You	can	store	your	variable	in	another	variable	by	equating	the	second	variable	with	the
first	variable.

Example:

>>>var2	=	11

>>>var3	=	var2

>>>print	(var3)

11

	

Hence,	the	value	of	var3	would	also	be	10,	when	run	in	Python.

Example:	as	shown	above

>>>print	(var3)

11

However,	you	can	change	the	value	of	var2,	and	still	allow	var3	to	be	=11.

	

Local	variables
	

These	 are	 variables	 that	 are	 defined	 inside	 a	 function.	 They	 have	 vital	 roles	 inside	 the
function,	but	they	are	not	related	to	variables	outside	of	the	function,	even	if	they	have	the
same	names.

Example:

>>>def	func	()	:

x=15

>>>x	=	22

	

The	first	x	is	found	inside	the	function	-	func,	while	the	second	x	is	found	outside	of	the
function.

The	value	of	the	x	found	inside	the	function	will	not	affect	that	of	the	other	x.	Hence,	if
you	call	x,	it	will	give	the	value	11.

Example:

>>>print	(x)	or	x

22

	

>>>func()

15

But	you	can	change	the	value	of	the	x	outside	the	function	to	a	global	value	by	using	def
function.

Example:

>>>def	func()	:

global	x

						 x	=	15

print	(x)

	

When	 you	 try	 to	 call	 the	 values	 of	 the	 x	 inside	 the	 function	 and	 the	 x	 outside	 of	 the
function,	you	will	have	these	returns:

Examples:

>>>func()

15

	

>>>x

15

	

Illegal	names	for	variables
	

There	are	terms	that	you	cannot	use	in	naming	your	variables	because	they	will	return	an
error.	They	are	called	illegal	names.

	

1.	 Names	starting	with	numbers	–	the	variable	name	must	not	be	a	number,
or	must	not	start	with	a	number.

	

Example:

	

45myList

10variable

89cents

	

2.	 Names	starting	with	the	dollar	sign	$	-	Your	variable	names	must	NOT
start	with	a	dollar	sign.

Example:

	

$myList

$myVariables

$tuples

	

3.	 Names	 using	 Python	 keywords	 –	 Keywords	 are	 considered	 as	 illegal
names,	 so	 don’t	 use	 them.	You	will	 know	 that	 it’s	 a	 keyword,	when	 the
color	of	the	letters	change	to	a	different	color.	(i.e.	black	to	brown),	as	you
type	it.

	

Example:

	

func_variable

printNames

defList1

	

	

4.	 Spaces	between	words	in	the	name	–	There	should	be	NO	spaces	between
words	 in	 your	 variable	 names.	 If	 you	 have	 two	 words,	 you	 can	 use	 an
underscore	_	to	denote	that	they	are	two	words.	You	can	also	capitalize	the
first	letter	of	the	second	word,	similar	to	camelCase.	The	first	letter	of	the
first	word	is	in	the	lowercase.

	

	

Examples:

	

employee_names	or	employeeNames

	

my_variable	or	myVariable

	

patients_id	or	patientsID

	

Reminders

When	you	 reassign	 a	 variable,	 the	 previous	 value	will	 be	 deleted.	 So,	 if	 you
don’t	 intend	 to	 delete	 your	 previous	 variables,	 don’t	 duplicate	 the	 variables’
names.

	

Never	 use	 similar	 variable	 names.	 Create	 unique	 names.	 This	 is	 to	 avoid
messing	up	your	files.

	

Name	 your	 variables	 properly	 and	 you	won’t	 encounter	 any	 problems	 in	 the
future.

	

Knowing	 how	 to	 properly	 name	 your	 variables	may	 seem	 a	 trivial	 task	 but	 its	 effect	 is
enormous.	You	can	lose	your	important	files	just	because	of	your	carelessness.	Don’t	let
that	happen	to	you.	Learn	how	to	do	the	procedure	correctly.

	

	

Chapter	6:		Manipulating	Strings
	
Strings	were	defined	 in	 the	previous	 chapter.	This	 chapter	will	 deal	with	 the	process	of
manipulating	or	modifying	your	strings.	Strings	are	enclosed	 in	single	or	double	quotes,
and	they	are	immutable.

More	examples	of	strings:

Example	#1:

>>>(“What	did	you	learn	from	the	previous	chapters?”)

‘What	did	you	learn	from	the	previous	chapters?’	#This	is	the	output	after														
																																																																																																																press	enter.

	

Example	#2:

>>>(‘ I	hope	you	enjoy	learning	Python. ’)

‘ I	hope	you	enjoy	learning	Python. ’

	

You	 can	 easily	 manipulate	 your	 strings	 using	 Python	 3.	 I	 will	 present	 this	 chapter	 in
simple	terms.	Hopefully,	it	will	help	you	understand	the	concept.

	

Here	are	vital	facts	that	you	must	remember.

Escaping	quotes
	

You	can	escape	quotes	by	using	the	backslash	sign	\		

Example	#1:

>>>print	(” I	don/ ’ t	want	to	go	there. ”)

‘ I	don ’ t	want	to	go	there. ’

	

Example	#2:

>>>print	(‘ He	doesn\ ’ t	want	to	go	there. ’)

“ He	doesn ’ t	want	to	go	there. ’

	

You	can	also	use	triple	quotes	when	strings	are	too	long.

Example:

>>> ””” This	doesn/ ’ t	make	sense	to	me, ”	he	said. ”””

‘ This	doesn ’ t	make	sense	to	me ’ ,	he	said.

Concatenating	strings
	

You	can	quickly	concatenate	(add)	strings	by	making	use	of	the	plus	sign	+	.	You	can	also
repeat	the	concatenation	by	using	the	asterisk	symbol	*	.

Example	#1:

>>>str1	= “ Pac ”

‘ Pac ’

>>>str2	= “ man ”

‘ man ’

>>>str1	+	str2

‘ Pacman ’

	

Example	#2:

>>> “ hydrogen ”	+ “ peroxide ”

‘ hydrogenperoxide ’

	

Example	#3:

>>>2	 *	 “ hydrogen ”	 + “ peroxide ”	 #2	 *	 indicates	 that	 the	 string	 must	 be
repeated	twice	(2x)

‘ hydrogen	hydrogenperoxide ’

	

Two	string	literals	that	are	beside	each	other	are	usually	concatenated	automatically.

	

Example	#1:

>>> “ Justice ”	“ prevails ”

‘ Justice	prevails ’

	

Example	#2:

>>> ” Python ”	“ language ”

‘ Python	language ’

	

Creating	new	strings
	

You	can	create	new	strings	from	old	strings	or	new	data.	You	cannot	change	your	strings
but	you	can	do	various	procedures	with	them.

Example	#1:Let ’ s	use	the	previous	examples

>>> ” Super ”	+	str2

‘ Superman ’

	

Take	 note	 that	 the	 results	 (without	 the	 arrow	 prompts)	 will	 only	 appear	 when	 you
press ‘ enter ’ , ‘ execute ’	or ‘ run ’	the	command.

Ensure	that	you ’ re	referring	to	the	correct	string	name.	In	Python	3,	the	first	letter	of	the
first	word	of	 the	variables	are	usually	 in	 small	 letters,	 then	 the	 first	 letter	of	 the	 second
word,	or	the	third	word	may	be	in	the	uppercase.

	

Indexing	strings
	

You	can	assign	indices	to	strings	starting	from	0	and	onwards.	You	can	also	do	the	reverse
indexing,	where	values	start	at	-1,	for	the	second	character	from	the	last.

Take	note	that	each	string	is	enclosed	in	single	or	double	quotes.

	

	

Example	#1:

If	 the	 string	 is “ computer ” ,	 the	 table	 below	will	 show	 you	 how	 the	 indexes	 are
assigned:

	

str1= “ computer ’

Values	in
the	string

c 0 m p u t e r

Assigned
(+)	indexes

0 1 2 3 4 5 6 7

Assigned				
(-)	indexes

-7 -6 -5 -4 -3 -2 -1 	

	

Example	#2:

str2	= “ This	is	my	Python	3	world. ”

Values	in
the	string

This is my Python 3 world

Assigned
(+)	indexes

0 1 2 3 4 5

Assigned				
(-)	indexes

-5 -4 -3 -2 -1 	

	

If	you	are	to	slice	the	string,	you	can	simply	refer	to	their	indexes	using	square	brackets	[
].	If	you	want	to	indicate	the	start	and	end	of	your	slice,	use	[:].	This	will	be	discussed
more	in	the	topic,	slicing	strings.

Slicing	strings
	

You	can	slice	your	strings	and	create	new	strings.	As	stated	earlier,	strings	are	immutable,
so	they	cannot	be	changed.	However,	you	can	create	new	strings	from	the	old	strings,	or
from	new	data.

Example	#1:

>>>str1= ‘ computer ’

‘ computer ’

>>>str1[2]

‘ m ’

Example	#2:

>>>str1	= ‘ computer ’

‘ computer ’

>>>str1[3]

‘ p ’

	

Example	#3:

>>>str1	= ‘ computer ’

‘ computer ’

>>>str1[1:3]	 #This	 means	 that	 the	 starting	 index	 you	 want	 the	 interpreter	 to
return	is	index	1	up	to	index	2.

Hence,	when	you	press	enter,	the	results	will	be:

‘ om ’

If	you	want	to	include	up	to	letter ‘ p ’ ,	your	Python	3	code	should	be:

>>>str1[1:4].

If	you	enter	a	non-existent	index,	the	Python	3	interpreter	will	return	an	error.

Example:

>>>str1[8]

TypeError:		‘str’	object	does	not	support	item	assignment.

Example	#1	Let ’ s	use	the	string	for	the	above	example	#2.

>>>str2	= “ This	is	my	Python	3	world. ”

‘ This	is	my	Python	3	world. ’

>>>str2	[2]

‘ is ’

Example	#2:

>>>str2[2:4]

‘ my	Python ’

Example	#3:

>>>str2[2:5]

‘ my	Python	3 ’

If	you	want	to	display	an	index	starting	from	a	certain	index	up	to	the	last	one,	you	can
create	your	Python	syntax/code	this	way:

Example	#1:

>>>str1[1:]

‘ omputer ’

	

Example	#2:

>>>str2[1:]

‘ is	my	Python	3	world. ’

If	you	want	 to	obtain	 the	 first	 indexed	value	up	 to	 a	 certain	 index,	you	can	create	your
Python	statement	this	way:

Example	#1:

>>>str1[:5]

‘ compu ’

	

Example	#2:

>>>str2[:5]

‘ This	is	my	Python	3 ’

	

Example	#3:

>>>str2[:6]

‘ This	is	my	Python	3	world. ’

Determining	the	length	of	the	string
	

You	can	quickly	determine	the	length	of	the	string	by	using	the	function	key,	len().	This
step	is	important	if	you	intend	to	modify	your	indexes.

	

Example	#1:

>>>len	(str1)

7

Example	#2:

>>>len(str2)

5

Example	#3:

>>>myName	=	“LeilaFaulker”

‘LeilaFaulker’

>>>len(myName)

11

	

In	the	examples,	you	can	observe	that	the	length	of	str1[2:5]	is	3.

	

Updating	strings
	

Strings	can	be	updated	by	assigning	the	variable	you	want	to	be	updated	to	another	string.

	

Example:

>>>var	=	“Love	makes	the	world	go	round!”

>>>print	(“Updated	String	:		”,	var[0:]	+	“Hope”)

“Hope	makes	the	world	go	round!”

	

Special	operators	for	strings

+		Concatenation	(adding).	You	can	use	this	operator	to	add	your	strings.

[]		Slice,	the	index	is	indicated	inside	the	square	brackets.	This	index

represents	the	character	in	the	string.

[:]		Range-slice,	the	range	of	the	indices	is	given.	These	indices	represent

the	characters	in	the	string.

*			This	denotes	repetition	of	the	string.	As	you	know	now,	strings	are	immutable,
so	you	will															

Be	creating	new	strings.

%		Format,	it	indicates	that	strings	are	being	formatted.

in		Membership,	this	returns	a	True	value,	if	the	specified	item	is	found	in	the
string.	

Example	#1:

>>>myString	=	“Love	makes	the	world	go	round!”

>>>the	in	(myString)

True

Example	#2:

>>>myString	=	“Love	makes	the	world	go	round!”

>>>hope	in	(myString)

False

	

not	in		It’s	the	opposite	of	in.	This	returns	a	True	value,	if	the	specified	item	or
character	is	not	found	in	the	string.

Example:

>>>hope	not	in	(myString)

True

Chapter	7:		Modifying	Python	3	Lists
	
Python	3	(i.e.	Python	3.5.2,	3.5.1,	3.1)	lists	are	mutable;	therefore,	they	can	be	changed	or
modified.Lists	 have	 been	 defined	 in	 the	 previous	 chapter	 as	 a	 group	 of	 data –	 usually
homogenous –	that	comprise	a	list.

The	items	in	the	list	is	similar	to	the	items	in	a	string.	They	can	be	any	of	the	various	types
of	data.	Each	item	in	the	lists	is	separated	by	a	comma.	The	lists	use	brackets	to	enclose	all
the	values	they	contain.

Example	#1:

>>>names	=	[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

	

Example	#2:

>>>numbers	=	[210,	110,	305,	310]

	

Example	#3:

>>>myList=	[“ Geometry ” , “ average ” , “ passed ”]

	

Indexing	lists
	

You	can	index	lists	 just	 like	you	can	index	strings.	The	indexing	starts	at	0,	and	then	so
forth.	You	can	also	apply	reverse	indexing	starting	with	-1	-	from	the	second	item	from	the
end	of	the	list.

Example	#1:

>>>names	=	[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

	

Example	#2:

>>>numbers	=	[210,	110,	305,	310]

	

Example	#3:

>>>myList=	[“ Geometry ” , “ average ” , “ passed ”]

When	 you	 press ‘ enter ’ , ‘ run ’	 or ‘ execute ’	 after	 you	 have	 inputted	 examples	 #1,	 #2
and	#3,	after	the	arrow	prompt	>>>,	the	returns/results	or	return	data	will	be	the	next	line
after	the	Python	statements	(statements	after	the	prompt	>>>).

See	examples	below:

Example	#1:

>>>names	=	[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

>>>print	(names)

[‘ Jones ’ , ‘ Clinton ’ , ‘ Stewart ’ , ‘ Woods ’]

	

Example	#2:

>>>numbers	=	[210,	110,	305,	310]

[210,	110,	305,	310]

	

Example	#3:

>>>myList=	[“ Geometry ” , “ average ” , “ passed ”]

>>>print	(myList)

[‘ Geometry ’ , ‘ average ’ , ‘ passed ’]

	

Methods	for	list	objects
	

Clearing	a	list

List.clear	()-	you	can	clear	the	items	in	the	list	by	using	the	method	key,	list.clear().	This
is	the	same	as	del	a[:]

Example:

>>>list.clear(myList)

Or

>>>del	myList[:]

	

All	of	the	items	in	the	list,	“ Geometry ” , “ average ” , “ passed ” ,	will	be	deleted.

Appending	a	list
	

List.append()	–	you	can	append	an	item	to	the	end	of	your	list	by	using	the	method	key,
list.append().	The	new	item	is	positioned	at	the	last.

