
CS142 Lecture Notes - Web App Security

Web App Security
Browser Isolation

Mendel Rosenblum

CS142 Lecture Notes - Web App Security

What could go wrong with our web app?
● Our app could allow an attacker to view and/or modify any information or

perform any operations we provide
○ Leak information provided
○ Perform actions on behalf of the user

● Our app could be used to attack anything on our user's machine and or
anything our user machine can talk to

○ If the user trusts us we can allow damage far beyond what the user gives to us

● Security concept: Threat Model
○ What attacks are we trying to deal with?

CS142 Lecture Notes - Web App Security

Security is an hard problem
● Many opportunities for attackers

○ Full stack means there are many interface that an attacker can use

● Hard to identify all the vulnerabilities
○ Complexity of system make it impossible guarantee no vulnerabilities

● Even a small mistake can compromise entire application
○ Only as strongest as the weakest link

CS142 Lecture Notes - Web App Security

Modes of attacks on web applications
● Attack the connection between browser and web server

○ Steal password
○ Hijack existing connection

● Attack the server
○ Inject code that does bad things

● Attack the browser
○ Inject code that does bad things

● Breach the browser, attack the client machine

● Fool the user (phishing)

CS142 Lecture Notes - Web App Security

Security Defences
● Isolation in browsers

○ Web app run in isolated sandbox

● Cryptography
○ Protect information from unauthorized viewing
○ Detect changes
○ Determine origin of information

● Web development frameworks
○ Use patterns that help, avoid dangerous ones

CS142 Lecture Notes - Web App Security

Challenge of isolation in the browser
● Web content comes from many sources, not all equally trusted

○ Example: Your bank and the web site your friend sent you

● Trusted and untrusted content are in close proximity
○ Frames, tabs, sequential visits

● Must separate various forms of content so that untrusted content cannot
corrupt/misuse trusted content

CS142 Lecture Notes - Web App Security

Example: a "good" page displays a sponsored ad
● Attackers can buy advertisements, use them to attack good pages.

● Advertiser gets to supply content for ad

○ "good" page links to advertiser site in <iframe>

● Ad can contain <script> elements that access DOM, submit forms, etc.

○ parent.frames[0].forms[0].submit;

CS142 Lecture Notes - Web App Security

Same-Origin Policy
● General idea: separate content with different trust levels into different frames,

restrict communication between frames
● One frame can access content in another frame only if they both came from

the same origin
● Origin is

○ Protocol
○ Domain name
○ Port

● Access applies to DOM resource, cookies, XMLHttpRequest/AJAX requests
● Doesn't apply: <script> tags

○ JavaScript executes with full privileges of the enclosing frame.

CS142 Lecture Notes - Web App Security

same-origin policy is too restrictive

● There are times when it is useful for frames with different origins to
communicate

○ Example: Sub-domains of same organization
○ Web fonts
○ Content distribution network

● Browsers allows page to set its domain with document.domain

document.domain = "company.com";

● Limited to sub-domain sharing

CS142 Lecture Notes - Web App Security

HTML5 feature: Access-Control-Allow-Origin
● Access-Control-Allow-Origin header in HTTP response:

Access-Control-Allow-Origin: http://foo.com

Access-Control-Allow-Methods: PUT, DELETE

● Specifies one or more domains that may access this object's DOM.

Can use "*" to allow universal access.

CS142 Lecture Notes - Web App Security

HTML5 postMessage - safe messaging
● Sender (from domain a.com) to an embedded frame of different domain

frames[0].postMessage("Hello world", "http://b.com/");

● Receiver (domain b.com) can check origin:

window.addEventListener("message", doEvent);

function doEvent(e) {

 if (e.origin == "http://a.com") {

 ... e.data ...

 }

}

CS142 Lecture Notes - Web App Security

Cookie Security
● Cookies can be read and written from Javascript:

alert(document.cookie);

document.cookie = "name=value; expires=1/1/2011"

● Browsers use the same-origin policy to restrict access to cookies.