Example	#1:

>>>names	=	[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

>>>names.append(“ Lewis ”)

>>>print	(names)

[‘ Jones ’ , ‘ Clinton ’ , ‘ Stewart ’ , ‘ Woods ’ , ‘ Lewis ’]

Example	#2:

>>>numbers	=	[210,	110,	305,	310]

[210,	110,	305,	310]	#return	or	output

>>>numbers.append(330)

[210,	110,	305,	310,	330]	#return	or	output

	

Example	#3:

>>>myList=	[“ Geometry ” , “ average ” , “ passed ”]

[‘ Geometry ’ , ‘ average ’ , ‘ passed ’]

>>>myList.append(“ incomplete ”)

print	(myList)

[‘ Geometry ’ , ‘ average ’ , ‘ passed ’ , ‘ incomplete ’]

Example	#4:

>>>list	=	[2,	4,	6,	8	10]

>>>list.append(12)

>>>print	list

[2,	4,	6,	8	10,	12]	#return	or	output

	

Inserting	an	item	in	a	list
List.insert()	–	you	can	insert	an	item	into	your	list	by	using	the	method	key	list.insert().
This	command	is	similar	to	a.insert(i,	x),	where	i	is	the	index	number,	where	you	want	the
x	(item)	to	be	inserted.

Example	#1:

>>>myList=	[“ Geometry ” , “ average ” , “ passed ”]

>>>myList.insert(0, “ Thomas ”)#This	means	that	at	index	0, “ Thomas ”	will	be
inserted.

>>>print	(myList)

[‘ Thomas ’ , ‘ Geometry ’ , ‘ average ’ , ‘ passed ’]	#return	or	output

	

Example	#2:

>>>myList=	[“ Thomas ” , “ Geometry ” , “ average ” , “ passed ”]

[‘ Geometry ’ , ‘ average ’ , ‘ passed ’]

>>>myList.insert(1, “ Daniels ”)

print	(myList)

[‘ Thomas ’ , ‘ Daniels ’ , ‘ Geometry ’ , ‘ average ’ , ‘ passed ’]

	

The	difference	between	list.append()	and	list.insert(),	is	that	in	the	former,	the	item	you
want	 to	append	(add)	 is	appended	at	 the	end	of	 the	 list.	Meanwhile,	 in	 list.insert(),	you
can	select	the	index	of	your	inserted	item.	For	most	coders,	the	latter	is	preferable.

Counting	the	number	of	times	an	item	appears	in	a	list
	

List.count(x)	–	list.count(x).	You	can	easily	count	the	number	of	times	x	is	found	in	the
specified	list.	This	is	a	good	data	to	identify	duplicates	too.

Example	#1:

>>>names	=	[“ Jones ” , “ Clinton ” , “ Stewart ” , “ Woods ”]

>>>list.count(“ Woods ”)

>>>print	(value)

1	

Example	#2:

>>>	grades	=	[85,	88,	92,	88,	97]

>>>grades.count(88)

2

List.count(x)	is	typically	used	when	there	are	existing	loops.

	

Copying	a	list
	

This	is	used	when	you	want	a	copy	of	the	list.	It ’ s	the	same	as	a[:].	The	method ’ s	key
is	list.copy().

Example	#1:

>>>	grades	=	[85,	88,	92,	88,	97]

>>>finalGrades	=	grades	[:]

[85,	88,	92,	88,	97]

Or

>>>	grades	=	[85,	88,	92,	88,	97]

>>>grades.copy()

[85,	88,	92,	88,	97]

	

Sorting	a	list
	

sorted()

You	 can	 sort	 the	 items	 in	 a	 list	 by	 simply	 calling	 the	 function	 sorted().	 This	 will	 sort
iterable	items,	as	well.

Example	#1:

>>>grades	=	[85,	88,	92,	88,	97]

[85,	88,	92,	88,	97]

>>>	sorted	([85,	88,	92,	88,	97])

[85,	88,	88,	92,	97]

It	has	been	sorted	in	an	ascending	order,	from	lowest	to	highest.

List.sort()

You	can	also	use	the	method	key,	list.sort().	This	is	useful	when	you	need	the	original	list.

Example:

>>>	grades	=	[85,	88,	92,	88,	97]

[85,	88,	92,	88,	97]

>>>	list.sort	([85,	88,	92,	88,	97])

>>>	grades

[85,	88,	88,	92,	97]

list.reverse()

You	could	also	reverse	the	list	with	the	command,	list.reverse().	This	will	present	the	list
in	a	reverse	manner.

Example:

>>>	grades	=	[85,	88,	92,	88,	97]

>>>grades.reverse	()

>>>print	(grades)

[97,	92,	88,	88,	85]

	

Extending	a	list
list.extend(L)

You	can	extend	or	concatenate	(add)	one	list	to	another.	If	you	have	numerous	relate	data,
you	can	organize	the	and	combine	them	to	save	space.

Example	#1:

>>>studentNames=	[“ Osmond ” , “ Trump ” , “ Delano ” , “ Lauren ”]

>>>studentSections=[“ a ” , “ b ” , “ c ” , “ d ”]

>>>studentNames.extend(studentGrades)

>>>print	studentNames

[‘ Osmond ’ , ‘ Trump ’ , ‘ Delano ’ , ‘ Lauren ’ , ‘ a ’ , ‘ b ’ , ‘ c ’ , ‘ d ’]

Removing	items	from	a	list
	

list.remove(x) –	 this	 is	 used	 to	 remove	 a	 value	 from	 the	 list	 that	 is	 first	 and	 has	 the
specified	valueof	that	you ’ re	looking	for.	Naturally,	a	delete	(del)	statement	can	be	used
too	to	remove	the	element	or	value	from	the	list;	similar	to	slicing	strings.

Example	#1:

>>>studentNames	=	[“Osmond”,	“Trump”,	“Delano”,	“Lauren”]

>>>studentNames.remove(“Trump”)

>>>print	(studentNames)

[‘ Osmond ’ , ‘ Delano ’ , ‘ Lauren ’]

	

You	can	also	use	the	keyword,	del,	to	delete	items	in	a	list.	You	can	delete	all,	except	the
last	item.

Example	#2:	(Using	the	same	data	above)

>>>del	studentNames	[:1]

>>>print	studentNames

[‘Lauren’]

	

You	can	also	delete	all,	except	the	first	element.	You	only	have	to	indicate	this	inside	the
square	brackets.

Example	#2:

>>>>>>del	studentNames	[1:]

>>>print	studentNames

[‘ Osmond ’]

Example	#3:	(delete	all	except	last	3	elements)

>>>del	studentNames	[:3]

>>>print	studentNames

[‘Trump’,	‘Delano’,	‘Lauren’]

Reminders:

Again,	 the	 lines	with	 the	prompts,	>>>,	 are	 the	Python	 statements,	while	 the
lines	 without	 the	 prompts	 >>>,	 are	 the	 output	 or	 result	 after
pressing ‘ enter ’ , ‘ run ’	or ’	execute ’ .	Thus,	even	without	the	hash(#)	stating
it ’ s	an	output,	 if	 the	 statement	has	no	arrow-prompt,	you	have	 to	know	 that
it ’ s	either	an	output	or	a	comment.

	

I	hope	you	will	remember	this	as	you	read	the	given	examples.

	

	

Chapter	8:		Using	Lists	as	Queues	and	Stacks
	

There	are	various	 things	you	can	do	 to	your	 list.	This	 is	one	of	 its	advantages	as	a	data
type.	Aside	from	being	mutable,	you	can	modify	or	manipulate	it	to	serve	your	purpose;
two	of	them	is	using	lists	as	queues	or	stacks.

Lists	as	queues
	

Lists	can	also	be	used	as	queues.	The	elements	 in	 the	 list	are ‘ queued ’	 (in	 line)	 for	 the
addition	of	a	new	element,	either	at	the	start,	or	at	the	end	of	the	list.

The	keyword	for	this	is	collection.deque.

Example:

>>>from	collections	import	deque

>>>namesqueue=	[“ Lovely ” , “ Vincent ” , “ Dean ” , “ Landon ”]

>>>namesqueue	=	deque([“ Lovely ” , “ Vincent ” , “ Dean ” , “ Landon ”])

>>>namesqueue.append(“ James ”)

	

In	 queues,	 usually,	 the	 first	 to ‘ arrive ’	 is	 the	 first	 to ‘ go ’ .	 In	 the	 example
above, “ Lovely ”	was	the	first	to	arrive,	therefore	she	goes	first	in	the	queue,	and	then	so
on.

Using	 the	 list.popleft()	 or	 queue.popleft()	 command,	 you	 can	 remove	 elements	 that	 you
don ’ t	need	in	your	list.

If	you	dequeu	the	namesqueue,	using	popleft(),	the	result	will	be:

>>>namesqueue.popleft()

deque	([‘ Vincent ” , “ Dean ” , “ Landon ” ,	James ’])

	

Lists	as	stacks
	

Lists	can	be	used	as	stacks,	as	well.	It ’ s	the	opposite	of	queues,	in	the	sense	that	the	last
element	in,	will	be	the	first	element	out.

The	command	key	in	retrieving	elements	at	the	top	of	the	stack	is	pop().

	

Example	#1:

>>>myStack	=	[1,	2,	3,	4,	5]

>>>myStack.append(6)

>>>print	(myStack)

[1,	2,	3,	4,	5,	6]

>>>myStack.pop()

6

>>>print	(myStack)

[1,	2,	3,	4,	5]

	

Reminders:

Keep	in	mind	that	many	of	the	rules	in	data	modification	are	similar	with	strings	and	lists.
If	 you	 know	 the	 rules	 for	 strings,	 then,	 more	 or	 less,	 you	 have	 an	 idea	 of	 the	 rules
applicable	for	lists	too.

	

List	comprehension
	

List	 comprehension	 will	 help	 you	 create	 lists	 with	 relative	 ease,	 especially	 new	 lists
coming	from	other	operations.	This	is	a	Python	feature	that	is	of	great	help	to	coders.

Example:

>>>celsius	[3,	6,	9,	11,	13,	15]

>>>for	x	in	range	[6]	:

celsius.append	(x**2)

>>>celsius

[9,	36,	81,	121,	169,	225]

This	example	is	just	to	show	you	how	it	works.

	

Parts	of	list	comprehension
	

Learning	 about	 the	 parts	 of	 list	 comprehension	 will	 be	 helpful	 in	 your	 Python	 coding.
These	are:

1.	 Sequence	set	-	this	is	where	values	are	inputted.
2.	 Variable	–	this	will	specify	the	items	of	the	inputs.
3.	 Predicate	–	this	is	an	expression	that	you	may	or	may	not	include.
4.	 Output	 –	 this	 will	 be	 the	 result	 of	 the	 #3	 process,	 which	 will	 respond	 to	 the

input ’ s	needed	process.

More	examples:

Example	#2:

	>>>grams	=	[10,	5.2,	8,	30]

>>>milligrams	=	[((float(1000)*x)	for	x	in	grams]

>>>print(mmilligrams)

[10000,	520,	8000,	30000]

	

You	may	want	 to	practice	creating	your	codes	on	your	own	with	your	 IDLE	 interpreter.
Discover	how	a	few	tweaks	can	produce	different	results.	Enjoy!

Chapter	9:		Tuples	Definition	and	Purposes
	
Tuples	are	Python	sequence	data	types	that	are	immutable	(unchangeable).	They	are	like
strings	and	numbers.	But,	 it ’ s	 important	 to	note	 that	 they	 can	 contain	mutable	objects.
The	tuple	contains	Python	objects	or	various	values	that	can	be	heterogenous –	meaning
they	can	be	data	of	different	types.

Similar	to	strings	and	lists,	the	items/elements/values	in	tuples	are	separated	by	commas.
Tuples	are	enclosed	in	parentheses,	while	lists	are	enclosed	in	square	brackets.

Purposes	of	tuples
	

Contains	heterogenous	data	-	unlike	lists,	tuples	generally	contain	heterogenous	data	that
can	be	organized	properly.

Example	#1:

>>>myTuple=	(“ Smallville ” ,	2010,	3456)

>>>print	(myTuple)

(‘ Smallville ’ ,	2010,	3456)

	

Example	#2:

>>>tup1	=	(2478,	1810, “ Midtown	St.	Arizona ”)

>>>print	(tup1)

(2478,	1810, ‘ Midtown	St.	Arizona ’)

	

Example	#3:	(nested	tuples)

>>>tup2	 =	 ((2478,	 1810, “ Midtown	 St.	 Arizona ”),	 (910,	 234, “ Lafayette	 St.
Arizona ”))

	

Updating	tuples
	

You	can	update	 tuples	by	creating	new	 tuples	 from	the	values	of	existing	 tuples.	Again,
this	is	due	to	the	fact	that	they	are	immutable	or	unchangeable.

Example:

>>>id	=	(1021,	1022,	1023,	1024)

>>>surnames	=	(“ Walters ” , “ Bell ” , “ Getty ” , “ Dalton ”)

>>>employees	=	id	+	surnames

>>>print	(employees)

(1021,	1022,	1023,	1024, ‘ Walters ’ , ‘ Bell ’ , ‘ Getty ’ , ‘ Dalton ’)	#output

	

Slicing	indexes	of	tuples
	

You	can	access	values	of	indices	or	indexes	by	slicing	the	tuples	using	the	square	brackets
[].	 In	 some	 way,	 the	 process	 is	 similar	 to	 slicing	 strings.	 You	 identify	 the	 index	 and
specify	inside	the	brackets	what	you	want	to	slice.

Example	#1:

>>>tup1	=	(“ Romeo ” , “ Grey ” , “ Zainne ”)

	

If	 you	 want	 to	 slice	 or	 access “ Grey ”	 only	 from	 tup1,	 you	 can	 create	 your	 Python	 3
syntax	this	way:

>>>print	(“ tup1[1]	: “ ,	tup1[1])

tup1[1]	=	Grey

	

Example	#2:

>>>tup2	=	(1,	2,	3,	4,	5,	6,	7,	8,	9)

	

If	you	want	to	access/slice	only	indexes	2	to	6,	you	can	create	your	code	this	way:

>>>print	(“ tup1[2:7]	:	“ ,	tup1[2:7])

tup2[2:7]:	[2,	3,	4,	5,	6]

	

	

Most	common	built-in	tuple	functions
	

len(tuple)	–	this	function	returns	the	length	of	the	tuple,	or	the	number	of	elements	in	the
tuple.

Example:

>>>tup1	=	(“ Romeo ” , “ Grey ” , “ Zainne ”)

>>>print	(len(tup1))

3

	

max(tuple)	–	this	function	returns	the	element	in	the	tuple	with	the	maximum	or	highest
value.

Example:

	>>>tup1,	tup2	=	(“ Romeo ” , “ Grey ” , “ Zainne ”),	(367,	650,	310)

>>>print	(“ Max	value	element		:	“ ,		max(tup1))

>>>print	(“ Max	value	element		:	“ ,		max(tup2))

Max	value	element		:	Zainne	#for	tup1

Max	value	element		:	650	#for	tup2

	

min(tuple)	–	this	function	is	the	opposite	of	max(tuple).	It	returns	the	minimum	value	of
the	elements	in	the	tuple.

Example	#1:

>>>tup1	=	(“ engineering ” , “ sciences ” , “ accounting ” , “ education ”)

>>>print	(“ min	value	element	:	“ ,	min(tup1))

min	value	element	:	accounting

	

Example	#2:

>>>tup2	=	(20,	35,	10,	15,	45)

>>>print	(“ min	value	element	:	“ ,	min(tup2))

min	value	element	:	10

	

cmp(tuple1,	tuple2)	–	this	function	is	used	in	comparing	the	elements	of	two	tuples.

Example:

>>>tup1	=	(1956, “ Indiana ”)

>>>tup2	=	(2010, “ New	York ”)

>>>print	cmp(tup1,	tup2)

>>>print	cmp(tup2,	tup1)

	

When	you	press	the ‘ enter ’ , ‘ run ’ ,	or ‘ execute ’	keys,	the	returns	(output)	will	be:

1

-1

	

tuple(seq)	–	 this	built-in	function	converts	a	 list	 into	a	 tuple.	But	 take	note	that	 lists	are
mutable	and	tuples	are	immutable.

Example:

>>>myList	=	[“ toothbrush ” , “ toothpaste ” , “ mouthwash ” , “ mouthwash ”]

>>>tuple1	=	tuple(myList)

>>>print	(“ tuple	elements	:	“ ,	tuple1)

tuple	 elements	 :
(“ toothbrush ” , “ toothpaste ” , “ mouthwash ” , “ mouthwash ”)

	

Most	common	basic	tuple	operations
	

The	manipulation	of	 tuples	 is	much	 the	same	way	as	manipulating	your	strings.	But	 for
clarity ’	sake,	I	will	summarize	them	for	you.	As	education	experts	say: “ Repetition	and
application	promotes	better	retention ” ,	so	here	goes:

Concatenation

Uses	 the	 plus	 sign	 +	 to	 indicate	 that	 you	 intend	 to	 add	 tuples.	 You	 can	 also	 call	 this
updating	your	tuples.

Yes,	it ’ s	similar	 to	 the	process	 that	applies	 to	strings	but	 this	 time,	 tuples	are	 involved.
It ’ s	all	about	adding	existing	tuples	to	create	a	new	tuple.

Example:

>>>tuple1	=	(1920, “ Madrid ” , “ Velasco ”)

>>>tuple2	=	(2016, “ England ” , “ Burbanks ”)

>>>tuple3	=	(tuple1	+	tuple2)

>>>print	(tuple3)

(1920, “ Madrid ” , “ Velasco ” ,	 2016, “ England ” , “ Burbanks ”)	 #output	 or
results

Membership

Uses ‘ in ’	or ‘ not	in ’	 to	determine	 if	value	 is	 found	or	not	found	in	 the	elements	of	 the
specified	tuples.

Example:

>>>5	in	(4,	5,	6)

True

	

Repetition

Uses	asterisk	*	to	repeat	an	element	or	a	tuple.

	

Example	#1:

>>>print	(“ Love	is	the	answer. ” ,	345)	*	5

(“ Love	 is	 the	 answer. ” ,	 345, “ Love	 is	 the	 answer. ” ,	 345,	 “ Love	 is	 the
answer. ” ,345, “ Love	is	the	answer. ” ,	345, “ Love	is	the	answer. ” ,	345)

	

Example	#2:

>>>print(“ Jonathan ” ,	240, “ Washington	DC ”)*2

(“ Jonathan ” ,	240, “ Washington	DC ” , “ Jonathan ” ,	240, “ Washington	DC ”)

	

Length

Uses	 len(tuple)	 to	 determine	 the	 length	 of	 the	 characters	 or	 elements	 in	 a	 tuple.	 Please
refer	to	the	example	above	about	builtin	functions.

Iteration

Iterates	an	element	or	elements	contained	in	a	tuple.	You	can	refer	to	the	chapter	on	strings
to	learn	more	about	how	the	process	works.

Example:

>>>for	x	in	(4,	5,	6)		:		print	(x,	end= “	“)

4	5	6

	

Reminders:

The	prompts	will	indicate	that	you	have	to	input	your	Python	statement.	Before	returns	or
outputs	can	appear.

Again,	 the	 statements	 without	 arrow-prompts	 are	 the	 returns	 or	 outputs,	 and	 after	 the
Python	 code	 or	 statements,	 remember	 to	 press ‘ enter ’ , ‘ run ’	 or ‘ execute ’	 to	 obtain
returns.

	

	

	

	

	

	

	

	

Chapter	10:		File	Management
	

File	management	 is	 crucial	 in	Python	3	programming.	Proper	organization	of	your	 files
will	allow	faster	accomplishment	of	your	computer	language	programming	tasks,	such	as
storing,	retrieving	and	manipulating	your	text	files.

Python	3	is	compatible	with	most	operating	systems,	such	as	Windows	10,	centOS	7,	Mac
OS	X,	and	Ubuntu	16.04.	Python	can	also	accommodate	various	file	formats,	such	as	txt,
HTML,	CSV,	JavaScript	and	JSON.

But	before	you	can	learn	managing	your	Python	files,	here	are	some	basic	codes	that	you
should	learn:

Basic	codes
	

“w”	=	writing

“r”	=	reading

“x”	=	creating	and	writing	to	a	new	file

“r+”	=	reading	and	writing	to	the	same	file

“a”	=	appending	to	a	file

Reading	a	file
	

When	reading	a	file,	all	you	have	to	do	is	open	or	access	it	with	open()	function,	which	is
the	default	command.

>>>open()

>>>open	(filename,	mode)

	

Example:

fobj	=	open(“filename.txt”,	“r”)

	

You	can	also	omit	the	“r”	(read).

fobj	=	open(“filename.txt”)

	

or:

filename.read()

filename.readline()	#Allows	you	to	read	the	file	per	line

filename.readlines()	#allows	you	to	read	the	lines	in	the	txt	file.

	

Closing	files
	

To	close	the	file,	all	you	have	to	do	is	use	the	file	object	method	close	(fobj).

Example:

fobj.close()

The	complete	syntax	is:

fobj	=open(“filename.txt”)

for	line	in	fobj:

							print	(line.rstrip	())

fobj.close()

	

After	running	this	code,	the	file	will	open	and	you	can	read	to	your	heart’s	content.	If	the
file	is	short	(example	a	quote),	you	can	use	this	code	instead.

>>>quote	=	open(“filename.txt”).readlines()

>>>print	(quote)

	

Or

>>>quote	=	open	(“filename.txt”).read()

>>>print	(quote[:])

Writing	into	a	file
	

You	can	easily	write	into	a	file	too.	All	you	have	to	do	is	to	use	the	method	write(),	which
is	of	the	file	handle	object.

	

Example:

fh.	(“filename.txt”,	“w”)

fh.write	(“Live	and	let	live.”)

fh.close()

	

Creating	a	file
	

If	you	want	to	create	a	txt	file,	you	can	do	this	by	opening	the	text	editor.	Remember	to
name	the	file	properly,	so	you	can	access	it	without	difficulties	later	on.

Let’s	 say	 you	 wanted	 to	 create	 a	 txt	 file	 for	 your	 research	 topics,	 and	 named	 it
researchtopicsdm.txt

After	you	have	opened	the	file	and	named	it,	you	can	now	add	content	to	your	file.

Example:	researchtopicsdm.txt

Diagnosis	of	Diabetes	Mellitus	(DM)

Symptoms	of	DM

Laboratory	Tests

Treatment	of	DM

Effects	of	Insulin

Prognosis	of	DM

	

After	you’re	done	adding	content,	remember	to	save	your	file	in	your	computer	where	you
can	retrieve	it	quickly	using	Python	3.

Next,	you	can	now	open	the	file	in	Python	using	the	methods	discussed	above.		Remember
to	open	first	a	path	for	the	file	in	Python	with	the	code:

>>>researchtopicsdm_file	=	open	(path,	“r”)

	

You	must	also	create	a	title	variable	(“Research	Topics	DM”)	in	Python	for	the	file,	and
store	it	as	a	string.

	

Example:

>>>title	=	“Research	Topics	DM/n”

Hence:

>>>path	=	‘/users/usersname/researchtopicsdm.txt’

>>>researchtopicsdm_file	=	open	(path,	“r”)

>>>Research	=	researchtopicsdm_file.read()

	

Since	 the	 variables	 for	 title	 and	 Research	 Topics	 for	 DM	 were	 created,	 you	 can	 now
proceed	to	create	your	new	file.	Be	careful	 though	in	naming	your	new	file	because	if	a

previous	file	has	the	same	name,	it	could	be	deleted	if	you	fail	to	remedy	the	problem.

	

Hence,	the	new	path	would	be:

>>>path	=	‘/users/usersname/new_researchtopicsdm.txt’

Then,	you	can	open	your	new	file	using	the	function,	open(),	with	the	‘w’	mode.	The	‘w’
mode	is	important	to	signify	that	you	are	intending	to	write	and	not	to	read	only.

	

Example:

>>>new_path	=	‘/users/usersname/new_research.txt’

>>>new_research	=	open(new_path,	“w”)

	

Next,	you	can	start	writing	to	your	new	file	by	using	the	file	operation,	<file>.write()	with
the	new	file	consisting	of	a	single	parameter	of	a	string.

	

You	may	want	to	use	Python’s	print	function,	print(),	too,	so	you	can	view	your	file.

	

Example:

>>>new_researchtopicsdm.write(“Research	Topics	DM”)

>>>print	(title)

	

And

>>>	new_researchtopicsdm.write(research)

>>>print(research)

	

Don’t	forget	to	close	your	files	after	working	on	them,	using	the	codes:

>>>researchtopicsdm_file.close()

>>>new_	research.close()

	

As	previously	mentioned,	you	may	lose	your	old	similarly	named	file,	if	you	don’t.

	

Example	of	your	complete	code,	which	will	appear	this	way:

	

	 >>>path	=	‘/users/usersname/researchtopicsdm.txt’

>>>researchtopicsdm_file	=	open	(path,	“r”)

	

>>>new_path	=	‘/users/usersname/new_research.txt’

>>>new_research	=	open(new_path,	“w”)

	

>>>Title	=	“Research	Topics	on	DM”

>>>	new_researchtopicsdm.write(“Research	Topics	DM”)

>>>print	(title)

	

>>>	new_researchtopicsdm.write(research)

>>>print(research)

	

>>>researchtopicsdm_file.close()

>>>new_	research.close()

	

You	can	double	check	if	your	new	file,	researchtopicsdm.txt’,	has	been	created	in	Python,
by	accessing	it.

If	it	shows,	then	you	have	successfully	created	a	new	file.

Pickle	module
	

The	pickle	module	is	used	in	converting	Python	object	hierarchies	into	byte	streams.	You
can	 employ	 pickling	 and	 unpickling	 (serialization	 and	 flattening)	 of	 data	 or	 object
structures,	when	you	want	to	use	the	data	resulting	from	it.

	

Dump	method

	

This	method	is	used	in	dumping	objects	with	the	command:

	

>>>pickle.dump(obj,		file	[,protocol,		*,		fix_imports	=True])

	

Note:

You	can	reread	dumped	objects	by	using	the	method:

pickle.load(file).	pickle.load

	

Example:

>>>import	pickle

>>>religions	=	[“Confucianism”,	“Islam”,	“Christianity”,	“Buddhism”]

>>>fh	=	open(“data.pk1”,	“bw”)

>>>pickle.dump(religions,	fh)

>>>fh.close()

	

Note:

fh	=	file	handle	object

	

	

Reminder:

A	file	has	to	be	opened	first	before	you	can	read	or	write.

	

Shelve	module
	

The	shelve	module	is	a	dictionary-like	object	that	uses	strings	as	keys	to	resolve	the	issues
of	 the	 pickle	module.	 The	 pickle	module	 can	 only	 pickle	 one	 object	 at	 a	 time	 and	 this
problem	is	done	away	with	the	shelve	module.

It’s	relatively	easy	to	use	the	shelve	module.	All	you	have	to	do	is	to	import	it	and	open	it,
and	you	can	proceed	smoothly	with	your	commands.

	

Example:

>>>import	shelve

>>>s	=	shelve.open(“name	of	shelve”)

	

There	will	 be	 a	 return	 error	 if	 the	 file	 is	 not	 a	 shelve	 file,	 but	 shelve	will	 allow	you	 to
create	a	new	file.

After	using	the	file,	remember	to	close	it	with	the	command:

>>>s.close()

	

Example:

>>>import	shelve

>>>doct	=	shelve.open(“MyEnlightenment”)

>>>doct	[“Revelation”]	=	{“book”:“Revelation”,	“author”:”John”,
“year”:”8196”}

>>>doct	[“Romans”]	=	{“book”:”Romans”,	“author”:”Paul”,	“year”:”5556”}

>>>doct	[“Corinthians”]	=	{“book”:”Corinthians”,	“author”:”Paul”,
“year”:”5354”}

	

The	 file	 could	 go	 on	 and	 on.	 Now,	 if	 you	 want	 to	 extract	 a	 value	 from	 the
“MyEnlightenment”	 shelve,	 you	 can	promptly	do	 that	 by	 importing	 the	 shelve,	 opening
the	file	and	extracting	the	 information.	If	you	want	 to	retrieve	the	 information	about	 the
author	of	“Romans”,	here’s	how	you	can	do	it.

	

Example:

>>>import	shelve

>>>doct	=	shelve.open(“MyEnlightenment”)

>>>doct	[“Romans”]	[“author”]

‘Paul’	#This	is	the	output.

	

Reading	and	writing	binary	data
	

When	reading	and	writing	binary	data	you	can	use	 the	open()	function	with	 the	rb	(read
binary),	 or	wb	 (write	 binary)	mode.	An	 example	 of	 binary	 data	 are	 those	 files	 used	 by
sounds	and	images.

These	 binary	 sequence	 types	 include	 bytes,	 bytearray	 and	 memoryview.	 The	 byte	 and
bytearray	are	maintained	by	memoryview.

	

Bytes	–	are	 interpreted	as	binary	data	 that	can	only	be	applicable	with	ASCII.	They	are
types	of	object	that	are	immutable	with	values	ranging	from	0-255	(8-bits)	stored.

Retrieval	of	 the	values	 is	similar	 to	obtaining	the	values	of	 indexes	from	an	array.	Also,
they	 share	 some	 similarities	with	 strings	 literals.	 Likewise,	with	 the	 construction	 of	 the
Python	statements.	The	only	difference	is	the	addition	of	the	prefix	b	to	the	bytes	literals.
Single,	double	and	triple	quotes,	or	triple	quoted	quotes,	(‘	‘	‘	or	“	“	“),	with	matching	end
quotes,	can	be	used.

Bytes	can	come	in	the	form	of	literals,	iterable	of	integers,	zero-filled	bytes	objects	or	the
binary	data	from	the	buffer	protocol.

	

Example:

>>>bytes	([30,	30,	30])

	

	

Bytearrays	–	on	the	other	hand	contain	mutable	objects.		

	

Struct	module
	

The	struct	module	interprets	bytes	as	binary	data	and	uses	these,	together	with	bytearrays,
to	implement	the	Buffer	Protocol.

The	Buffer	Protocol	is	usually	wrapped	by	a	large	memory	buffer,	and	is	used	for	special
purposes	that	include	analysis	of	integers	or	math	expressions	and	image	processing.

It	has	two	sides,	the	buffer	interface	on	the	side	of	the	producer,	and	the	consumer’s	side.

The	 struct	module	 is	 composed	 of	 various	 functions	 and	 exceptions.	 Here	 are	 some	 of
them:

1.	 struct.calcsize(fmt)	–	returns	size	of	struct

	

2.	 struct.unpack_from(fmt,	buffer,	offset=o)	–	indicates	that	unpacking	from	buffer
will	start	from	offset.	This	will	be	based	on	the	fmt	(format	string).

	

3.	 struct.unpack	–	indicates	the	unpacking	of	the	buffer	from	buffer.

	

4.	 struct.error	–	returns	description	of	exception	errors.

	

5.	 struct.pack_into(fmt,	buffer,	offset,	v1,v2,…)	–	offset	indicates	the	position,	fmt
–	 indicates	 the	 format,	 buffer	 is	 where	 bytes	 are	 written	 and	 v1	 and	 v2	 are	 the
packed	values.

	

6.	 struct.iter_unpack(fmt,	buffer)	 –	 unpack	 this	 using	 string	 fmt,	 from	 the	 buffer
buffer.

	

There	 are	 still	 several	 things	 that	you	could	 learn	 from	unpacking.	However,	 they	are	 a
little	bit	complex,	so	let’s	stop	here.

	

Chapter	11:		Debugging	and	Profiling
	

Learning	how	to	profile	and	debug	your	codes	is	a	skill	that	would	be	useful	to	you	as	a
Python	 language	 programmer.	The	 debugger	 and	 profiler	 are	 vital	 parts	 of	 your	 Python
standard	library.

Debuggers
	

A	 debugger	 allows	 you	 to	 go	 through	 your	 codes	 to	 analyze	 them	 and	 set	 certain
breakpoints.	It	will	help	you	in	evaluating	what’s	wrong	with	your	code.	It’s	also	useful	in
providing	source	code	listing.

(pdb)

This	is	the	prompt	used	in	calling	for	your	debugger	module.

Example:

>>>import	pdb;		pdb.set_trace()

	

Most	common	debugger	commands
	

1.	 help	[command]	–	this	can	be	used	in	critical	instances	when	you	need	help.	The
‘help	 exec’	will	 help	you	obtain	help	 from	 the	 command	 function,	 and	 the	 ‘help
pdb’	will	display	the	full	pdb	module’s	documentation.

	

2.	 tbreak	 [([filename:]	 lineno	 |	 function)	 [,	 condition]]	 –	 this	 sets	 the	 temporary
breakpoint.	 They	 are	 assigned	 reference	 numbers	 that	 you	 can	 use	 and	 refer	 to
whenever	necessary.

	

3.	 break	lineno	|	function)	[,	condition]],	or	break	[([filename:]	lineno	|	function)
[,	condition]]	–	this	set	breakpoints	in	the	current	file	or	where	it	is	specified.

	

4.	 disable	[bpnumber		[bpnumber		.		.		.]]	–	this	can	disable	breakpoints,	but	they
can	be	enabled	anew	with	a	proper	step.

	

5.	 enable	 [bpnumber	 	 [bpnumber	 	 .	 	 .	 	 .]]	 –	 this	 can	 enable	breakpoints	 in	your
codes.

	

6.	 clear	 	 [filename:	 lineno	 |	 	 bpnumber	 	 [bpnumber	 	 .	 	 .	 	 .]]	 –	 this	 clears	 all
breakpoints.	But	a	confirmation	is	asked	first.	This	is	done	without	the	arguments.

	

7.	 up	 [count]	 –	 this	 indicates	 that	 you	 should	move	 the	 frame’s	 level	 in	 the	 stack
trace	down.	This	will	depend	on	the	count	specified.

	

8.	 down[count]	–	this	indicates	that	you	should	move	the	frame’s	level	in	the	stack
trace	down.	This	will	depend	on	the	count	specified.

	

9.	 bpnumber	[condition]	–	you	can	set	a	condition	for	the	breakpoint.	This	condition
should	be	true	for	the	breakpoint	to	proceed.

	

10.	 where	–	 the	current	 frame	can	be	 indicated	by	an	arrow.	You	can	print	 the	stack
trace,	accordingly.	

	

Profilers
	

Profilers	are	modules	used	in	benchmarking	the	Python	code	against	the	C	code.	This	is
done	through	the	cProfile	and	the	profile.	The	data	or	statistics	provided	by	the	profilers
are	called	profiles.	These	are	data	on	the	program’s	length	and	frequency	of	execution.

You	 utilize	 the	 timeit	 module,	 as	 well.	 It	 deals	 with	 specific	 portions	 of	 your	 Python
statements	 that	you	want	 to	diagnose.	The	most	commonly	used	profiler	 is	 the	cProfile.
Because	 of	 its	 usefulness	 in	 long-running	 programs,	 it’s	 preferred	 by	 some	 language
programmers.

Example	#1:

>>>import	cProfile

>>>import	re

	

Example	#2:

>>>import	cProfile

>>>import	hashlib

>>>cProfile.run	(“hashlib.md5(‘abcdefghijkl’).digest()”)

6	function	calls	in	1.500	CPU	per	seconds

	

When	 you	 press	 execute,	 the	 results	will	 show	 the	 return	 statements	 or	 the	 output.	The
results	from	this	code	will	help	you	evaluate	the	speed	of	your	code.

This	will	allow	you	 to	access	cProfile	and	use	 its	 functionality.	There	are	also	functions
provided	by	cProfile	and	profile	modules.	These	are:

1.	 profile.run(command,	filename=None,	sort=	-1)

	

This	 is	 passed	 on	 to	 the	 exec().	 The	 diagram	 below	 shows	 the	 flowchart	 of	 the
process:

profile.run

								

					exec()

												if	no	file	name	is	found)

					stats	(controls	sorting	of	data)

	

	

2.	 profile.runctx(commands,	globals,	locals,	filename=None)

Operates	similarly	to	profile.run,	but	it	provides	the	command	strings’	global	and
local	dictionaries.

	

Stats	Class
	

This	is	used	to	analyze	the	profile	obtained	by	the	profiler.

>>>class.pstats.Stats(*filenames	or	profile,	stream=sys.stdout)

	

This	will	provide	an	overview	of	all	 the	statistics	of	 the	processes	 for	evaluation.	To	be
able	 to	 do	 this,	 it	 uses	 methods,	 such	 as	 add(*filenames)	 –	 additional	 information;
strip.dirs()	–	modifies	the	object	by	stripping	some	portion;	dump_stats(filename)	–	object
is	save	in	filename;	sort_stats(*keys)	–	stats	objects	are	sorted	according	to	specifications;
and	the	different	print	commands.	

These	 objects	 are	 still	 undergoing	 evolution,	 so	 be	 on	 the	 lookout	 for	 the	 latest
developments.

	

Chapter	12:		The	Significance	of	Python	Dictionaries
	
Python	dictionaries	are	crucial	in	creating	and	executing	proper	syntax	and	statements.

Learning	the	vital	role	of	the	built-in	dictionary	of	Python	will	help	you	vastly	in	creating
your	codes.

Since	 you	 are	 beginner,	 I	 will	 try	 to	 simplify	 the	 complex	 terms	 to	 let	 you	 understand
better,	so	you	could	apply	your	knowledge	effectively.

Python	 3	 has	 some	 differences	 from	 Python	 2,	 but	 you	 can	 easily	 learn	 them	 by
understanding	the	idea.	Let ’ s	start	with	the	simple	terms	in	the	Python	dictionary.

	

Maps
Python	3	dictionaries	have	maps	(similar	to	lists).	You	can	only	access	the	values	of	these
maps,	 if	 you	 use	 the	 correct	 and	 unique	 key	 for	 each	map.	 Imagine	 that	 the	 map	 is	 a
padlock	that	you	could	only	open	with	one	specific	key	found	within	one	dictionary.

The	 keys	 can	 be	 immutable	 data	 types,	 such	 as	 strings	 and	 numbers.	You	 can	 imagine
maps	as	key:value	pairs	that	you	can	store	and	extract	later	on	when	you	need	the	data.

They	are	usually	enclosed	with	curly	braces	{	},	with	the	key	preceding	the	values.

Example	#1:

>>>myfriends=	{ “ Paul ” :	35,	“ Dan ” :	26, “ Lou ” :	28}

>>>myfriends=	[“ Lea ”]	=	40

	 >>>print	(myfriends)

{ “ Paul ” :	35, “ Dan ” :	26, “ Lou ” :	28, “ Lea ” :	40}

Example	#2:

You	can	add	more	key:value	pairs,	if	you	want,	by	following	the	process	above:

>>>{ “ Paul ” :	35, “ Dan ” :	26, “ Lou ” :	28, “ Lea ” :	40}

>>>myfriends=	[“ Mandy ” :	23]

>>>	print	(myfriends)

{ “ Paul ” :	35, “ Dan ” :	26, “ Lou ” :	28, “ Lea ” :	40, “ Mandy ” :	23}

Creating	an	empty	dictionary
	

You	 can	 create	 an	 empty	 dictionary	 by	 using	 a	 pair	 of	 curly	 braces	 {	 }.	 You	 can	 add
key:value	 pairs	 inside	 the	 curly	 braces	 to	 create	 initial	 key:value	 pairs.	 Remember	 to
separate	each	pair	with	a	comma.	Be	aware	that	their	keys	are	also	unique.

Example	#1:

>>>importantdays=	{ “ birthday ” :	20, “ graduation ” :	10, “ marriage ” :	29}

>>>print	(importantdays)

{ ‘ birthday ’ :	20, ‘ graduation ’ :	10, ‘ marriage ’ :	29}

	

Example	#2:

>>>mydates=	{ “ Mom ” :	11, “ Dad ” :	15, “ Ned ” :	25, “ Carla ” :	29}

>>>print	(mydates)

{ ‘ Mom ’ :	11, ‘ Dad ’ :	15, ‘ Ned ’ :	25, ‘ Carla ’ :	29}

	

You	can	use	the	dict()	to	create	dictionaries	directly	from	key:value	pairs.	

Example:

>>>dict([(“ Mom ” ,	11),	(“ Dad ” ,	15),	(“ Ned ” ,	25),	(“ Carla ” ,	29)])

{ ‘ Mom ’ :	11, ‘ Dad ’ :	15, ‘ Ned ’ :	25, ‘ Carla ’ :	29}

	

Also,	you	can	make	use	of	arguments	to	create	dictionaries.

Example:

>>>dict(“ Mom ”	=	11, “ Dad ”	=	15, “ Ned ”	=	25, “ Carla ”	=29)

{ ‘ Mom ’ :	11, ‘ Dad ’ :	15, ‘ Ned ’ :	25, ‘ Carla ’ :	29}

	

Deleting	an	entry	from	the	dictionary
	

You	can	delete	a	key:valuepair	from	dictionary	by	using	the	function ‘ del ’ .

Example:

>>>mydates=	{ “ Mom ” :	11, “ Dad ” :	15, “ Ned ” :	25, “ Carla ” :	29}

>>>	del	mydates[“ Carla ”]

>>>print	(mydates)

{ “ Mom ” :	11, “ Dad ” :	15, “ Ned ” :	25}

	

Accessing	and	sorting	keys	from	the	dictionary
	

You	can	access	all	the	keys	from	the	dictionary	by	using	the	command:

list(d.keys())

This	will	display	all	the	keys	present	in	your	dictionary.

Example:

>>>list(mydates.keys())

[‘ Mom ’ , ‘ Dad ’ , ‘ Ned ’ , ‘ Carla ’]

	

You	can	sort	them	out	using	the	keyword	for	sorting	data:

sorted.(d.keys())

Example:

>>>sorted(mydates.keys())

[‘ Carla ’ , ‘ Dad ’ , ‘ Mom ’ , ‘ Ned ’]

	

Finding	specific	keys
	

You	can	find	specific	keys	by	using	the ‘ in ’	keyword.

	

Example	#1:

>>> “ Carla ”	in	mydates

True

	

Example	#2:

>>> ” Dennis ”	in	mydates

False

	

The	 dictionary	 is	 a	 source	 of	 significant	 resources.	You	 can	 always	 call	 on	 the	module
help,	when	you	can ’ t	seem	to	understand	the	terms.	Know	how	to	use	the	resources	well,
so	that	your	Python	experience	will	be	a	blast.

	

	

Chapter	13:		More	about	Loops
	

Loops	are	imperative	when	you	want	to	iterate	elements	or	items	in	statements.	In	Python
3,	you	can	execute	the	statements	as	many	times	as	you	want,	sequentially.

This	method	is	of	great	help	in	big	organizations,	where	huge	data	have	to	be	dealt	with
competently	and	repeatedly.

Using	loops	to	enumerate	values
	

for	loops

You	can	enumerate	values	and	find	the	indexes	of	the	values	simultaneously	by	using	the
function,	enumerate().	This	is	applicable	most	specifically	in	sequences.

Example:

>>>for	i(index),	v	(value)	in	enumerate	([‘ head ’ , ‘ shoulders ’ , ‘ knees ’ , ‘ toes ’])	:

>>>print	(i,	v)

0	head

1	shoulders

2	knees

3	toes

	
Using	loops	to	retrieve	keys(k)	and	values(v)	from	dictionaries
You	 can	 use	 loops,	 while	 using	 the	 items	 method	 to	 retrieve	 keys	 and	 values	 from
dictionaries.

Example:

>>>queens	=	{“Elizabeth”:	“the	aristocrat”,	“Victoria”	:	“the	Virgin”,
“Margaret”:	“the	prudent”,	“Christina”:	“the	pure”}

>>>print	(k,	v)

Elizabeth	the	aristocrat

Victoria	the	Virgin

Margaret	the	prudent

Christina	the	pure

Using	loops	simultaneously	over	two	or	more	sequences
	

You	can	use	the	zip	function	to	perform	this.	You	can	do	this	by	using	the	following
syntax:

Example:

>>>questions	=	[‘church’,	‘school’,	‘room’]

>>>answers	=	(‘at	the	corner’,	‘behind	the	church’,	‘on	the	third	floor’)

>>>for	q,	a	in	zip	(questions,	answers)	:

>>>print	(“Where	is	the	{0}	?		It	is	{1}.	’	.format	(q,	a))

	

Output

Where	is	the	church?	It	is	at	the	corner.

Where	is	the	school?	It	is	behind	the	church.

Where	is	the	room?	It	is	on	the	third	floor.

	

Using	loops	with	‘while’	statements
	

‘While’	 statements	 are	 frequently	 used	 in	 looping.	 It	 breaks	 out	 the	 loop	 at	 some	 point
when	 the	 statement	 is	 not	 true	 –	 several	 times.	The	Boolean	 expression	 (answerable	 by
True	or	False)	is	used	in	this	instance.	Here	how	it	is	done.

Example:

>>>	x	=	0

>>>	while	x	==6	:	

x	+=	1

print	(x)

When	you	execute	this	code,	the	result	would	be:

7

>>>

It	is	done	by	adding	1	to	the	value	that	is	equivalent	to	6.	Apparently,	only	6	==6.	So,	the
loop	stops	at	6.	When	1	is	added,	the	answer	is	7.	The	run	stops	at	this	point	because	all
the	rest	of	the	numbers	are	not	equal	to	6.

You	can	break	out	of	the	while	loop	when	the	Boolean	statement	becomes	False.

Example:

>>>condition	=	1

1

>>>s=	0

0

>>>print	(“Hello,	type	your	number	to	get	the	sum.”)

Hello,	type	your	number	to	get	the	sum.

>>>print	(“Type	0	to	quit.”)

Type	0	to	quit.

>>>while	condition	!=	0

print	(“Sum:	“,	s)

x	=	float(input(“Number:	“))

s=	s	+	condition

print	(“Total:		“,	s)

This	is	what	happens	when	you	use	the	interactive	IDLE	interpreter.	The	return	statement
comes	out	immediately	when	you	hit	enter.

Hence,	 you	 may	 want	 to	 compose	 your	 code	 in	 the	 editor	 shell.	 So,	 you	 can	 edit	 it
properly	without	being	interrupted	by	prompt	returns.	See	code	below.

Example:

condition	=	1

s	=	0

print	(“Hello,	type	your	number	to	get	the	sum.”)

print	(“Type	0	to	quit.”)

while	condition	!=	0

print	(“Sum:	“,	s)

x	=	float(input(“Number:	“))

s=	s	+	condition

print	(“Total:		“,	s)

You	can	now	click	run,	and	then	run	module	in	your	Python	shell.	When	the	whole	code	is
executed,	the	following	will	appear	in	your	interactive	shell:

Hello,	type	your	number	to	get	the	sum.

Type	0	to	quit.

Sum	=	0

Number:

In	 the	 ‘while’	 statement	 above,	 the	 user	 is	 being	 asked	 to	 input	 a	 number	 that	 the
interpreter	will	add	to	any	previous	number	to	get	the	sum.

When	a	user	types	his	number	the	sum	will	appear	instantly	below	the	word	‘Number’.

For	example,	 the	user	 typed	13,	 the	Python	 interpreter	will	 compute	and	add	 this	 to	 the
previous	number	to	obtain	the	sum:

Hello,	type	your	number	to	get	the	sum.

Type	0	to	quit.

Sum	=	0

Number:	13

13

	

This	 ‘while’	 statement	 can	 run	 on	 and	 on,	 unless	 the	 user	 inputs	 0,	 or	 the	 Boolean
statement	becomes	False,	(condition	=	0),	and	not	(condition	!=	0).

	It	is	only	when	the	code	is	executed,	run	or	entered	that	the	output	would	appear.

Example	#2:

x	=	2

while	x	>	2	:

print	(x)

x	=	x	+=	2

In	this	example	the	loop	will	go	on	and	on,	as	long	as	the	value	of	x	is	more	than	2.	This
would	mean	that	the	process	will	go	on	forever.	The	+=	signs	signifies	that	2	is	added	to
the	value	of	x.	These	are	all	control	flow	statements,	generally	used	in	loops.	More	will	be
discussed	in	the	next	chapter.

You	can	create	an	endless	loop	by	using	the	statement:

While	true:

print	(“hello”)

This	 is	an	infinite	 loop.	It	will	print	‘hello’	until	you	break	the	loop.	You	can	do	this	by
typing	control	c,	and	the	loop	will	break	after	a	few	seconds.

	

As	 you	 can	 see,	 Python	 codes	 can	 make	 life	 easier	 for	 anyone	 with	 its	 ‘magical’
commands	that	can	create	incredible	apps	in	a	snap.	You	have	seen	how	a	4-line	‘while’
statement	can	create	an	endless	addition	capabilities	of	your	Python	shell.

Imagine	this	occurring	in	a	larger	scale,	and	you	can	appreciate	the	advantages	of	knowing
the	Python	language.														

	

Chapter	14:		Using	Control	Flow	Statements
	

Control	flow	tools	are	important	in	creating	Python	control	flow	statements	and	functions.
These	are	 tools	 that	can	assist	you	 in	manipulating	your	data,	and	are	usually	used	with
loops.

range	()	function	statements
	

This	is	a	built-in	function	used	in	iterating	a	sequence	of	numbers.

Example	#1:(for –	in)

>>>m	=	[0,	1,	2,	3,	4,	5,	6]

>>>for	m	in	range	(6):

print	(m)

0

1

2

3

4

5

	

If	you	have	noticed,	the	end	point	of	the	range	is	not	part	of	the	resulting	sequence.	The
range	given	is	6	but	the	result	displayed	is	up	to	#5	only,	albeit,	the	generated	numbers	are
6.

Therefore,	if	your	range	is:	range	(10),	the	return	values	are:

0

1

2

3

4

5

6

7

8

9

You	 have	 10	 values	 generated	 but	 the	 end	 point	 given	 is	 not	 included	 in	 the	 generated
values.

	

You	can	also	start	the	sequence	at	another	number.

Example	#1:

>>>range(4,		10):

The	results	will	be	the	numbers	or	indices	from	4	to	9)

	

Example	#2:

>>>	for	x	in	range(6,	15):

[6,	7,	8,	9,	10,	11,	12,	13,	14]

These	numbers	may	be	presented	in	a	vertical	manner.

	

range	(),	len	()	statements
	

You	can	use	these	statements	to	iterate	the	indices	of	a	sequence.

Example:

>>>m	=	[0,	1,	2,	3,	4,	5,	6]

>>>for	i	in	range(len(m)):

						 if	i	%	3	==	1:	continue

print(m[i])

	

	

For	statements
	

For	statements	are	used	to	iterate	the	items	in	a	list,	in	sequence.

Example	#1:

>>>names	=	[“ Castro ” , “ Fell ’ , “ Tebow ” , “ Parker ”]

>>>for “ Fell ”	in	names

print	(“ Fell ”)

‘ Fell ’

	

if,	elif,	if-else	statements
	

The	if,	elif,	and	if-else	statements	are	considered	as	condition	statements.	A	condition	is
set	that	has	to	be	met.

if	statement:

Example:

>>>x	=	15

>>>if	x	>	10

print	(“ improved ”)

improved			#output. “ improved ”	was	printed	because	the	value	of	x	is	more

than	10.

	

Let ’ s	use	the	previous	example	for	if-else:

>>>def	len(x,y):

>>>		If	x	<	y:

return	x:

else:

return	y

break	and	continue	statements
	

The	break	statement	is	usually	used	to	stop	or	break	loops	(iterations),	while	the	continue
statement	allows	the	loop ’ s	succeeding	iteration	to	continue.

Example:

>>>names	=	[“ Castro ” , “ Fell ’ , “ Tebow ” , “ Parker ”]

>>>for	name	in “ names ”

Ifname	is	== ” Fell ” :

break

>>>print	(“ current	names:	“ ,		name)

If	 the	 condition	 is	True,	 the	break	will	 occur.	 If	 the	 condition	 is	False,	 there	will	 be	no
break.

The	execution	of	 the	command	will	continue	 in	 the	next	 immediate	statement	 following
the	loop.

Reminders:

After	 the	 loop	 statement,	 white	 spaces	 (4	 spaces)	must	 be	 follow	 before	 the
next	entry.	The	next	input	should	follow	the	indentation	if	it ’ s	part	of	the	loop
statement.	 However,	 Python	 has	 already	 remedied	 this	 by	 automatically
adjusting	the	interpreter ’ s	indentation,	without	you	doing	it.	If	the	statement	is
not	part	of	the	loop	statement,	you	can	adjust	the	indentation	to	the	original.

	

Example:

	

>>>def	len(x,y):

>>>		If	x	<	y:

return	x:	#This	should	be	indented	4	spaces

									else:

	 return	y	#This	should	be	indented	4	spaces

But	don ’ t	worry,	Python	did	it	for	you,	as	soon	as	it	senses	the	loop	statements,	it	adjusts
accordingly	when	you	hit	enter.

Chapter	15:		Defining	Functions
	

You	can	define	a	function	by	using	the	keyword	def.	You	can	use	the	general	code	syntax:
def	function_name():

General	code	syntax
def	function_name	(parameter	or	argument	list):

statements	(indented)

	

A	return	statement	will	end	the	execution	of	 the	code,	and	it	can	consist	of	one	or	more
returns,	depending	on	the	Python	script	or	code	that	you	have	inputted.

Example	#1:

>>>def	grams(w_in_milligrams):

														“””returns	the	weight	in	grams”””

																		return(w_in_milligrams	/	1000)

					for	w	in	(500,	250,	100,	245,	320,	40,	432):

>>>print	(w,	“:		“,	grams,	(w))

	

When	you	hit	execute,	run	or	enter,	the	output	will	be:

milligrams 		grams

500	:			0.500

250	:			0.250

100	:			0.100

245	:			0.245

320	:			0.320

		40	:			0.040

432	:			0.432

	

The	output	above	is	based	on	the	fact	that	1,000	mg	(milligrams)	is	==	to	1	g	(gram).

In	 addition,	 you	 can	 define	 functions	 making	 use	 of	 the	 combination	 of	 three	 forms:
keyword	arguments,	default	arguments	values,	and	arbitrary	argument	lists.

	

Keyword	arguments
	

The	kwarg=value	form	can	also	be	used	to	call	functions.	The	parameters	(param)	identify
the	arguments	(arg).

	

Example:

>>>def	printdata	(str)

>>>def	printdata	(name,	state)	:

“This	prints	the	data	into	this	function”

print	(“Name:		“,	name)

print	(“State:		“,	state)

printdata	(name	=	“Walters”,	state	=	“Washington”)

return

	

Output:

Name:		Walters

State:		Washington

	

Default	argument	values
	

These	 are	 usually	 used	 only	 once	 to	 call	 a	 function.	 These	 are	 arguments	 that	 assume
default	values	for	arguments	that	don’t	have	values	that	are	provided	in	the	function	call.

	

Example:

>>>def	printdata	(str)

>>>def	printdata	(gender,	age	=	40)	:

“This	prints	the	data	into	this	function”

print	(“Gender:		“,	gender)

print	(“Age:		“,	age)

printdata	(gender	=	“female”)

return

	

When	you	execute	the	code,	this	will	be	the	return	statement:

Gender	:	female

Age	40

The	age	has	taken	the	default	value	of	the	call	function,	which	is	40.

	

Arbitrary	argument	lists
	

You	can	call	 this	 function	making	use	of	 a	number	of	 arguments.	Furthermore,	you	can
make	function	calls	using	keyword	parameters.	But	these	parameters	must	not	be	used	as
positional	arguments.

The	general	code	for	this	type	of	function	is:

>>>def		functionName	([formal_args,]		*	var_args_tuple)	:

Example:

>>>def	state	(**args)	:

print	(args)

state()

{	}

>>>state(WY=”Wyoming”,	AL=”Alabama”,	AK=”Alaska”)

{‘AK’	:	‘Alaska’,	‘WY’	:	‘Wyoming’,	‘AL’	:	‘Alabama’}

Defining	or	creating	your	own	functions
	

You	can	define	your	own	functions	too.	The	general	Python	code	is:

>>>def	func()	:

The	 colon	 after	 the	 statement	 denotes	 that	 the	 statement	 has	 ended.	 After	 the	 function
statement,	you	can	also	input	another	function/statement	in	the	body	of	the	code.

This	is	how	you	can	define	your	own	functions:

	

1.	 State	the	function	keyword,	def,	followed	by	the	name	of	your	function.

	

Example:

	

>>>def	functionname

	

2.	 Next,	 after	 the	 function	 name,	 insert	 an	 open	 parenthesis	 and	 write	 your
argument/s,	 and	 add	 a	 closing	 parenthesis,	 and	 then	 a	 colon.	 Don’t	 forget	 this
important	step.

	

Example:

	

>>>def	functionname(arg)	:

	

3.	 Next,	add	your	Python	statements	that	you	want	to	run.

	

Example:

	

>>>def	functionname(arg)	:

statement	1

statement	2

	

When	you	press	‘enter’	once,	the	prompt	arrows	will	still	not	appear	because	the
interpreter	is	waiting	for	you	to	enter	or	input	another	statement.

	

If	you	press	‘enter’	twice,	the	interpreter	will	understand	that	you’re	done	with	the
statements,	and	the	prompt	arrows	will	then	appear.

	

	

4.	 Now,	you	may	want	to	add	the	print()	statement	or	the	return	statement,	whichever
you	prefer.

	

Example:

	

>>>def	functionname(arg)	:

statement	1

statement	2

print	(functionname)

	

Let’s	say	you	want	a	function	in	classifying	a	set	of	items,	whether	they	are	True	or	False,
and	you	named	it	TF.

	

Example	#1:

>>>def	TF(x):

if	x	==	‘True’:

print	(x,	“is	correct”)

else:

print	(x,	“is	wrong”)

	

Example	#2:

>>>def	func()	:

								print	(“Python	is	cool!”)

								print	(“I	love	Python.”)

								print	(“See	you	around.”)

	

>>>func	()

Python	is	cool!

I	love	Python.

See	you	around.

>>>

	

	

Example	#3:

>>>def	func2(a,	b,	c)	:

return	a	+	b	+	c

	

When	you	call	func2	anew,	with	values	assigned	to	your	parameters,	 the	 interpreter	will
solve	the	math	equation	automatically,	when	you	press	enter.	See	example	below:

>>>def	func2(101,	215,	328)

644

>>>

	

or

>>>def	func2(a,	b,	c)

print	(“a=	“,	a,	“b	=	“,	b,	“c=	“,	c)

	

Thus,	if	you	call	the	function,	and	you	assign	values,	this	will	be	the	return	statement:

>>>func2(2,	4,	6)		#These	are	the	values	that	you	are	assigning	to	a,	b,	c.

a	=	2		b	=	4		c	=	6

You	 have	 to	 assign	 values	 to	 each	 parameter.	 If	 you	 don’t,	 an	 error	 will	 occur.	 If	 you
cannot	 assign	 values,	 you	 can	 use	 a	 default	 value	 for	 the	 last	 two	parameters.	The	 first
parameter	must	always	have	an	assigned	value.

All	you	have	to	do	is	to	insert	the	values	after	the	parameter	in	the	def	function	statement.

Example:

>>>def	func2(a,	b=3,	c=4)

print	(“a=	“,	a,	“b	=	“,	b,	“c=	“,	c)

	

	

	

Based	on	 the	code	above,	you	can	simply	assign	a	value	 to	 ‘a’,	 and	 the	 rest	will	be	 the
default	value.

Example:

>>>func2(2)

a	=	2		b	=	3		c=	4		#All	the	values	appeared	even	if	you	have	inputted	one

only,	because	you	have	already	assigned	the	default

values.

	

When	you	assign	values	to	the	parameters,	ensure	that	 there	are	corresponding	values	to
all	of	the	arguments	or	parameters.	If	you	don’t,	you	will	be	obtaining	return	errors.

The	 ability	 to	 create	 user-defined	 functions	will	 allow	 you	 to	 create	 functions	 that	 you
specifically	require	for	your	data	or	files.	The	advantage	is	that	you	create	the	code	only
once,	but	you	can	use	it	for	as	long	as	you	want.

If	you	want	some	modifications	in	the	code,	you	can	quickly	modify	it,	according	to	your
preferences.	No	sweat!

Your	user-defined	functions	will	be	an	essential	aspect	of	the	smooth	manipulation	of	your
Python	files.

Use	it	to	your	own	advantage.

Chapter	16:		Lambda	Function	in	Python	3
	

The	lambda	function/operator	in	Python	3	is	a	one-line	function	that	does	not	use	def	and
return,	as	commonly	done	in	Python.	Hence,	it ’ s	simpler	and	easier	to	use.

This	function	is	a	short,	anonymous	one,	generally	used	with	reduce(),	filter(),	and	maps(
).	If	you	prefer	it,	the	list	comprehension ’	can	also	be	used.

General	statement	for	lambda	function
	

The	general	statement	in	using	the	lambda	function	is:

lambda	argument_list:		expression

The	arguments	are	separated	by	commas,	and	the	expression	is	a	math	expression.

	

Example	#1:

In	adding	a	and	b	variables	using	lambda,	your	syntax	will	be:

>>>sum	=	lambda	x,	y:	x	+	y

>>>sum	=	(5,8)

13

The	traditional	Python	syntax	is:

>>>def	add	x,	y:

>>>return	x	+	y

	

List	comprehension	for	the	same	statement:

>>>print	(x	+y)

Example	#2:

The	lambda	operator	can	also	be	used	in ‘ if	-	else ’	statements.

>>>len	=	lambda	x,	y:x	if	x	is	<y	x	else	y

>>>print	(len(3,9))

If	you	use	the	traditional	method,	it	would	be	a	longer	statement:

>>>def	len(x,y):

>>>		If	x	<	y:

return	x:

else:

return	y

>>>print	(len(3,9))

	

In	 the	 statement	above,	we	have	 the	 length	of	 the	variables	x	and	y.	We	want	 to	obtain
only	values	 that	 are	 lesser	 than	x.	So,	 if	 the	value	 is	 lesser	 than	x,	 it	will	 appear	 in	 the
returns,	if	not,	the	value	of	y	will	appear.

Obviously,	 the	 lambda	 statement	 or	 code	 is	 shorter,	 and	 can	 be	 stated	 using	 one-liner

statements	only.

The	list	comprehension	statement	for	example	#2,	which	is	shown	above:

>>>print	([x	for	x	in	len	if	x	<	y])

	

Filter	function
	

This	function	filters	out	items	in	a	sequence	to	create	a	new	list	by	using	conditions.	Thus,
the	filter	function	has	to	have	the	first	argument	as	a	function	(f),	with	a	Boolean	return
value	(True	or	False).	This	is	applied	to	each	element	in	the	list.

Example:	(using	lambda	operator)

>>>num	=	[3,6,10]

>>>print	(list(filter(lambda	x:x<10,	num)))

[3,6]

	

In	the	example	above,	the	argument	is	that	if	x	is	lesser	than	10,	num	(number)	will	appear
in	the	results.

Undoubtedly,	the	lambda	makes	life	easier	for	Python	coders.

	

Reduce	function
	

The	 reduce	 function	 is	 responsible	 in	 reducing	 a	 list	 to	 a	 single	 value.	 However,	 this
function	has	been	dropped	from	Python	3.

The	lambda	function	and	the	list	reduction	methods	make	Python	statements	shorter,	but
equally	reliable	as	a	programming	language.

	

	

Chapter	17:		Modules	and	Packages	and	Their	Functions
	

You	 should	 learn	 how	 to	 arrange	 your	 files	 (classes,	 function	 and	 variables)	 into	 an
organized	filing	system.	You	can	create	your	own,	or	use	the	builtin	modules.

	

What	are	modules?
	

You	can	organize	your	files	using	modules.	Modules	are	groups	of	data	that	you	can	refer
and	 retrieve	 promptly	 when	 required.	 These	 can	 contain	 some	 Python	 codes	 that	 you
needed	at	that	moment.

	

What	are	packages?
	

Packages	 are	 like	 folders.	 They	 contain	 two	 or	 more	 modules,	 which	 are	 organized
properly.	They	use	the	__init__.py	file	name	(empty	file).

	

Using	modules
	

To	use	modules,	you	have	to	import	them	first.	You	can	import	them	using	this	code:

>>>import	module_name

	

When	you	use	the	module,	you	have	to	use	the	general	code/statement:

>>>module_name.function

You	can	also	directly	call	for	it	with	this	code:

>>>from	module_name	import	function

You	can	then	use	the	function.

>>>function()

This	will	return	the	value,	and	not	an	error.

	

Two	ways	in	importing	packages
	

Absolute	import

You	can	use	absolute	import	with	any	of	these	general	codes:

import	package.module

obj	=	package.module.ClassA()

	

from	package.module	import	Class	A()

import	ClassA()

	

from	package	import	module

obj	=module.ClassA()

	

>>>from	module_name	import*

#This	statement	will	 import	all	of	 the	modules	because	of	 the	asterisk.	However,
you	will	 encounter	 problems,	 if	 there	 are	 duplicate	modules.	These	 are	modules
with	the	same	names.

	

Relative	imports

You	can	import	the	class	of	one	module	to	another	module	in	the	same	package.	Use	the
code	below.

Example	of	Python	code:

from.module1	import	ClassA

obj	=	ClassA()

Example	#2:

from..module2	import	ClassB

obj	=	ClassB()

	

Dates	and	Time
	

There	 are	 two	 types	of	Date	 and	Times	objects.	These	 are ‘ na ï ve ’	and ‘ aware.	 Times
and	dates	are	reliably	done	through	the	datetime	module.

The	 difference	 between	 the	 two	 types	 is	 that ‘ aware ’	 is	 aware	 of	 its ‘ environment ’ ,
regarding	 the	 time	 zone,	 necessary	 time	 adjustments	 and	 similar	 aspects	 of	 the	 time	 it
exists	in.	

On	the	other	hand, ‘ na ï ve ’	–	just	as	the	term	implies –	is	na ï ve	of	its ‘ environment ’ .
It	doesn ’ t	contain	ample	information	to	operate	on	its	own.	It	has	to	be	dependent	on	the
device ’ s	program.

The	 datetime	 module	 contains	 the	 timezone	 class	 (UTC).	 We	 have	 also	 the	 time.time
function,	which	can	provide	the	date	and	time	in	ticks	or	seconds.	It	can	be	complex	for
beginners,	so	I	will	try	to	present	it	in	the	simplest	manner.

Not	all	topics	will	be	covered	and	discussed.	The	more	advanced	data	about	this	topic	are
not	included.		

	

The	following	are	the	constants	that	are	exported	by	the	datetime	module:

datetime.MINYEAR

This	 is	 equivalent	 to	 1.	 This	 indicates	 that	 the	 returns	will	 include	 the	 years	way,	way
back,	 even	 during	 the	 years	 that	 Python	 was	 still	 not	 in	 existence.	 It ’ s	 the	 smallest
amount	of	year	provided	by	a	date	object	or	a	datetime	object.

>>>datetime.time	=	datetime.time(hours=0,	minute=0)	:

	

If	you	want	to	extract	or	obtain	the	current	time,	you	can	use	these	codes:

	

Example	#1:

>>>import	datetime

>>>current_time	=	datetime.datetime.now()

>>>print	(“{:%H:%M} ” .format(current_time))

11:28

	

Example	#2:

>>>import	datetime

>>>datetime.datetime.now()

>>>print(now.year)

2016

	

Example	#3

>>>import	datetime

>>>datetime.datetime.now()

>>>print	(time.localtime())

11:28

Or

>>>import	datetime

>>>print	(“ Local	Current	time	:	“ ,	localtime)

11:28

	

	

datetime.MAXYEAR

This	 is	 equivalent	 to	 9999.	 This	maximum	 range	 ensures	 that	 scores	 of	 years	will	 pass
until	 the	method	or	function	becomes	obsolete	or	 ineffective.	It ’ s	 the	largest	amount	of
year	provided	by	a	date	object	or	a	datetime	object.

	

Classes	related	to	datetime	module
	

There	are	classes	related	to	your	datetime	module.	These	are:

datetime.datetime	 –	 as	 specified,	 this	 class	 combines	 the	 date	 and	 time	 including	 the
smallest	 time	 measurement,	 which	 is	 microseconds.	 In	 addition,	 the	 seconds,	 minutes,
hours,	 days,	 months	 and	 year	 are	 also	 provided.	 Information	 provided	 by	 the	 tzinfo
subclass	can	provide	the	UTC	time	offsets.

datetime.date	 –	 this	 class	 provides	 the	 year,	 month	 and	 day	 based	 on	 the	 Gregorian
calendar.

datetime.tzinfo	 –	 this	 class	 allows	 the	 adjustment	 of	 time	 according	 to	 the	 programs
preferences.	An	example	is	when	you	want	to	adjust	the	time	to	be	in	congruence	with	the
daylight-saving	time	and	timezone.	Thus,	it	acts	as	an	abstract	that	you	can	promptly	call,
whenever	necessary.

datetime.timezone	 –	 this	 class	 is	 utilized	 to	 implement	 the	 changes	 made	 by
datetime.tzinfo	and	present	it	as	a	fixed	offset	from	the	UTC.

datetime.timedelta	 –	 this	 class	 expresses	 the	 time	difference	between	datetime	or	 date,
time	events,	and	is	expressed	in	the	smallest	time	measurement,	which	is	microseconds.

There	are	 time.delta	objects	 that	you	must	be	 familiar	with.	The	essential	 fact	 to
remember	 is	 this	 object	 indicates	 the	 difference	 between	 two	 sets	 of	 dates	 and
times,	the	least	time	duration	is	in	microseconds	(1,000	of	a	millisecond).

When	creating	your	Python	code	for	time.delta,	keep	in	mind	that	it ’ s	your	choice
to	include	arguments	or	not.	Take	note	too	that	arguments	are	given	0	as	a	default
value.

	

datetime.time	 –	 this	 class	 is	 similar	 to	 datetime.datetime,	 only	 it	 does	 not	 include	 the
year,	 month	 and	 day	 but	 only	 the	 time	 in	 hours,	 minutes,	 seconds,	 microseconds	 and
tzinfo.

	

Time	module
	

In	versions	of	the	Python	3	series,	this	time	module	can	provide	various	methods	to	obtain
the	data	or	 function	you	need	with	 regards	 to	 time	(Windows	and	Unix).	Take	note	 that
epoch	is	the	point	when	the	time	starts.	Obviously,	that	would	be	equivalent	to	zero.

This	topic	may	be	too	complicated	for	beginners;	therefore,	we	will	discuss	only	the	most
commonly	use	methods.	You	can	always	continue	to	learn	about	the	rest	as	you	go	along
with	your	learning	process.

	

Most	common	methods	used	for	time	module
	

1.	 time.clock()

	

This	returns	 the	 time	in	seconds,	with	 the	value	expressed	as	floats.	You	can	use
time.clock	for	various	purposes.

	

Example:

	

>>>import	time

>>>def	procedure()	:

	

2.	 time.sleep(t	in	secs)

	

This	is	the	duration	of	time	in	seconds	that	the	clock	suspends	its	operation.	As	the
term	implies,	time ‘ sleeps ’ ;	it	takes	a	nap	for	a	few	minutes	or	seconds.

	

Example:

	

>>>import	time

>>>print	(“ Start	:		%s ”		 %	time.ctime())

Start	:	Wed	Dec	21	3:23:15	2016	#output

>>>time.sleep(10)

>>>print	(“ End		:		%s ”	%	time.ctime())

End	:	Wed	Dec	21	3:23:25	2016	#output

	

	

3.	 time.ctime([secs])

	

This	converts	time	to	localtime.	The	conversion	is	in	seconds.

	

	

	

Example:

	

>>>import	time

>>>print	(“ ctime: “ ,	time.ctime())

ctime	:		Wed	Dec	21	3:36:20	2016	#output	or	result

	

	

4.	 time.time()

	

This	returns	the	current	time	in	seconds	(UTC)	since	the	epoch	(0).	The	time	noted
would	be	the	last	time	you	have	called	the	method.

	

	

	

Example:

	

>>>import	time

>>>print	(“ time.time:	%	f ” ,	%	time.time())

Time.time()	=	#This	will	give	the	values	in	seconds	in	a	floating

point

	

	

5.	 time.localtime([secs])

	

This	method	is	handy	in	converting	the	number	of	seconds	to	local	time.	You	may
want	this	method,	when	you	happen	to	be	in	another	locale	at	any	given	time.

	

Example:

	

>>>import	time

>>>print	(“ time.localtime()	:	%s ”	,	time.localtime())

#This	command	will	print	the	time	in	local	time.

	

	

6.	 time.tzset()

	

This	method	 resets	 the	 time	 based	 on	 timezone	 variables.	 	 Use	 this	 properly	 to
ensure	that	there	are	no	errors	in	the	time	obtained.

	

Example:

	

>>>import	time	or	datetime

>>>def	reset_tz()	:

>>>			os.environ(‘ TZ ’)	= ‘ UTC ’

>>>			time.tzset()

>>>print	((time.strftime(‘%X	%x	%Z’))

#The	return	will	be	the	re-set	time.

	

	

7.	 time.gmtime([secs])

	

This	method	converts	the	time	in	seconds	to	a	structured	time	(struc_time)	in	UTC.
This	is	becoming	popular	because	of	its	reliability.

	

	

8.	 time.strftime(format[,	t])

	

This	 method	 converts	 a	 struc_time	 or	 tuple	 to	 gmtime	 or	 local	 time.	 There	 are
symbols	 or	 codes	 that	 are	 used	with	 time.strftime	 that	 you	may	 not	 be	 familiar
with.

	

9.	 time.struc_time

	

There	are	common	symbols	or	strf	(string	format)	directives	that	you	can	usually
encounter,	when	dealing	with	datetime	modules.

	

This	object	has	a	TimeTuple	or	a	tuple	interface	that	handles	time	with	9	numbers.

	

	

Index Attributes Values	or	Ranges

0 year	(4	digits) 2016

1 month 1	to	12

2 day 1	to	31

3 hour 0	to	23

4 minute 0	to	59

5 second 0	to	61

6 weekday 0	to	6;	Monday	is
0

7 day	of	year 1	to	366	Julian
day

8 daylight	savings library	determines
DST

	

	

	

Basic	codes	and	their	meanings
%d	 =	 day	of	 the	month	 expressed	 in	 decimal	 numbers.	Take	note	 that	 0	 is	 the	 starting
number,	 applicable	 to	 single	 digit-numbers.	Know	 the	 difference	 between	 this	 code	 and
%-d.

	

%-d	=	day	of	the	month	expressed	as	decimal	numbers;	the	range	is	from	1	to	31.	These
numbers	correspond	to	the	days	of	the	month,	such	as	Jan	1,	Jan	2	up	to	Jan	31.	Likewise,
it	is	applicable	to	the	other	months.

	

%x	 =	 date	 of	 locale,	 represented	 by	 month/day/year	 (12/21/2016).	 If	 the	 numbers
correspond	to	single	digits.

Example:	Let ’ s	say	for	example,	January	1,	2017,	the	format	would	be:

01/01/2017

	

%X	=	time	of	locale,	presented	by	hour:minutes:seconds.

Example:

06:17:02		(6	hours;	17	minutes;	2	seconds)

	

%c	=	date	and	time	of	locale,	presented	by	day,	month,	date,	time	(hour:minutes:seconds),
year.

Example:

Wed	Dec	21	06:17:02	2016

	

%z	=	time	zone	for	UTC	offset,	presented	by	+HHMM	or	-HHMM	forms.	When	you	use
this	form,	double	check	the	entries	to	avoid	errors;	you	can	easily	commit	errors.

%M	=	minutes	expressed	with	0	if	single-digit.	(01,	02,	03, …).	Take	note	that	there ’ s
also	a	small	m	that	has	another	meaning.

%-M	=	minutes	that	can	be	expressed	in	decimal	numbers.	(1,	2,	3, …)

%m=	month	presented	with	0,	if	single	digit.	It	ranges	from	1	to	12.	(01,	02,	03, …)

%-m	=	month	presented	in	decimal	numbers.	It	ranges	from	1	to	12	but	occurs	as	is.	(1,	2,
3, …).You	don ’ t	pad	it	with	0.

%a	=	abbreviated	name	of	weekday,	Mon,	Tue,	Wed,	Thu,	Fri,	Sat,	Sun.	This	is	preferred
over	%A	because	the	names	used	are	brief	and	can	be	promptly	inserted.

%A	=	full	name	of	weekday,	Monday,	Tuesday,	Wednesday,	Thursday,	Friday,	Saturday,
Sunday	based	on	locale.

%w	 =	weekday	 starting	with	 Sunday	 as	 0.	 It	 follows	 that	Monday	 is	 1,	 Tuesday	 is	 2,
Wednesday	is	3,	Thursday	is	4,	Friday	is	5,	and	Saturday	is	6.

%b=	month ’ s	abbreviated	name	(locale),	Jan,	Feb,	Mar,	Apr,	May,	Jun,	Jul,	Aug,	Sep,
Oct,	Nov,	Dec.	This	form	is	used	more	by	coders	because	of	their	brevity.

%B=	 month ’ s	 full	 name	 (locale),	 January,	 February,	 March,	 April,	 May,	 June,	 July,
August,	September,	October,	November,	December.

%y	=	year	without	century.	It	just	displays	the	last	two	digits.	See	examples	below.

Examples:

16

For	2016

17

for	2017

	

%Y	=	Year	with	century.

Examples:

2016

2017

	

%p	=	indicates	whether	AM	or	PM	(locale)

%I	=	hours,	based	on	the	12-hour	clock.	Zero	is	added	before	the	number	for	single	digit
numbers.

Examples:

01,	02,	03,	04,	05,	06,	07,	08,	09,	10,	11,	12

	

%-I	=	hours,	based	on	the	12-hour	clock.	Presented	as	is:

	

Examples:

1,	2,	3,	4,	5,	6,	7,	8,	9,	10	11,	12

	

%H	=	hours,	based	on	the	24-hour	clock.	Zero	is	added	before	single	digit	numbers;	the
zero	adds	as	a	pad	to	present	a	two-digit	number.

Examples:

01,	02,	03,	04,	05,	06,	07,	08,	09,	10,	11,	12,	13,	14,	15,	16,	17,	18,	19,	20,	21,

22,	23,	24

01:20

	

%-H	=	hours,	based	on	the	24-hour	clock	and	are	presented	as	is.

	

Examples:

1,	2,	3,	4,	5,	6,	7,	8,	9,	10	11,	12,	13,	14,	15,	16,	17,	18,	19,	20,	21,	22,	23,	24

1:20

%S	=	seconds,	with	single-digit	numbers	presented	with	zero.

	

Examples:

01,	02,	03, …

	

%-S	=	seconds,	presented	as	is,	and	as	decimal	numbers.

Examples:

1,	2,	3, …

	

%f	=	microseconds	in	decimal	numbers,	000000.	You	can	use	this	whenever

needed.

%j	=	day	of	the	year,	based	on	the	365	days	of	the	year.	It	can	be	expressed	as	a	decimal
number.

%-j	=	day	of	the	year	as	decimal	number,	based	on	the	365	days	of	the	year.

%U	 =	week	 number	 of	 the	 year,	 expressed	 as	 decimal	 numbers.	 There	 are	 roughly	 91
weeks	in	a	year,	starting	with	week	0.	In	this	method,	Sunday	is	the	first	day	of	the	week.
Likewise,	it	can	be	considered	as	the	first	week	number	of	the	year.

%W	=	week	number	of	 the	year,	 expressed	as	decimal	points.	Based	on	 the	number	of
weeks	in	a	year,	in	which	Monday	is	considered	as	the	first	day	of	the	week.	This	is	true	in
this	particular	method.

	

Hopefully,	 these	 codes	 could	 help	 you	 understand	 more	 how	 the	 Python	 syntax	 for
datetime	were	created.	When	you	read	these	complex	codes,	it	can	be	daunting	at	first,	but
you	can	try	practicing	with	some	of	the	dates,	and	you	will	get	the	hang	of	it	eventually.

	

Reminders:

Keep	in	mind	that	datetime	is	a	module	that	you	can	import	to	help	you	access
dates	and	times.	Maximize	its	use.

	

You	can	format	your	date	and	 time	using	 this	simple	method:	 ‘{:%Y-%m-%d
%H:%M}’

	

	

Example:

	

‘{:%Y-%m-%d	%H:%M}’.format(datetime(2016,	12,	21,	6,	5,))

#This	indicates	that	the	datetimewill	be	formatted	as	2016 –	12 –	21,	06:05

	

It ’ s	 recommended	 to	 adjust	 your	 time	 to	 locale	 time,	 so	 you	 will	 be	 truly
aware	of	the ‘ real ’	time	around	you.

	

Always	consider	 the	 environment	 that	 the	 time	 is	 existing	 in,	when	adjusting
the	time.

	

	

	

Chapter	18:		Creating	Input	Programs	in	Python
	

Creating	programs	in	Python	3	is	similar	to	Python	2 ’ s	processes.	You	have	to	save	your
file	every	time	you ’ re	done	because	Python	does	not	save	it	automatically.	You	have	to
do	it	yourself.

The ‘ input ’	code	 is	one	of	 the	most	commonly	used	program	in	Python.	 It	 requires	 the
user	 to	 participate	 in	 the	 process	 because	 the	 user	 has	 to ‘ input ’	 a	 certain	 data	 for	 the
program	to	continue.

	

Steps	in	creating	the	input	program
	

Step	#1 –	Open	your	editor

IDLE	 is	 Python ’ s	 interactive	 shell,	 where	 you	 can	 type	 your	 codes.	 From	 your
downloaded	Python	3,	open	your	shell	and	click	New	Window,	and	then	New	File.	This
will	prompt	another	shell	to	appear.	This	shell	is	the	editor	and	is	not	interactive.	You	can
press	 enter	 and	 continue	 typing	 your	 code,	 without	 the	 shell	 interpreting	 your	 code
prematurely.

This	is	advantageous	for	beginner ’ s	because	most	often,	 they	commit	mistakes.	Don ’ t
worry,	 though.	 As	 a	 beginner,	 you	 are	 expected	 to	 commit	 mistakes.	 Consider	 your
mistakes	as	stepping	stones	to	your	learning	process.

	

Step	#2	–	Write	your	input	program

You	can	write	whatever	your	program	you	want.	In	this	particular	case,	it ’ s	an	input
program.	Your	input	program	can	be	simply	written	this	way:

>>>input()	or		>>>input(“ Name:	“)

When	you	press	enter	in	your	interactive	Python	shell,	this	will	appear:

Name:

You	have	to	type	your	name.

Name:	Michael

Michael

Step	#3	-	Save	your	new	file

Before	 you	 run	 your	 Python	 code,	 you	 have	 first	 to	 save	 it	 because	 your	 code	will	 be
deleted	as	soon	as	you	close	the	shell.	Simply	click ‘ Save	As ’	to	save	your	file.	Take	note
that	it	should	be	a	.py	file.	You	may	want	to	save	it	in	a	place	that	is	easily	accessible	from
your	computer.

	

Step	#4 –	Run	your	code

	

You	can	now	run	your	code	repeatedly,	as	long	as	you	have	saved	it.	You	can	assign	a
variable	(for	example	x)	for	your	input	program.

You	could	also	modify	it	later,	when	you	want	to	change	some	aspects	of	your	code.

	

Sample	codes
	

Example	#1:

x	=	input	(“ Name:	“)

print	(x)

	

Example	#2:

>>>input	(“ Age:	“)

					print	(x)

	

Since	the	answer	is	definitely	a	number,	you	may	want	to	indicate	in	your	code	that	the
value	is	an	integer.

>>>	int(input(“ Age:	“))

print	(x)

	

Another	way	is	to	convert	the	integer	to	a	string.	It ’ s	because	the	input	value	is	always	a
string.

	

To	convert	an	integer	to	a	string,	use	this	code:

str()

	

Examples:

str(5)

str(10)

	

The	above	numbers	will	then	be	converted	to	strings,	so	they	can	now	operate	as	strings.

	

Python	coding	style
	

The	 correct	 coding	 style	 will	 prevent	 you	 from	 obtaining	 return	 errors	 in	 your	 codes.
Proper	grammar	or	syntax	is	of	utmost	importance.	Here	are	some	coding	styles	that	are
most	preferred	by	Python.

	

1.	 Comments	should	be	written	(as	much	as	possible)	in	another	line	from	the	code.
The	usual	 practice	 of	 commenting	 after	 every	 line	of	 code	 is	 popular	 nowadays.
Even	 so,	 writing	 comments	 on	 another	 line	 is	 recommended.	 This	 is	 because
beginners,	not	familiar	with	the	hash	#	symbol,	will	mistake	the	comment	as	part	of
the	code.

	

2.	 Python ’ s	UTF-8	 and	 plain	ASCII	 are	 preferred	 to	 be	 used	 as	 codes.	 There	 are
changes	as	Python	is	updated	frequently	to	solve	snags	or	problems.

	

3.	 In	 naming	 functions,	 classes	 and	 arguments,	 Python	 has	 a	 preferred	 style.
Functions	are	named	using	the	lowercase	or	with	underscores.	Classes	are	named
using	 the	 CamelCase.	 In	 the	 case	 of	 arguments,	 the	 first	 argument	 always
uses ‘ self ’ .

	

4.	 Remember	 to	 add	 spaces	 around	 operators	 and	 after	 commas.	 This	 is	 a	 good
practice	because	the	statement	can	be	read	clearly	and	it	would	appear	organized.

	

5.	 Larger	block	of	codes,	blank	lines	and	classes	should	be	separated	by	white	spaces.
Unlike	other	programming	languages,	Python	has	made	it	possible	for	users	not	to
worry	 so	much	 about	 these	 white	 spaces.	 They	 have	 been	 added	 as	 part	 of	 the
program.

	

6.	 If	your	device	has	no	builtinindentation,	don ’ t	use	the	tabs	in	adding	spaces.	This
may	create	a	problem.	It ’ s	better	to	use	a	4-space	indentation	than	using	the	tab.

	

7.	 Lines	 should	 not	 exceed	 79	 characters;	 thus,	 you	 have	 to	wrap	 text	 properly.	 A
problem	occurs	when	the	lines	exceed	79	characters.	The	code	may	not	work.

	

8.	 In	using	Python,	docstrings	are	preferred	because	they	are	easier	to	manipulate	and
are	practical.		

	

You	 can	 create	 different	 types	 of	 programs	 with	 your	 Python	 language.	 Explore	 your
codes	and	be	ingenious	to	learn	more	coding	best	practices.

	

Chapter	19:		Practice	Questions	on	Coding
	

This	chapter	 is	devoted	 for	your	coding	practice.	 I	will	give	you	a	case	and	you	decide
what	 Python	 code	 should	 you	 use	 to	 obtain	 the	 objective.	 Keep	 in	mind	 that	 there	 are
several	 ways	 to	 skin	 a	 cat,	 so	 choose	 the	 best	method	 or	 function	 that	 can	 answer	 the
question.	Good	luck!

Here	goes:

Questions	or	cases

Instruction:

Answer	 the	 questions	 in	 the	 following	 cases.	 If	 needed,	write	 the	 Python	 code	 of	 your
answer.

1.	 You	 are	 a	 group	 leader	 for	 a	 research	 study.	 You	want	 to	 sort	 your	 Python	 file
showing	 the	 names	 of	 the	 subjects	 in	 alphabetical	 order.	 What	 Python
code/statement	should	you	use?

	

2.	 In	Python,	what	would	be	the	quickest	way	to	get	the	sum	of	numbers?	Show	the
statement.

	

1.	 How	can	you	write	the	code,	if	you	want	to	add	14	to	this	list	of	myNumbers?

myNumbers	=	[2,	4,	6,	8,	10,	12]

	

3.	 How	can	you	remove	duplicate	elements	from	this	set?

	

names	=	{ “ John ” , “ Ella ” , “ Judith ” , “ Jonathan ” , “ John ” , “ Eliot ”	}

	

4.	 How	can	you	retrieve	elements	2	to	6	from	this	list?

	

myVariables	=	(1,	2,	3,	4,	5,	6,	7)

	

5.	 The	 employees	 in	 your	 company	 needed	 to	 register	 their	 names	 before	 a	 social
gathering,	 using	 Python.	What	 program	would	 you	 employ?	Give	 the	 details	 of
your	program/code.

	

6.	 Write	a	function	that	would	allow	you	to	use ‘ treatment ’	as	a	variable	in	an	a	+	b

situation.

	

7.	 Create	a	while	statement,	if	x	=	1.

	

8.	 Create	 an	 if-else	 statement	 concerning	 working	 hours	 of	 employees	 under	 your
supervision.	They	must	input	their	number	of	working	hours.

	

9.	 Solve	 this	problem	using	Python.	7	 raised	 to	 the	5th	power,	multiplied	by	10	and
added	to	1,230.

	

10.	 How	do	you	write	 the	Python	code	 if	you	want	 the	 following	 to	appear	on	your
return	statements:

Hello!

I ’ m	having	a	great	time	writing	my	Python	code.

Would	you	like	to	join	me?

Enter	your	name	now

Name:

	

After	answering	the	questions,	review	your	answers	one	more	time	before	referring	to	the
answers	in	the	next	chapter.

You	can	now	turn	to	the	next	page	to	check	your	answers.

	

Chapter	20:		Answers	to	Practice	Questions	on	Coding
	

Here	are	the	answers	to	the	questions	in	the	previous	chapter.	Go	over	them	and	compare
your	answers.	Again,	 there	may	be	other	methods	to	create	your	code.	They	may	not	be
given	all	in	the	answers.	Refer	to	the	chapters	in	this	book	too	to	confirm	your	answers.

	

Questions	and	answers

1.	 You	 are	 a	 group	 leader	 for	 a	 research	 study.	 You	want	 to	 sort	 your	 Python	 file
showing	 the	 surnames	 of	 the	 subjects	 (file	 name	 =	 employees_name)	 in
alphabetical	order.	What	Python	code/statement	would	you	use?

employees_name=	(“ Lobo ” , “ Anden ” , “ Guillermo ” , “ Dixon ” , “ Henry ”)

	

Answer:

	

Use	the	sorted	data	by	calling	the	function,	sorted	()	.	The	Python	code	would	be:

	

>>>	 employees_name=
(“ Lobo ” , “ Anden ” , “ Guillermo ” , “ Dixon ” , “ Henry ”)

>>>	sorted	(employees_name)

>>>print	(employees_name)

‘ Anden ’ , ‘ Dixon ’ , ‘ Guillermo ’ , ‘ Henry ’ , ‘ Lobo ’

	

You	could	also	use:

	

>>>employees_name.sort

>>>print	(employees_name)

‘ Anden ’ , ‘ Dixon ’ , ‘ Guillermo ’ , ‘ Henry ’ , ‘ Lobo ’

	

2.	 In	Python,	what	would	be	 the	quickest	way	to	get	 the	sum	of	 two	numbers,	with
these	values:	a	=	5,	b	=	10?	Show	the	statement.

Answer:

>>>	a	=	5,	b	=	10

>>>	a	+	b

15

	

a	=	is	the	1st	number

b	=	is	the	2nd	number

	

You	 can	 also	 use	 the	 Python	 interpreter	 as	 a	 calculator	 and	 input	 the
numbers	directly	to	get	the	sum.

	

Example:

	

>>>	5	+	10

15

	

Or

	

>>>a	+	b

15

	

	

3.	 How	can	you	write	the	code,	if	you	want	to	add	14	to	this	list	of	myNumbers?

myNumbers	=	[2,	4,	6,	8,	10,	12]

	

Answer:

	

>>>myNumbers	=	[2,	4,	6,	8,	10,	12]

>>>	myNumbers	.append	(14)

>>>print	(myNumbers)

myNumbers	=	[2,	4,	6,	8,	10,	12,	14]

	

	

4.	 How	can	you	remove	duplicate	elements	from	this	set?

	

names	=	{ “ John ” , “ Ella ” , “ Judith ” , “ Jonathan ” , “ John ” , “ Eliot ” }

	

Answer:

	

There	are	various	ways	to	do	it,	one	of	the	simplest	methods	is	this:

	

>>>def	remove_duplicates(names):

							return	list(set(names))

	

You	can	also	turn	it	into	a	set	to	weed	out	duplicates.

	

	

5.	 How	can	you	retrieve	elements	2	to	6	from	this	list?

	

myList	=	[1,	2,	3,	4,	5,	6,	7]

	

Answer:

	

>>>	myList	=	[1,	2,	3,	4,	5,	6,	7]

>>>	print	[2:7]

2,	3,	4,	5,	6

	

6.	 The	employees	in	your	company	needed	to	register	their	nicknames	before	a	social
gathering,	 using	 Python.	What	 program	would	 you	 employ?	Give	 the	 details	 of
your	program/code.

	

	

Answer:

	

First,	you	have	to	create	the	Python	code	and	save	it	in	your	device	before	running.
You	can	write	the	code	in	this	manner:

>>>print	(“ What	is	your	nickname? ”)

>>>print	(“ Enter	your	nickname. ”)

>>>input(“ nickname:	“)

>>>print	(“ Thank	you.	Enjoy	the	party! ”)

>>>print	(nickName)

	

When	you	run	this	code,	the	following	will	be	the	output:

What	is	your	nickname?

Enter	your	nickname.

nickname:

Thank,	you	enjoy	the	party!

____	(Python	will	print	your	nickname	here.)

	

	

7.	 Write	a	function	that	would	allow	you	to	use ‘ treatment ’	as	a	variable	in	an	a	+	b
situation.

	

	

Answer:

	

>>>treatment1=	(“ daily ” , “ weekly ” , “ monthly ”)

>>>treatment2	=	(“ short ” , ‘ medium ” , “ long ”)

>>>a	= “ treatment1 ”

>>>b	= “ treatment2 ”

>>>	a	+	b

treatment1,	treatment2

or

>>>treatment1	+	treatment2

“ daily ” , “ weekly ” , “ monthly ” ,short ” , ‘ medium ” , “ long ”

	

8.	 Create	a	while	statement,	if	x	=	20.

	

Answer:

x	=	20

>>>while	x	>5

print	(x)

	

	

This	will	print	numbers	from	6	to	20	because	they	are	all	greater	than	5.

	

	

9.	 Create	 an	 if-else	 statement	 concerning	 working	 hours	 of	 employees	 under	 your
supervision.	They	must	input	their	number	of	working	hours.

	

Answer:

	

>>>x	=	2

>>>print	(“ Kindly	type	your	working	hours	below. ”)

>>>	int(input(“ working	hours:	“))

>>>	if	x	<	8

print	(“ Work	harder. ”)

									else

print	(“ Take	it	easy. ”)

	

When	you	run	this	code,	the	output	would	be:

	

Kindly	type	your	working	hours	below.

working	hours:

	

When	 the	 employee	 types	 his	 working	 hours	 and	 it’s	 less	 than	 8	 hours	 the
comment	 “Work	 harder”	 will	 appear.	 When	 the	 working	 hours	 is	 more	 than	 8
hours,	the	comment:	“Take	it	easy.”	will	appear.

See	output	below:

Kindly	type	your	working	hours	below.

working	hours:	6

Work	harder.

	

Or

	

Kindly	type	your	working	hours	below.

working	hours:	9

Take	it	easy.

	

10.	 Solve	this	problem	using	Python.

7	raised	to	the	5th	power,	multiplied	by	10	and	added	to	1,230.

	

Answer:

	

>>>(7**5)	*	10	+	1,230

169,	300

	

The	 exponent	 is	 solved	 first,even	 if	 it ’ s	 not	 enclosed	 in	 parentheses.	 Then	 the
answer	is	multiplied	with	10,	and	then	added	to	1,230.

	

7**5	=	16,	807

16,	807	x	10	=	168,	070

168,	070	+	1,230	=	169,	300

	

11.	 How	do	you	write	 the	Python	code	 if	you	want	 the	 following	 to	appear	on	your
return	statements:

Hello!

I ’ m	having	a	great	time	writing	my	Python	code.

Would	you	like	to	join	me?

Enter	your	name	now

Name:

	

Answer:

print	(“ Hello! ”)

print	(“ I ’ m	having	a	great	time	writing	my	Python	code. ”)

print	(“ Would	you	like	to	join	me? ”)

print	(“ Enter	your	name	now ”)

input	(“ Name:	“)

	

Click ‘ run	module ’	 for	 the	 return	 statements	 to	be	printed.	This	was	constructed	 in	 the
shell	editor,	so	the	arrow	prompts	are	not	seen.	You	will	be	obtaining	the	same	results:

Hello!

I ’ m	having	a	great	time	writing	my	Python	code.

Would	you	like	to	join	me?

Enter	your	name	now

Name:

	

There	you	go!

If	 you	 have	 other	 answers	 other	 than	 these	 answers,	 that ’ s	 fine.	 It	 means	 you	 have
learned	something.	As	 the	clich é	goes: “ There	are	 several	ways	 to	 reach	 the	 top	of	 the
mountain. ”

Mine	is	not	the	only	way.	The	important	thing	is	to	remember	the	basic	Python	rules	that
you	should	follow.

	

	

	

	

	

	

Chapter	21:		Basic	Tips	to	Remember	in	Python	3
Programming
	

As	we	end	the	lessons,	here	are	important	tips	that	you	should	remember	about	the	Python
3	programming	language.	Go	over	them	and	apply	them	properly.

1.	 Learn	with	the	correct	attitude.	With	your	mind	positively	prepared	to	assimilate
new	information,	your	learning	will	be	more	productive	and	enjoyable.

	

2.	 Python	 3	 has	 still	 many	 similarities	 with	 Python	 2.	 If	 you	 know	 Python	 2
already,	 it	 would	 be	 easier	 for	 you	 to	 learn	 Python	 3;	 the	 changes	 are	 not
astronomical.

	

3.	 Maximize	the	builtin	functions.	 If	you	encounter	problems	in	constructing	your
codes,	 search	 for	 builtin	 functions	 that	 can	 help	 you	 solve	 the	 problem.	All	 you
have	to	do	is	to	call	on	the	function	to	direct	you.

	

4.	 Be	 brave	 to	 explore,	while	 learning.	 Experiment	 with	 your	 codes.	 You	 may
commit	mistakes	along	the	way,	but	you	will	learn	from	your	adventure.	Of	course,
ensure	 that	 you	 have	 saved	 a	 copy	 first	 of	 your	 data	 before	 you	 start	 tweaking
them.

	

5.	 Remember	print	().	This	 is	 the	most	common	function	 that	you	must	 remember
for	Python	3.	Print	has	become	a	function,	so	 it	needs	 the	parentheses	 to	enclose
items	 for	 printing.	Without	 the	 parentheses,	 a	 return	 error	 will	 occur.	 Python	 2
works,	whether	the	parentheses	are	used	or	not.

	

6.	 Python	is	a	new	language.	As	a	beginner,	you	mayfind	Python	difficult.	It ’ s	like
learning	 the	ABCs	of	a	 foreign	 language.	There ’ s	no	 shame	 in	 learning	at	your
own	pace.	Slowly	but	surely,	you	will	achieve	your	goal.

	

7.	 Numbers	are	not	enclosed	 in	quotes.	Unlike	 text,	numbers	 included	 in	 the	data
types	are	typically	not	enclosed	in	quotes.	They	are	included	in	data	files	as	they
are.

	

8.	 Use	a	reliable	Python	interactive	interpreter.	IDLE	works	on	various	OS	and	is
reliable	and	easy	to	manipulate.

	

9.	 Lists	are	mutable,	while	numbers,	tuples,	and	strings	are	immutable.	You	must
remember	these	facts,	because	it	can	help	you	in	creating	a	correct	Python	syntax.
Mixing	up	your	marks	will	mess	up	your	files	too.

	

10.	 Think	 like	 a	 computer.	 The	 codes	 will	 be	 easier	 to	 remember	 if	 you	 psyche
yourself	to	think	as	a	computer.	How	does	the	computer	operate?	It	saves,	deletes,
creates,	add	and	manipulate	 files.	Observe	how	it	processes	data,	and	 learn	from
it.An	example	 is	when	you	close	a	 file,	 the	computer	will	always	 remind	you	 to
save	it.	Your	mind	must	also	be	attuned	to	these ‘ reminders ’ .

	

11.	 Interact	 with	 other	 coders.	 You	 may	 want	 to	 join	 an	 online	 group	 or	 a
neighborhood	group	of	programmers	or	 coders.	Your	 interactions	with	 them	will
allow	you	to	acquire	new	knowledge	through	their	experiences,	while	sharing	your
own.	This	 can	 be	 offline	 or	 online.	 It	 doesn ’ t	matter,	 provided	 that	 you	have	 a
good	relationship.

	

12.	 Remember	 the	 correct	punctuation	marks	 that	go	 together	with	 the	various
data	 types.	 Sets	 and	 the	 dictionary	 use	 curly	 brackets.	 Lists	 and	 tuples	 use
brackets;	strings	and	variables	use	parentheses.

	

13.	 Be	aware	of	the	Python	operators.	The	operators	are	vital	 in	creating	a	correct
syntax.	Review	the	operators	presented	in	this	book,	and	remember	their	functions.
You	will	need	them	to	become	a	great	Python	coder.

	

14.	 Python	 recognizes	 other	 Control	 Flow	 Statements.	 The	 Control	 Flow
Statements	 of	 other	 programming	 languages	 arerecognized	 by	 Python.	 It ’ s
amazing,	isn ’ t	it?	If	you	happen	to	know	other	programming	languages,	you	will
find	Python	to	be	relatively	easy.

	

15.	 Learn	 about	 other	 programming	 languages.	 You	 may	 want	 to	 study	 JAVA,
JavaScript,	HTML	and	CSS.	They	have	many	similarities	that	will	facilitate	your
education.	When	 you	 have	 knowledge	 about	 all	 of	 these,	 you	 can	 turn	 it	 into	 a
career	and	become	an	expert	language	programmer.

	

16.	 Practice,	practice,	practice.	Practice	makes	perfect.	If	you	want	to	be	an	expert	in
language	 programming.	 Practice	 coding	 every	 chance	 you	 get.	 	 Your	 diligence
will,	inevitably,	pay	off	in	the	long	run.

	

17.	 Update	yourself	regularly.Python	has	evolved	throughout	the	years.	It ’ s	best	to

update	yourself,	every	now	and	then,	to	know	which	recent	features	are	added	to
its	current	apps.

	

18.	 When	 choosing	 a	 Python	 code,	 go	with	 the	 simplest.	 The	 goal	 of	 a	 language
programmer	is	to	accomplish	his	task	through	the	easiest	way	possible.	So,	always
choose	the	simplest	method.	Obviously,	it	needs	to	be	reliable,	as	well.

	

19.	 Python	is	free.	You	can	download	all	the	updated	versions	of	Python	for	free.	You
don ’ t	 pay	 a	 cent,	 yet,	 you	 can	 gain	 tremendous	 benefits	 from	 learning	 this
programming	language.

	

These	 tips	 will	 enrich	 your	 Python	 experience.	 Consider	 them	 as	 guidelines	 in	 your
journey	to	gain	knowledge.

Observe	them,	and	you	will	be	a	happy	Python	coder	and	programmer.

	

Conclusion
	

You	have	now	a	beginner ’ s	knowledge	about	Python	3.		Practicing	with	your	codes	every
day	can	help	you	retain	and	apply	the	basics	that	you	have	gleaned	from	this	book.

Pursue	more	 advance	 knowledge,	while	 your	 Python	 basics	 are	 still	 intact	 and	 fresh	 in
your	mind.	Understandably,	advance	users	have	more	advantage	over	beginners	in	terms
of	speed	and	expertise.	But	you ’ re	going	there,	slowly	but	surely.

For	as	long	as	you	are	motivated	to	learn,	you	will	be	able	to	continue	and	pursue	advance
lessons	in	Python.

Take	notethat ‘ knowledge	applied	is	knowledge	gained ’ .	Thus,	don ’ t	sit	on	your	laurels
yet.	Go	out	there,	and	try	your	hands	on	more	actual	Python	coding.

As	you	start	coding,	you	will	discover	 the	 joy	of	creating,	manipulating,	organizing	and
working	on	your	own	files.	It	can	be	an	exhilarating	experience.

Again,	congratulations	and	welcome	to	the	world	of	Python	3!	

Thank	you	again	for	reading	this	book!
	

	

Sign	up	to	the	Newsletter

You	will	get	access	to	several	FREE	eBooks	and

Special	DEALS	every	month!

>>>Click	Here	to	Sign	Up<<<
	

	

Bonus:	Preview	Of	Hacking	with	Python
	
This	book	will	show	you	how	to	use	Python,	create	your	own	hacking	tools,	and	make	the
most	out	of	available	resources	that	are	made	using	this	programming	language.

	

If	you	do	not	have	experience	in	programming,	don ’ t	worry –	this	book	will	show	guide
you	through	understanding	the	basic	concepts	of	programming	and	navigating	Python
codes.

	

This	book	will	also	serve	as	your	guide	in	understanding	common	hacking	methodologies
and	in	learning	how	different	hackers	use	them	for	exploiting	vulnerabilities	or	improving
security.	You	will	also	be	able	to	create	your	own	hacking	scripts	using	Python,	use
modules	and	libraries	that	are	available	from	third-party	sources,	and	learn	how	to	tweak
existing	hacking	scripts	to	address	your	own	computing	needs.

Click	here	to	check	out	the	rest	on	Amazon.

	

	Chapter 1: Introduction to Python 3
	How to Install Python 3
	Steps in running Python on Windows:

	Chapter 2: Differences of Python 3 from Python 2
	Features of Python 3 that are different from Python 2
	Name Changes

	Chapter 3: Most Common Python 3 Data Types
	Python 3 data types
	Operations for sets

	Chapter 4: Using Python 3 as a Calculator
	Solving simple math problems
	Solving for the square of numbers
	Comparison operations
	Numeric operations

	Chapter 5: Variables in Python 3
	Steps for creating variables
	Storing variables in other variables
	Local variables
	Illegal names for variables

	Chapter 6: Manipulating Strings
	Escaping quotes
	Concatenating strings
	Creating new strings
	Indexing strings
	Slicing strings
	Determining the length of the string
	Updating strings

	Chapter 7: Modifying Python 3 Lists
	Indexing lists
	Methods for list objects
	Appending a list
	Inserting an item in a list
	Counting the number of times an item appears in a list
	Copying a list
	Sorting a list
	Extending a list
	Removing items from a list

	Chapter 8: Using Lists as Queues and Stacks
	Lists as queues
	Lists as stacks
	List comprehension
	Parts of list comprehension

	Chapter 9: Tuples Definition and Purposes
	Purposes of tuples
	Updating tuples
	Slicing indexes of tuples
	Most common built-in tuple functions
	Most common basic tuple operations

	Chapter 10: File Management
	Basic codes
	Reading a file
	Closing files
	Writing into a file
	Creating a file
	Pickle module
	Shelve module
	Reading and writing binary data
	Struct module

	Chapter 11: Debugging and Profiling
	Debuggers
	Most common debugger commands
	Profilers
	Stats Class

	Chapter 12: The Significance of Python Dictionaries
	Maps
	Creating an empty dictionary
	Deleting an entry from the dictionary
	Accessing and sorting keys from the dictionary
	Finding specific keys

	Chapter 13: More about Loops
	Using loops to enumerate values
	Using loops to retrieve keys(k) and values(v) from dictionaries
	Using loops simultaneously over two or more sequences
	Using loops with ‘while’ statements

	Chapter 14: Using Control Flow Statements
	range () function statements
	range (), len () statements
	For statements
	if, elif, if-else statements
	break and continue statements

	Chapter 15: Defining Functions
	General code syntax
	Keyword arguments
	Default argument values
	Arbitrary argument lists
	Defining or creating your own functions

	Chapter 16: Lambda Function in Python 3
	General statement for lambda function
	Filter function
	Reduce function

	Chapter 17: Modules and Packages and Their Functions
	What are modules?
	What are packages?
	Using modules
	Two ways in importing packages
	Dates and Time
	Classes related to datetime module
	Time module
	Most common methods used for time module
	Basic codes and their meanings

	Chapter 18: Creating Input Programs in Python
	Steps in creating the input program
	Sample codes
	Python coding style

	Chapter 19: Practice Questions on Coding
	Chapter 20: Answers to Practice Questions on Coding
	Chapter 21: Basic Tips to Remember in Python 3 Programming
	Conclusion
	Thank you again for reading this book!
	Bonus: Preview Of Hacking with Python

